JPH03217017A - Semiconductor device - Google Patents

Semiconductor device

Info

Publication number
JPH03217017A
JPH03217017A JP1283890A JP1283890A JPH03217017A JP H03217017 A JPH03217017 A JP H03217017A JP 1283890 A JP1283890 A JP 1283890A JP 1283890 A JP1283890 A JP 1283890A JP H03217017 A JPH03217017 A JP H03217017A
Authority
JP
Japan
Prior art keywords
semiconductor layer
film
electrode contact
impurity region
wiring body
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP1283890A
Other languages
Japanese (ja)
Inventor
Takehide Shirato
猛英 白土
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Individual
Original Assignee
Individual
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Individual filed Critical Individual
Priority to JP1283890A priority Critical patent/JPH03217017A/en
Publication of JPH03217017A publication Critical patent/JPH03217017A/en
Pending legal-status Critical Current

Links

Landscapes

  • Electrodes Of Semiconductors (AREA)
  • Bipolar Transistors (AREA)
  • Insulated Gate Type Field-Effect Transistor (AREA)

Abstract

PURPOSE:To use a minute electrode contact window, to decrease contact resistance and to form a wiring body having an excellent step coverage by embedding a conductor film into a hole which is formed in insulating films on a semiconductor layer and in a part of the semiconductor layer, and providing a wiring body which is connected to the conductor film. CONSTITUTION:A semiconductor layer 2 is provided in a semiconductor substrate 1 or on the semiconductor substrate 1. Insulating films 4 and 5 are provided on the semiconductor layer 2. A hole 6 is formed in the insulating films 4 and 5 and in a part of the semiconductor layer 2. A conductor film 7 is embedded in the hole 6 and connected to the side surface part and the upper surface part of the semiconductor layer 2. A wiring body 8 is connected to the conductor film 7. These parts are provided. For example, the electrode contact window 6 is formed not only in the impurity blocking oxide film 4 and the PSG film 5 provided on the N<+>-type impurity region 2 but also in a part of the N<+>-type impurity region 2. The tungsten film 7 grown in vapor phase by selective chemical growth is flatly embedded in the electrode contact window 6. One of the film 7 is connected to the side surface part and the upper surface part of the N<+>-type impurity region 2, and the other is connected to the Al wiring 8.

Description

【発明の詳細な説明】 [概 要] 半導体基板内に形成された不純物領域からなる比較的抵
抗が高い半導体層又は半導体基板上に形成された多結晶
シリコンからなる比較的抵抗が高い半導体層と極めて低
抵抗なAI配線体との接続が、半導体層表面を露出する
ように絶縁膜に電極コンタクト窓を設けるばかりでなく
、半導体層側面部も露出するように、露出した半導体層
にも電極コンタクI・窓が設けられ、この電極コンタク
ト窓に平坦に埋め込まれた抵抗の低い導電膜を介してな
された構造に形成されているため、半導体層の側面部及
び上面部で埋め込まれた導電膜との接続を形成できるの
で、電極コンタクト窓底面部よりコンタクト面積を立体
的に増すことができるため、コンタク1へ抵抗を低減で
きることによる高速化及び高集積化を、電極コンタクト
窓に導電膜を平坦に埋め込むことができるため、ステッ
プ力バレッジの良い配線体を形成できることによる高信
頼性を可能とした半導体装置。
[Detailed Description of the Invention] [Summary] A relatively high resistance semiconductor layer made of an impurity region formed in a semiconductor substrate or a relatively high resistance semiconductor layer made of polycrystalline silicon formed on a semiconductor substrate. For connection with the extremely low resistance AI wiring body, not only is an electrode contact window provided in the insulating film to expose the surface of the semiconductor layer, but also an electrode contact window is provided on the exposed semiconductor layer so that the side surface of the semiconductor layer is also exposed. Since the electrode contact window is provided with a low-resistance conductive film buried flatly in the electrode contact window, the conductive film buried in the side and top surfaces of the semiconductor layer is Since the contact area can be increased three-dimensionally from the bottom of the electrode contact window, it is possible to reduce resistance to contact 1, thereby increasing speed and integration. A semiconductor device that can be embedded, making it possible to form a wiring body with a good stepping force barrier, making it possible to achieve high reliability.

