JPH03217010A - Manufacture of powder of rare earth magnet - Google Patents

Manufacture of powder of rare earth magnet

Info

Publication number
JPH03217010A
JPH03217010A JP1174990A JP1174990A JPH03217010A JP H03217010 A JPH03217010 A JP H03217010A JP 1174990 A JP1174990 A JP 1174990A JP 1174990 A JP1174990 A JP 1174990A JP H03217010 A JPH03217010 A JP H03217010A
Authority
JP
Japan
Prior art keywords
powder
magnet
earth magnet
rare earth
pot
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP1174990A
Other languages
Japanese (ja)
Inventor
Zenjiro Osawa
大澤 善次郎
Sakae Hinohara
日野原 栄
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
DAI ICHI KASEI KK
Daiichi Kasei Co Ltd
Original Assignee
DAI ICHI KASEI KK
Daiichi Kasei Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by DAI ICHI KASEI KK, Daiichi Kasei Co Ltd filed Critical DAI ICHI KASEI KK
Priority to JP1174990A priority Critical patent/JPH03217010A/en
Publication of JPH03217010A publication Critical patent/JPH03217010A/en
Pending legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F1/00Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties
    • H01F1/01Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials
    • H01F1/03Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity
    • H01F1/032Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of hard-magnetic materials
    • H01F1/04Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of hard-magnetic materials metals or alloys
    • H01F1/047Alloys characterised by their composition
    • H01F1/053Alloys characterised by their composition containing rare earth metals
    • H01F1/055Alloys characterised by their composition containing rare earth metals and magnetic transition metals, e.g. SmCo5
    • H01F1/057Alloys characterised by their composition containing rare earth metals and magnetic transition metals, e.g. SmCo5 and IIIa elements, e.g. Nd2Fe14B
    • H01F1/0571Alloys characterised by their composition containing rare earth metals and magnetic transition metals, e.g. SmCo5 and IIIa elements, e.g. Nd2Fe14B in the form of particles, e.g. rapid quenched powders or ribbon flakes
    • H01F1/0572Alloys characterised by their composition containing rare earth metals and magnetic transition metals, e.g. SmCo5 and IIIa elements, e.g. Nd2Fe14B in the form of particles, e.g. rapid quenched powders or ribbon flakes with a protective layer

Landscapes

  • Chemical & Material Sciences (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Inorganic Chemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Manufacturing Cores, Coils, And Magnets (AREA)

Abstract

PURPOSE:To make it possible to manufacture powder of a rare earth magnet having excellent oxidation resistance at a low cost by mixing a surface treating agent for preventing oxidation of the magnet powder into solution wherein rare-earth magnet alloy undergoes wet crushing, and forming an excellent resin film on the fine powder of the rare earth magnet by a simple treating method. CONSTITUTION:In the manufacturing method of the powder of a rare earth magnet, surface treating agent for preventing the oxidation of the magnet powder is mixed into solution wherein the rare-earth magnet alloy undergoes wet crushing. For example, alloy lump for 200g of Nd-Fe-B-based magnet is coarsely crushed with a hammer. The powder is placed into a pot for a ball mill together with balls made of superhard alloy. Meanwhile 600g of 4wt.% solution wherein powder-state polyacrylonitrile is dissolved into N.N-dimethylformamide is put into the pot. The air in the pot is evacuated with a vacuum pump. The pot is set in the rotary ball mill. The material is crushed for 8 hours and the fine powder whose average particle diameter is 5mum is obtained. After the supernatant in the ball mill pot is removed, the powder is stirred, and the pressure is reduced. Thus the N.N-dimethylformamide is removed. The neodymium magnet powder whose surface is coated with the polyacrylonitrile is obtained.

Description

【発明の詳細な説明】 [産業上の利用分野] 本発明は希土類磁石の製造に使用する希土類磁石粉末の
製造方法に関する. [従来の技術] 一般に希土類磁石を製造する場合、所要の合金組成を有
するインゴットを溶製し、このインゴットを適当な温度
で容体化処理した後ポールミル等の粉砕機により機械的
に微粉砕して磁石粉末を得ている。この希土類磁石粉末
を単独で又はプラスチックと混合し、これを磁場中又は
無磁場のいずれかにおいて圧縮成形又は射出成形により
所望形状の磁石を成形し、必要によりこの成形体にプラ
スチックを含浸させて固化するか又は焼結していた。
DETAILED DESCRIPTION OF THE INVENTION [Industrial Application Field] The present invention relates to a method for producing rare earth magnet powder used in producing rare earth magnets. [Prior Art] Generally, when producing rare earth magnets, an ingot having a desired alloy composition is melted, this ingot is compacted at an appropriate temperature, and then mechanically pulverized using a grinder such as a pole mill. Obtaining magnetic powder. This rare earth magnet powder alone or mixed with plastic is molded into a desired shape magnet by compression molding or injection molding either in a magnetic field or without a magnetic field, and if necessary, this molded body is impregnated with plastic and solidified. or sintered.