[産業上の利用分野] 本発明はMIS及びバイボーラ型半導体装置に係り、特
に、微細な電極コンタクト窓でコンタクト抵抗を低減し
た高速且つ高集積な半導体集積回路の形成を可能とした
半導体装置に関する。
[Industrial Field of Application] The present invention relates to MIS and bibolar semiconductor devices, and particularly to a semiconductor device that enables the formation of high-speed, highly integrated semiconductor integrated circuits with reduced contact resistance using fine electrode contact windows.

従来、半導体層(不純物領域、多結晶シリコン層等》と
A1配線体との接続においては、半導体層上に形成する
絶縁膜に電極コンタク?−窓を開孔して半導体層表面を
露出し、直接A1配線体を設けることにより接続を取っ
ていた。しかし、極めて高集積化される今日、半導体層
抵抗は微細にすることで低減できるが、電極コンタクI
・窓も微細にすることから、コンタクト面積が極めて小
さくなりコンタクI〜抵抗が増大し、高集積の割には高
速化が達成できないという問題、又、電極コンタク1へ
窓が微細になるためアスペクト比が大きくなりステップ
力バレッジの良い配線体が形成できないため配線体の寿
命が劣化するという問題が顕著になってきている。そこ
で、微細な電極コンタクI・窓を使用し、コンタクト抵
抗が低減でき、且つステップ力バレッジの良い配線体が
形成できる手段が要望されている。・ [従来の技術] 第5図は従来の半導体装置の模式側断面図で、51はp
一型シリコン(Si)基板、52はn十型不純物領域、
53はフィールド酸化膜、54は不純物ブロック用酸化
膜、55は燐珪酸ガラス(PSG)膜、5Gは電極コン
タクト窓、57はA1配線を示している。
Conventionally, in connection between a semiconductor layer (impurity region, polycrystalline silicon layer, etc.) and an A1 wiring body, an electrode contact window is opened in an insulating film formed on the semiconductor layer to expose the surface of the semiconductor layer. Connection was made by directly providing an A1 wiring body.However, in today's extremely high integration, semiconductor layer resistance can be reduced by making it finer, but electrode contact I
・Since the window is also made finer, the contact area becomes extremely small and contact I resistance increases, and high speed cannot be achieved despite the high integration.Also, since the window on electrode contact 1 becomes finer, the aspect ratio increases. As the ratio increases, it becomes impossible to form a wiring body with good stepping force leverage, and the problem of deterioration of the life of the wiring body is becoming more prominent. Therefore, there is a need for a means that can reduce contact resistance and form a wiring body with a good stepping force barrier by using fine electrode contacts and windows.・ [Prior Art] FIG. 5 is a schematic side sectional view of a conventional semiconductor device, and 51 is a p
1 type silicon (Si) substrate, 52 is an n0 type impurity region,
53 is a field oxide film, 54 is an oxide film for impurity blocking, 55 is a phosphosilicate glass (PSG) film, 5G is an electrode contact window, and 57 is an A1 wiring.

同図においては、p一型シリコン基板51にフィールド
酸化膜53で絶縁分離されたn十型不純物領域52が設
けられており、n十型不純物領域52上に設けられた不
純物ブロック用酸化膜54及び燐珪酸ガラス(PSG)
膜55に形成された電極コンタクト窓56においてn十
型不純物領域52とA1配線57との接続を形成してい
る。高集積化により、電極コンタク1〜窓が微細に形成
されるなめ、コンタクI・面積が減少することにより、
コンタクト抵抗が増大するので、高速化が達成できない
という欠点及びアスペクト比が増大することにより、ス
テップ力バレッジの良い配線体が形成できないので、寿
命が劣化するという欠点があった。
In the figure, an n0 type impurity region 52 is provided on a p type silicon substrate 51 and is insulated and isolated by a field oxide film 53, and an impurity blocking oxide film 54 provided on the n0 type impurity region 52 is shown. and phosphosilicate glass (PSG)
A connection between the n+ type impurity region 52 and the A1 wiring 57 is formed in the electrode contact window 56 formed in the film 55 . Due to high integration, the electrode contacts 1 to windows are formed finely, and the contact area decreases.
Since the contact resistance increases, high speed cannot be achieved, and since the aspect ratio increases, a wiring body with a good stepping force barrier cannot be formed, resulting in a shortened lifespan.

[発明が解決しようとする問題点] 本発明が解決しようとする問題点は、従来例に示される
ように、電極コンタク1・窓の微細な形成により、コン
タクト面積が減少するなめ、コンタクト抵抗が増大する
ので、高速化が達成できなかったこと及びアスペクト比
が増大するため、ステップ力バレッジの良い配線体が形
成できないので、寿命劣化の改善ができなかったことで
ある。
[Problems to be Solved by the Invention] The problems to be solved by the present invention are as shown in the conventional examples, because the contact area is reduced due to the fine formation of the electrode contact 1 and window, and the contact resistance is increased. Because of the increase in step force, it was not possible to achieve high speed, and because the aspect ratio increased, it was not possible to form a wiring body with a good stepping force barrier, so it was not possible to improve the deterioration of life.

[問題点を解決するための手段] 上記問題点は、半導体基板内又は前記半導体基板上に設
けられた半導体層と、前記半導体層上に設けられた絶縁
膜と、前記絶縁膜及び前記半導体層の一部に設けられた
開孔と、前記開孔に埋め込まれ、前記半導体層の側面部
及び上面部に接続した導電膜と、前記導電膜に接続した
配線体とを備えてなる本発明の半導体装置によって解決
することができる。
[Means for Solving the Problems] The above problems include a semiconductor layer provided within a semiconductor substrate or on the semiconductor substrate, an insulating film provided on the semiconductor layer, and the insulating film and the semiconductor layer. of the present invention, comprising: an opening provided in a part of the semiconductor layer; a conductive film embedded in the opening and connected to a side surface and a top surface of the semiconductor layer; and a wiring body connected to the conductive film. This problem can be solved by semiconductor devices.

[作 用] 即ち本発明の半導体装置においては、半導体基板内に形
成された不純物領域からなる比較的抵抗が高い半導体層
又は半導体基板上に形成されな多結晶シリコンからなる
比較的抵抗が高い半導体層と極めて低抵抗なA1配線体
との接続が、半導体層表面を露出するように絶縁膜に開
孔を設けるばかりでなく、半導体層側面部も露出するよ
うに、露出した半導体層にも開孔が設けられ、この開孔
に平坦に埋め込まれた導電膜を介してなされた構造に形
成されている。したがって、半導体層の側面部及び上面
部において埋め込まれた導電膜との接続を形成できるな
め、電極コンタクI・窓底面部よりコンタクト面積を立
体的に増すことができるので、コンタクト抵抗を低減で
きることによる高速化及び高集積化を、絶縁膜及び半導
体層の一部に形成した電極コンタクト窓に導電膜を平坦
に埋め込むことができるため、ステップ力バレッジの良
い配線体を形成できるので、配線体の寿命を改善できる
ことによる高信頼性を可能にすることができる。即ち、
極めて高速、高集積且つ高信頼な半導体集積回路の形成
を可能とした半導体装置を得ることができる。
[Function] That is, in the semiconductor device of the present invention, a relatively high resistance semiconductor layer made of an impurity region formed within a semiconductor substrate or a relatively high resistance semiconductor layer made of polycrystalline silicon formed on a semiconductor substrate. The connection between the layer and the extremely low-resistance A1 wiring body is achieved by not only opening holes in the insulating film to expose the surface of the semiconductor layer, but also openings in the exposed semiconductor layer so that the side surfaces of the semiconductor layer are also exposed. A hole is provided, and the structure is formed with a conductive film buried flatly in the hole. Therefore, it is possible to form a connection with the buried conductive film on the side and top surfaces of the semiconductor layer, and the contact area can be three-dimensionally increased compared to the bottom surface of the electrode contact I/window, thereby reducing contact resistance. In order to achieve higher speed and higher integration, the conductive film can be flattened into the electrode contact window formed in part of the insulating film and semiconductor layer, making it possible to form a wiring body with a good stepping force barrier, thereby extending the life of the wiring body. High reliability can be achieved by improving the That is,
It is possible to obtain a semiconductor device that enables the formation of extremely high-speed, highly integrated, and highly reliable semiconductor integrated circuits.