近年、Sm−Co系磁石材料はコバルト原料事情の不安
定化に伴ないコスト高となりつつある。
In recent years, the cost of Sm--Co magnet materials has been increasing due to the instability of the cobalt raw material situation.

一方、Sm−Co系磁石材料の磁気特性に匹敵ないしは
勝る磁気特性を有するNd−Fe−B系磁石が出現し、
資源的に豊富でかつ安価であるため、Nd−Fe−B系
磁石材料を用いたプラスチック磁石が特に要望されてい
る. しかし、ネオジウム系磁石はSm−Co系磁石に比べて
、その含有元素の影響により非常に酸化され易く、その
酸化による磁気特性の劣化が問題となっている。酸化を
防止するため、インゴットをスタンプミル、ハンマーミ
ル、ローラミル等で粗粉砕した後、窒素ガス、アルゴン
ガス等の不活性ガス雰囲気中でポールミル、ジェットミ
ルで微粉砕するか、ポールミル等の粉砕容器中に粗粉砕
磁石を入れ、トルエン等の溶液を入れて湿式粉砕をする
方法が多くとられている。
On the other hand, Nd-Fe-B magnets have appeared that have magnetic properties comparable to or superior to those of Sm-Co magnet materials.
Plastic magnets using Nd-Fe-B magnet materials are particularly desired because they are abundant in resources and inexpensive. However, neodymium magnets are much more easily oxidized than Sm--Co magnets due to the effects of the elements they contain, and deterioration of magnetic properties due to oxidation poses a problem. To prevent oxidation, the ingot is coarsely ground with a stamp mill, hammer mill, roller mill, etc., and then finely ground with a pole mill, jet mill in an inert gas atmosphere such as nitrogen gas or argon gas, or in a grinding container such as a pole mill. A commonly used method is to put a coarse grinding magnet inside and add a solution such as toluene for wet grinding.

[発明が解決しようとする課題] 希土類合金、特にネオジウム系合金粉末は非常に酸化さ
れ易いので、微粉末への粉砕工程を窒素のような不活性
ガス又はトルエンのような有機溶剤中で遂行しなければ
ならないが、このような方法をとっても不活性ガスや有
機溶剤中の微量な酸素と結合して磁気特性が低下したり
、又、粉砕した磁石粉末をとり出して次の工程で、例え
ば樹脂バインダーと混合して磁石を成形する工程におい
て酸素と結合して著しく磁気特性が低下してしまうとい
う問題があった。
[Problems to be Solved by the Invention] Rare earth alloys, especially neodymium alloy powders, are highly susceptible to oxidation, so the process of grinding them into fine powders is carried out in an inert gas such as nitrogen or an organic solvent such as toluene. However, even if such a method is used, the magnetic properties may deteriorate due to combination with inert gas or a trace amount of oxygen in the organic solvent, or the crushed magnet powder may be taken out and used in the next process, such as resin. There has been a problem in that in the process of mixing with a binder and molding a magnet, it combines with oxygen, resulting in a significant decrease in magnetic properties.

そこで希土類磁石粉末を得るための粉砕工程において磁
石粉末に対する有効な有機物被覆方法を種々テストした
結果本発明に到達した。本発明の目的とするところは簡
単な処理方法で希土類磁石微粉末に良好な樹脂被膜を形
成し、耐酸化性にすぐれた希土類磁石粉末を安価に製造
することにある。
Therefore, the present invention was achieved as a result of testing various effective organic substance coating methods for magnet powder in the pulverization process for obtaining rare earth magnet powder. An object of the present invention is to form a good resin coating on fine rare earth magnet powder using a simple processing method, and to produce rare earth magnet powder with excellent oxidation resistance at a low cost.