[実施例] 以下本発明を、図示実施例により具体的に説明する。第
1図は本発明の半導体装置における第1の実施例の模式
側断面図、第“2図は本発明の半導体装置における第2
の実施例の模式側断面図、第3図は本発明の半導体装置
における第3の実施例の模式側断面図、第4図(a)〜
(e)は本発明の半導体装置における製造方法の一実施
例の工程断面図である。
[Examples] The present invention will be specifically described below with reference to illustrated examples. 1 is a schematic side sectional view of a first embodiment of the semiconductor device of the present invention, and FIG. 2 is a schematic side sectional view of a first embodiment of the semiconductor device of the present invention.
FIG. 3 is a schematic side sectional view of the third embodiment of the semiconductor device of the present invention, and FIGS.
(e) is a process cross-sectional view of one embodiment of the manufacturing method for the semiconductor device of the present invention.

全図を通し同一対象物は同一符号で示す。Identical objects are indicated by the same reference numerals throughout the figures.

第1図はp型シリコン基板を用いた際の本発明の半導体
装置における第1の実施例の模式側断面図で、1は10
”’ c『3程度のp一型シリコン(Si)基板、2は
10”0Cm−3程度のn十型不純物領域、3は000
 nm程度のフィールト酸化膜、4は35nm程度の不
純物ブロック用酸化膜、5は600 nm程度の燐珪酸
ガラス(PSG)膜、6は600止角程度の電極コンタ
クト窓、7は埋め込み導電膜(選択化学気相成している
FIG. 1 is a schematic side sectional view of the first embodiment of the semiconductor device of the present invention when a p-type silicon substrate is used, and 1 is 10
``'c''p type silicon (Si) substrate of about 3, 2 is 10'', n0 type impurity region of about 0Cm-3, 3 is 000
4 is a field oxide film of about 35 nm, 5 is a phosphosilicate glass (PSG) film of about 600 nm, 6 is an electrode contact window of about 600 nm, and 7 is a buried conductive film (selectable). It is a chemical vapor.