[課題を解決するための千段] 前記目的を達成するため、本発明の特徴とする手段は,
希土類磁石合金のインゴットを粗粉砕した後、湿式粉砕
法により微粉砕する際にその溶媒中に酸化防止を目的と
する表面処理剤を混合しておき、粉砕と同時に表面処理
を行い、安定した磁石粉末を得ることにある。
[A Thousand Steps to Solve the Problem] In order to achieve the above object, the features of the present invention are as follows:
After coarsely pulverizing an ingot of rare earth magnet alloy, a surface treatment agent for the purpose of preventing oxidation is mixed into the solvent when finely pulverizing it using a wet pulverization method, and surface treatment is performed at the same time as pulverization to create a stable magnet. The purpose is to obtain a powder.

[作用コ 表面処理剤として、アクリロニトリルを主成分とする重
合体は、磁石粉末の表面に酸素透過性の少ない強固な被
覆を形成する.アクリロニトリルを主成分とする重合体
が希土類磁石粉末、特にネオジウム系磁石と強固に結合
し、ボリマーの性質上、02 .H2 0の侵入を抑制
する。アクリロニトリルを主成分とする重合体の被覆を
形成させる方法としては、湿式粉砕のポールミル容器に
入れる溶媒に、アクリロニトリルを主成分とする重合体
を溶解させておき、ポールミルにより希土類磁石合金を
粉砕すると、その表面に該アクリロニトリルを主成分と
する重合体が固着して表面を被覆する。また、アクリロ
ニトリルモノマー単独、或いはそれとその他のコモノマ
ーを溶媒にとかしておき、ポールミルによって希土類磁
石合金を粉砕する間に、粉砕された表面に該モノマー等
を表面重合またはグラフト重合させても良い。
[Operation: As a surface treatment agent, a polymer mainly composed of acrylonitrile forms a strong coating with low oxygen permeability on the surface of the magnet powder. Polymers mainly composed of acrylonitrile bond strongly with rare earth magnet powder, especially neodymium magnets, and due to the nature of the polymer, 02. Suppresses H20 invasion. A method for forming a coating of a polymer whose main component is acrylonitrile is to dissolve the polymer whose main component is acrylonitrile in a solvent placed in a wet grinding Pall mill container, and then grind the rare earth magnet alloy with the Pall mill. The acrylonitrile-based polymer adheres to the surface and covers the surface. Alternatively, the acrylonitrile monomer alone or it and other comonomers may be dissolved in a solvent, and the monomer etc. may be surface-polymerized or graft-polymerized on the pulverized surface while the rare earth magnet alloy is pulverized using a pole mill.

アクリロこトリルを主成分とする重合体で表面処理した
N d 14F e 80BBの磁石粉末を示査熱分析
装置を用い、高温時の磁性粉の酸化の進行を確認したと
ころ、アクリロニトリルを主成分とする重合体で表面処
理しない試料は約250℃で酸化傾向が見られたのに対
し、表面処理した磁石粉末は300℃を越えても酸化発
熱反応が認められなかった。これはアクリロニトリル樹
脂の強固な被膜が磁石粉末表面に形成され耐熱性及び耐
酸化性を向上させたことに起因するものといえる.[実
施例] 次に、本発明の製造方法を実施例に基づいて説明する。
When we checked the progress of oxidation of the magnetic powder at high temperatures using an differential calorimetric analyzer on Nd14Fe80BB magnetic powder whose surface was treated with a polymer whose main component was acrylonitrile, we found that the main component was acrylonitrile. The sample that was not surface-treated with the polymer showed an oxidation tendency at about 250°C, whereas the surface-treated magnet powder showed no oxidative exothermic reaction even at temperatures exceeding 300°C. This can be attributed to the fact that a strong film of acrylonitrile resin is formed on the surface of the magnet powder, improving heat resistance and oxidation resistance. [Examples] Next, the manufacturing method of the present invention will be described based on Examples.