同図においては、p一型シリコン基板1にフィールド酸
化膜3で絶縁分離されたn十型不純物領域2が設けられ
ている。電極コンタクト窓6はn+型不純物領域2上に
設けられた不純物ブロック用酸化膜4、燐珪酸ガラス(
PSG)膜5ばかりでなく、n十型不純物領域2の一部
にも形成されており、この電極コンタク1〜窓6に抵抗
が低い導電膜(選択化学気相成長タングステン膜)7が
平坦に埋め込まれ、一方をn十型不純物領域2の側面部
及び上面部に接続されており、他方をA1配線8と接続
されている。したがって、比較的抵抗の高い半導体層の
側面部及び上面部において埋め込まれた導電膜との接続
を形成できるため、電極コンタクト窓底面部よりコンタ
クト面積を立体的に増すことができるので、コンタク1
・抵抗を低減できることによる高速1ヒ及び高集積化を
、絶縁膜及び半導体層の一部に形成した電極コンタクト
窓に導電膜を平坦に埋め込むことができるため、ステッ
プ力バレッジの良い配線体を形成できるので、配線体の
寿命を改善できることによる高信頼性を可能にすること
ができる。なお導電膜(選択化学気相成長タングステン
膜》7とA1配線8との接続においては、両方とも抵抗
が低いため、コンタクト抵抗も低く問題にはならない。
In the figure, an n+ type impurity region 2 is provided on a p type silicon substrate 1 and is insulated and isolated by a field oxide film 3. The electrode contact window 6 is made of an impurity blocking oxide film 4 provided on the n+ type impurity region 2, a phosphosilicate glass (
A conductive film (selective chemical vapor deposition tungsten film) 7 with low resistance is formed not only on the PSG) film 5 but also on a part of the n-type impurity region 2, and a conductive film (selective chemical vapor deposition tungsten film) 7 with low resistance is formed on the electrode contact 1 to the window 6. One side is connected to the side surface and the top surface of the n+ type impurity region 2, and the other side is connected to the A1 wiring 8. Therefore, it is possible to form connections with the buried conductive film on the side and top surfaces of the semiconductor layer, which have relatively high resistance, and the contact area can be three-dimensionally increased from the bottom surface of the electrode contact window.
・High speed and high integration due to the reduction of resistance, and the ability to flatten the conductive film into the electrode contact window formed in a part of the insulating film and semiconductor layer, forming a wiring body with a good stepping force barrier. Therefore, high reliability can be achieved by improving the life of the wiring body. Note that in the connection between the conductive film (selective chemical vapor deposition tungsten film) 7 and the A1 wiring 8, since both have low resistance, the contact resistance is also low and does not pose a problem.

第2図は本発明の半導体装置における第2の実施例の模
式側断面図で、1〜8は第1図と同し物を、9は補償拡
散されたn十型不純物領域を示している。
FIG. 2 is a schematic side sectional view of a second embodiment of the semiconductor device of the present invention, in which 1 to 8 are the same as in FIG. 1, and 9 is an n0-type impurity region subjected to compensation diffusion. .

同図においては、n十型不純物領域2より深く電極コン
タクト窓6が形成されているので、AI配線8がp一型
シリコン基板1とショー1〜するのを防ぐために補償拡
散されたn十型不純物領域9が形成されている以外は第
1図と同じ構造に形成されている。本実施例においては
、第1の実施例の効果よりさらにコンタクト抵抗を低減
できるため、さらなる高速化及び高集積化を達成するこ
とが可能である。
In the same figure, since the electrode contact window 6 is formed deeper than the n0 type impurity region 2, the n0 type is compensated and diffused to prevent the AI wiring 8 from being exposed to the p1 type silicon substrate 1. The structure is the same as that in FIG. 1 except that impurity region 9 is formed. In this embodiment, since the contact resistance can be further reduced than the effect of the first embodiment, it is possible to achieve even higher speed and higher integration.

第3図は本発明の半導体装置における第3の実施例の模
式側断面図で、1、3〜8は第1図と同じ物を、10は
半導体層(n十型多結晶シリコン層)を示している。
FIG. 3 is a schematic side sectional view of a third embodiment of the semiconductor device of the present invention, in which 1, 3 to 8 are the same as in FIG. 1, and 10 is a semiconductor layer (n+ type polycrystalline silicon layer). It shows.

同図においては、p一型シリコン基板1上のフィールド
酸化膜3上の半導体層(n十型多結晶シリコン層)10
におけるA1配線との接続を形成している以外は第1図
と同じ構造に形成されている。
In the figure, a semiconductor layer (n+ type polycrystalline silicon layer) 10 on a field oxide film 3 on a p-type silicon substrate 1 is shown.
The structure is the same as that in FIG. 1 except that the connection with the A1 wiring is formed in FIG.

本実施例においても、第1の実施例と同様の効果を得る
ことが可能である。
In this embodiment as well, it is possible to obtain the same effects as in the first embodiment.

次いで本発明に係る半導体装置の製造方法の一実施例に
ついて第4図(a)〜(e)及び第1図を参照して説明
する。ただし、ここでは半導体層と配線体の接続に関す
る製造方法のみを記述し、一般の半導体集積回路に搭載
される各種の素子(トランジスタ、抵抗、容量等)の形
成に関する製造方法の記述は省略する。
Next, an embodiment of the method for manufacturing a semiconductor device according to the present invention will be described with reference to FIGS. 4(a) to 4(e) and FIG. 1. However, only the manufacturing method related to the connection between the semiconductor layer and the wiring body will be described here, and the description of the manufacturing method related to the formation of various elements (transistors, resistors, capacitors, etc.) mounted on a general semiconductor integrated circuit will be omitted.

第4図(a) 通常のLOCOS法による技法を適用することにより、
I)一型シリコン基板1に600 nm程度のフィール
ド酸化膜3を形成する。
Figure 4 (a) By applying the usual LOCOS technique,
I) A field oxide film 3 of about 600 nm is formed on a type 1 silicon substrate 1.

第4図(b) 次いでイオン注入用の薄い酸化膜(図示せず〉を形成す
る。次いで通常のフォトリソグラフィー技術を利用し、
レジスト(図示せず)及びフィールド酸化膜3をマスク
層として、砒素をイオン注入してn十型不純物領域2を
選択的に画定する。
FIG. 4(b) Next, a thin oxide film (not shown) for ion implantation is formed.Next, using normal photolithography technology,
Using a resist (not shown) and field oxide film 3 as a mask layer, arsenic ions are implanted to selectively define n+ type impurity regions 2.

次いでレジストを除去する。次いでイオン注入用の薄い
酸化膜を除去する。
Then the resist is removed. Next, the thin oxide film for ion implantation is removed.

第4図(C) 次いで351程度の不純物ブロック用酸化膜4を成長す
る。次いで600 nn+程度の燐珪酸ガラス(PSG
)膜5を成長する9次いで高温熱処理をおこない、n十
型不純物領域2の活性化及び深さを制御する。
FIG. 4(C) Next, about 351 impurity blocking oxide films 4 are grown. Next, about 600 nn+ phosphosilicate glass (PSG
9) To grow the film 5, high-temperature heat treatment is then performed to control the activation and depth of the n+ type impurity region 2.

第4図(d) 次いで通常のフォトリソグラフィー技術を利用し、レジ
スト(図示せず)をマスク層として、燐珪酸ガラス(P
SG)膜5、不純物ブロック用酸fヒ膜4及びn十型不
純物領域2が形成されたシリコン基板1の一部をドライ
エッチングし、電極コンタクト窓6を選択的に形成する
。次いでレジストを除去する。
FIG. 4(d) Next, using a conventional photolithography technique and using a resist (not shown) as a mask layer, phosphosilicate glass (P) is deposited.
A part of the silicon substrate 1 on which the SG) film 5, the impurity blocking acid film 4, and the n+ type impurity region 2 are formed is dry-etched to selectively form electrode contact windows 6. Then the resist is removed.

第4図(e) 次いで選択化学気相成長タングステン膜7を成長させ、
電極コンタクト窓6を平坦に埋め込み、n十型不純物領
域2の側面部及び上面部と選択化学気相成長タングステ
ン膜7の接続を形成する。
FIG. 4(e) Next, a selective chemical vapor deposition tungsten film 7 is grown,
The electrode contact window 6 is buried flat, and connections between the side and top surfaces of the n+ type impurity region 2 and the selective chemical vapor deposition tungsten film 7 are formed.

第1図 次いでスパッタによりIPm程度のA1膜を成長する9
次いで通常のフォトリソグラフィー技術を利用し、レジ
スト(図示せず》をマスク層として、A1膜を選択的に
ドライエッチングし、A1配線8を形成し、選択化学気
相成長タングステン膜7とA1配線8との接続を形成す
る。
Fig. 1 Next, an A1 film of about IPm is grown by sputtering 9
Next, using a normal photolithography technique, the A1 film is selectively dry-etched using a resist (not shown) as a mask layer to form an A1 wiring 8, and then a selective chemical vapor deposition tungsten film 7 and an A1 wiring 8 are formed. form a connection with.