真空アーク溶解によって溶製したN d 14F e 
80B8の成分組成を有するネオジウム●鉄●ポロン系
磁石用合金塊200gをハンマーで粗粉砕し、超硬合金
製ポールとともにポールミル用ポットに入れ、一方粉末
状ポリアクリロニトリルをN−N一ジメチルホルムアミ
ドに溶解させた4WT%溶液600gをポットに入れ、
ポット内の空気を真空ボンブで排気した.このポットを
回転ボールミルにセットし8時間粉砕して平均粒径5I
Lmに微粉砕した。ボールミルボットの上澄液を除去後
、攪拌しながら減圧してN−N−ジメチルホルムアミド
を除去し、表面をポリアクリロニトリルでコーティング
したネオジウム磁石粉を得た。
N d 14F e produced by vacuum arc melting
200 g of neodymium, iron, and poron alloy ingots for magnets having a component composition of 80B8 were coarsely ground with a hammer and placed in a pole mill pot with a cemented carbide pole, while powdered polyacrylonitrile was dissolved in N-N dimethylformamide. Put 600g of the 4WT% solution into the pot,
The air inside the pot was evacuated using a vacuum bomb. This pot was set in a rotary ball mill and ground for 8 hours to obtain an average particle size of 5I.
It was finely ground to Lm. After removing the supernatant liquid from the ball millbot, N-N-dimethylformamide was removed under reduced pressure while stirring to obtain neodymium magnet powder whose surface was coated with polyacrylonitrile.

次にこのポリアクリロニトリルで湿式粉砕と同時に表面
処理したネオジウム磁石粉末に12ナイロンを加えて加
圧二一グーで加熱混練して磁石粉55−T%のコンパウ
ンドを作成し、φllxlOmmの円柱形状に射出成形
した。
Next, 12 nylon was added to the neodymium magnet powder, which had been surface-treated at the same time as wet grinding with polyacrylonitrile, and was heated and kneaded with a pressurized 21-glue to create a compound containing 55-T% of magnet powder, which was injected into a cylindrical shape of φllxlOmm. Molded.

この円柱形状体を7000エルステッドの磁界をかけて
着磁したところ、残留磁束密度400ガウス、固有保磁
力2400エルステッドの磁石となった。
When this cylindrical body was magnetized by applying a magnetic field of 7,000 Oe, it became a magnet with a residual magnetic flux density of 400 Gauss and an intrinsic coercive force of 2,400 Oe.

この磁石を大気中に1週間放置後、残留磁束密度及び固
有保磁力を測定したところ全く減磁は認められなかった
After this magnet was left in the atmosphere for one week, the residual magnetic flux density and intrinsic coercive force were measured, and no demagnetization was observed.

[比較例] N d 14F e 80BB (7)合金塊200g
をハンマーで粗粉砕し、ボールミルポットにN−N−ジ
メチルホルムアミド液と共に入れて8時間回転粉砕し平
均粒径5ILmの磁石粉末を得た。溶液中にポリアクリ
ロニトリルを溶解させていない外は実施例と全く同一で
あった。このようにして湿式粉砕により得られた磁石粉
末に12ナイロンを加えて加圧二一グーで加熱混練し磁
石粉55WT%のコンパウンドを作成し、φ11X10
mmの円柱形状に射出成形した。
[Comparative example] N d 14F e 80BB (7) 200 g of alloy ingot
was coarsely ground with a hammer, placed in a ball mill pot together with a N-N-dimethylformamide solution, and rotary ground for 8 hours to obtain a magnet powder with an average particle size of 5 ILm. The procedure was exactly the same as in Example except that polyacrylonitrile was not dissolved in the solution. 12 Nylon was added to the magnet powder obtained by wet grinding in this way, and the compound was heated and kneaded with a pressurized 21 goo to create a compound containing 55 wt% of magnet powder.
It was injection molded into a cylindrical shape of mm.

この円柱形状体を7000エルステッドの磁界をかけて
着磁したところ、残留磁束密度230ガウス、固有保磁
力1 200エルステッドの磁石となった。
When this cylindrical body was magnetized by applying a magnetic field of 7000 Oe, it became a magnet with a residual magnetic flux density of 230 Gauss and an intrinsic coercive force of 1200 Oe.

この磁石を大気中に1週間放置後測定すると、残留磁束
密度50ガウス、固有保磁力75エルステットと著しく
低下した。
When this magnet was measured after being left in the atmosphere for one week, the residual magnetic flux density was 50 Gauss and the intrinsic coercive force was 75 Oerstedt, which were significantly lower.

[発明の効果] 以上述べた通り、本発明の方法によれば希土類磁石合金
を湿式粉砕する際、溶液中にアクリロニトリルを主成分
とする重合体を酸化防止剤として混入させて粉砕するこ
とにより、粉砕と同時に磁石粉末に酸化防止被膜を形成
することが出来る。
[Effects of the Invention] As described above, according to the method of the present invention, when a rare earth magnet alloy is wet-pulverized, a polymer containing acrylonitrile as a main component is mixed into the solution as an antioxidant, and then crushed. An anti-oxidation coating can be formed on the magnet powder at the same time as pulverization.