以上実施例に示したように、本発明の半導体装置によれ
ば、比較的抵抗の高い半導体層の側面部及び上面部にお
いて埋め込まれた抵抗の低い導電膜との接続を形成でき
るなめ、電極コンタクト窓底面部よりコンタクト面積を
立体的に増すことができるので、コンタクト抵抗を低減
できることによる高速化及び高集積化を、絶縁膜及び半
導体層の一部に形成した電極コンタク1〜窓に導電膜を
平坦に埋め込むことができるなめ、ステップ力バレッジ
の良い配線体を形成できるので、配線体の寿命を改善で
きることによる高信頼性を可能にすることができる。
As shown in the embodiments above, according to the semiconductor device of the present invention, it is possible to form a connection with the conductive film of low resistance buried in the side and top surfaces of the semiconductor layer of relatively high resistance, so that electrode contacts can be formed. Since the contact area can be three-dimensionally increased from the bottom of the window, contact resistance can be reduced, resulting in higher speed and higher integration. Since the wiring body can be embedded flatly and has a good stepping force barrier, it is possible to improve the life of the wiring body and achieve high reliability.

[発明の効果] 以上説明のように本発明によれば、MIS及びバイボー
ラ型半導体装置において、比較的抵抗が高い半導体層へ
の抵抗の低い配線体との接続に関して、半導体層の側面
部及び上面部において埋め込まれた抵抗の低い導電膜と
の接続を形成できるため、電極コンタクト窓底面部より
コンタクト面積を立体的に増すことができるので、コン
タクト抵抗を低減できることによる高速化及び高集積f
ヒを、絶縁膜及び半導体層の一部に形成した電極コンタ
クト窓に導電膜を平坦に埋め込むことができるため、ス
テップ力バレッジの良い配線体を形成できることによる
高信頼性を可能にすることができる。即ち、極めて高速
、高集積日6つ高信頼な゛1′.導体集積回路の形成を
可能とした半導体装置を得ることかできる。
[Effects of the Invention] As described above, according to the present invention, in MIS and bibolar semiconductor devices, when connecting a relatively high-resistance semiconductor layer to a low-resistance wiring body, the side and top surfaces of the semiconductor layer are Since it is possible to form a connection with the conductive film with low resistance buried in the bottom part of the electrode contact window, the contact area can be three-dimensionally increased from the bottom part of the electrode contact window.
Since the conductive film can be flatly embedded in the electrode contact window formed in the insulating film and a part of the semiconductor layer, high reliability can be achieved by forming a wiring body with a good stepping force barrier. . In other words, extremely fast, highly integrated day 6 highly reliable ``1''. A semiconductor device that allows formation of a conductor integrated circuit can be obtained.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は本発明の半導体装置における第1の実施例の模
式側断面図、 第2図は本発明の半導体装置における第2の実施例の模
式側断面図、 第3図は本発明の半導体装置における第3の実施例の模
式側断面図、 第4図(a)〜(e)は本発明の半導体装置における製
造方法の一実施例の工程断面図、 第5図は従来の半導体装置の模式側断面図である。 図において、 lはp一型シリコン(Si)基板、 2はn十型不純物領域、 3はフィールド酸化膜、 4は不純物ブロック用酸化膜、 5は燐珪酸ガラス(PSG)膜、 6は電極コンタクIへ窓、 7は埋め込み導電膜(選択化学気相成長タングステン膜
)、 8はAI配線、 9は補償拡散されたn十型不純物領域、10は半導体層
(n十型多結晶シリコン層)を示す。
FIG. 1 is a schematic side sectional view of a first embodiment of a semiconductor device of the present invention, FIG. 2 is a schematic side sectional view of a second embodiment of a semiconductor device of the present invention, and FIG. 3 is a semiconductor device of the present invention. A schematic side sectional view of a third embodiment of the device; FIGS. 4(a) to (e) are process sectional views of an embodiment of the manufacturing method for the semiconductor device of the present invention; FIG. 5 is a schematic side sectional view of a conventional semiconductor device. It is a schematic side sectional view. In the figure, l is a p-type silicon (Si) substrate, 2 is an n-type impurity region, 3 is a field oxide film, 4 is an oxide film for impurity blocking, 5 is a phosphosilicate glass (PSG) film, and 6 is an electrode contact. 7 is a buried conductive film (selective chemical vapor deposition tungsten film), 8 is an AI wiring, 9 is a compensated diffusion n-type impurity region, and 10 is a semiconductor layer (n-type polycrystalline silicon layer). show.