特にネオジウム系パウダーに対しアクリロニトリルを主
成分とする重合体でコーティングすることにより磁石の
耐酸化性を著しく向上させることができる。
In particular, by coating neodymium powder with a polymer whose main component is acrylonitrile, the oxidation resistance of the magnet can be significantly improved.

Claims (2)

【特許請求の範囲】[Claims] (1)希土類磁石粉末の製造方法において、希土類磁石
合金を湿式粉砕する溶液中に磁石粉末の酸化防止のため
の表面処理剤を混入させることを特徴とする希土類磁石
粉末の製造方法。
(1) A method for producing rare earth magnet powder, characterized in that a surface treatment agent for preventing oxidation of the magnet powder is mixed into a solution in which a rare earth magnet alloy is wet-pulverized.
(2)表面処理剤がアクリロニトリルを主成分とする重
合体であることを特徴とする請求項(1)に記載の希土
類磁石粉末の製造方法。
(2) The method for producing rare earth magnet powder according to claim (1), wherein the surface treatment agent is a polymer containing acrylonitrile as a main component.
JP1174990A 1990-01-23 1990-01-23 Manufacture of powder of rare earth magnet Pending JPH03217010A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP1174990A JPH03217010A (en) 1990-01-23 1990-01-23 Manufacture of powder of rare earth magnet

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP1174990A JPH03217010A (en) 1990-01-23 1990-01-23 Manufacture of powder of rare earth magnet

Publications (1)

Publication Number Publication Date
JPH03217010A true JPH03217010A (en) 1991-09-24

Family

ID=11786660

Family Applications (1)

Application Number Title Priority Date Filing Date
JP1174990A Pending JPH03217010A (en) 1990-01-23 1990-01-23 Manufacture of powder of rare earth magnet

Country Status (1)

Country Link
JP (1) JPH03217010A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011178416A (en) * 2010-02-26 2011-09-15 S K Koki:Kk Bundling band and method for manufacturing the same

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011178416A (en) * 2010-02-26 2011-09-15 S K Koki:Kk Bundling band and method for manufacturing the same
CN102218795A (en) * 2010-02-26 2011-10-19 Sk工机有限公司 Strapping tape and manufacturing method thereof

Similar Documents

Publication Publication Date Title
EP0239031B2 (en) Method of manufacturing magnetic powder for a magnetically anisotropic bond magnet
JPS6325904A (en) Permanent magnet and manufacture of the same and compound for manufacture of the permanent magnet
JPH0685369B2 (en) Permanent magnet manufacturing method
JPS6181603A (en) Preparation of rare earth magnet
JPH03217010A (en) Manufacture of powder of rare earth magnet
JPH04241402A (en) Permanent magnet
JPS6112001B2 (en)
JPH03101102A (en) Rare earth-iron-nitrogen-hydogen-oxygen-based magnetic material
JP2000040611A (en) Resin coupled permanent magnet material and magnetization thereof as well as encoder using the same
JP2002217052A (en) Method of regenerating rare earth magnet
JPH02125402A (en) Magnetic powder and manufacture thereof
JPS62169403A (en) Manufacture of polymer composite type rare earth magnet
JPH01290205A (en) Manufacture of high-polymer composite type rare-earth magnet
JPS6353202A (en) Production of rare earth element-iron type plastic magnetic material
JPS62257705A (en) Manufacture of rco5 rare-earth cobalt magnet
JPH03262104A (en) Anti-oxidation treatment method for rare-earth magnet powder
JPH03160705A (en) Bonded magnet
KR100262674B1 (en) Method of manufacturing nd-fe-b type bonded magnets
JPS61245505A (en) Manufacture of rare-earth iron magnet
JPH0897022A (en) Manufacture of rare-earth magnet
JPS59191306A (en) Manufacture of temperature sensitive element
JPH02155203A (en) Manufacture of polymer composite type rare earth magnet
JPH06200307A (en) Production of raw material alloy for rare earth magnet
JP2005042156A (en) Rare-earth-iron-nitrogen magnetic material and bond magnet using it
JP2004303881A (en) Manufacturing method for r-t-n magnet powder