Claims (1)

【特許請求の範囲】[Claims] 半導体基板内又は前記半導体基板上に設けられた半導体
層と、前記半導体層上に設けられた絶縁膜と、前記絶縁
膜及び前記半導体層の一部に設けられた開孔と、前記開
孔に埋め込まれ、前記半導体層の側面部及び上面部に接
続した導電膜と、前記導電膜に接続した配線体とを備え
てなることを特徴とする半導体装置。
A semiconductor layer provided within a semiconductor substrate or on the semiconductor substrate, an insulating film provided on the semiconductor layer, an aperture provided in a part of the insulating film and the semiconductor layer, and an aperture provided in the aperture. A semiconductor device comprising: a conductive film embedded in the semiconductor layer and connected to a side surface and a top surface of the semiconductor layer; and a wiring body connected to the conductive film.
JP1283890A 1990-01-23 1990-01-23 Semiconductor device Pending JPH03217017A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP1283890A JPH03217017A (en) 1990-01-23 1990-01-23 Semiconductor device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP1283890A JPH03217017A (en) 1990-01-23 1990-01-23 Semiconductor device

Publications (1)

Publication Number Publication Date
JPH03217017A true JPH03217017A (en) 1991-09-24

Family

ID=11816524

Family Applications (1)

Application Number Title Priority Date Filing Date
JP1283890A Pending JPH03217017A (en) 1990-01-23 1990-01-23 Semiconductor device

Country Status (1)

Country Link
JP (1) JPH03217017A (en)

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6276548A (en) * 1985-09-30 1987-04-08 Toshiba Corp Semiconductor device

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6276548A (en) * 1985-09-30 1987-04-08 Toshiba Corp Semiconductor device

Similar Documents

Publication Publication Date Title
US5378652A (en) Method of making a through hole in multi-layer insulating films
US4797372A (en) Method of making a merge bipolar and complementary metal oxide semiconductor transistor device
US5291058A (en) Semiconductor device silicon via fill formed in multiple dielectric layers
US5264721A (en) Insulated-gate FET on an SOI-structure
JP2997377B2 (en) Semiconductor device and manufacturing method thereof
US5023690A (en) Merged bipolar and complementary metal oxide semiconductor transistor device
JP2503878B2 (en) Semiconductor integrated circuit device and manufacturing method thereof
JPH03217017A (en) Semiconductor device
JPS5974668A (en) Integrated circuit contact structure
JPS5821866A (en) Semiconductor device
JPH0581183B2 (en)
JPS625657A (en) Semiconductor integrated circuit device
JP2500075B2 (en) Method for improving parasitic diode characteristics of thin film transistor-static RAM cell
JPS5856460A (en) Semiconductor device
JPH11330090A (en) Vertical double diffusion mosfet and its manufacture
JP2654056B2 (en) Method for manufacturing semiconductor device
JPS63300570A (en) Manufacture of gallium arsenide hyper abrupt varactor diode
JPH04113655A (en) Semiconductor device and its preparation
JPS62163368A (en) Lateral-type shottky barrier semiconductor device
JP2659798B2 (en) Semiconductor device
JPH02299238A (en) Semiconductor device
JPH08204189A (en) Manufacture of semiconductor device
JPH03220772A (en) Semiconductor device
JPH01191463A (en) Semiconductor device
JPS62111459A (en) Manufacture of semiconductor device