JPH03215751A - Acceleration arithmetic unit for vehicle - Google Patents

Acceleration arithmetic unit for vehicle

Info

Publication number
JPH03215751A
JPH03215751A JP1080190A JP1080190A JPH03215751A JP H03215751 A JPH03215751 A JP H03215751A JP 1080190 A JP1080190 A JP 1080190A JP 1080190 A JP1080190 A JP 1080190A JP H03215751 A JPH03215751 A JP H03215751A
Authority
JP
Japan
Prior art keywords
vehicle speed
acceleration
deceleration
pulse
vehicle
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP1080190A
Other languages
Japanese (ja)
Inventor
Shunichi Wada
俊一 和田
Shigeki Otagaki
滋樹 太田垣
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Electric Corp
Original Assignee
Mitsubishi Electric Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Electric Corp filed Critical Mitsubishi Electric Corp
Priority to JP1080190A priority Critical patent/JPH03215751A/en
Publication of JPH03215751A publication Critical patent/JPH03215751A/en
Pending legal-status Critical Current

Links

Landscapes

  • Regulating Braking Force (AREA)

Abstract

PURPOSE:To improve the response by finding calculating acceleration or deceleration from (V1-V0)/T based upon a mean vehicle speed V0 at time t0 and a mean vehicle speed V1 at time t0+T. CONSTITUTION:When vehicle speed pulses are inputted from the reed switch 3a of a vehicle speed sensor 3 to a controller 1, the measurement time T of the acceleration or deceleration is set and the acceleration or deceleration begins to be measured. Then the period by the latest one pulse is measured by the sensor 3 and the vehicle pulse period is stored by replacing a period which is N pulses before. The latest pulse period is averaged to calculate and store the mean vehicle speed. Then the mean vehicle speed which is calculated this time and a mean vehicle speed which is calculated one pulse before are compared with each other to decide an acceleration or deceleration state, and the decision result is stored. When a measurement time T is elapsed from the start of the measurement of the acceleration or deceleration, the acceleration is calculated from (V1-V2)/T, where V1 is the mean vehicle speed V1 which is calculated finally and V0 is an initial speed stored at the start of the measurement.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 この発明は、自動車の電子制御サスペンション装置等に
使用して有効な車両の加速度演算装置に関するものであ
る. 〔従来の技術〕 従来、車両の制動を検出してサスペンションの固さを切
り換えるシステムは、たとえば特開昭56 − 427
39号公報や特開昭60 − 148710号公報にお
いて提案されている.これらはいずれも車両の制動状態
をプレーキスイッチの信号を利用して検出するものであ
る. ブレーキスイッチはブレーキ中にブレーキランプを点灯
させるためのものであるから、殆んどの車に設置されて
おり、信号として利用しやすいものであるが、減速の目
安にはなるが、減速度の度合いまでを検出できるもので
はない. 〔発明が解決しようとする課題〕 従来のシステムは以上のように構成されており、ブレー
キスイッチは車体の減速度を表わす信号ではないために
、たとえば−0.3G(加速度)以上の急減速度でのみ
サスペンションをハードに切Jl)換えるというきめの
細かい微妙なサスベンシ四ンのコントロールには向かな
い欠点がある.また、エンジンブレーキ等のように、プ
レーキスインチを操作しない減速時には、全く検出でき
ないし、勿論、急加速時の検出も全く検出できない。
DETAILED DESCRIPTION OF THE INVENTION [Field of Industrial Application] The present invention relates to a vehicle acceleration calculation device that is effective for use in electronically controlled suspension devices of automobiles, etc. [Prior Art] Conventionally, a system for detecting braking of a vehicle and switching the stiffness of the suspension is disclosed in, for example, Japanese Patent Application Laid-Open No. 56-427.
This method has been proposed in Publication No. 39 and Japanese Unexamined Patent Publication No. 148710/1983. All of these detect the braking state of the vehicle using signals from the brake switch. Brake switches are installed in most cars because they turn on the brake lights while braking, and they are easy to use as a signal. It is not possible to detect up to [Problems to be Solved by the Invention] The conventional system is configured as described above, and since the brake switch does not provide a signal that represents the deceleration of the vehicle body, it cannot be used at sudden decelerations of, for example, -0.3G (acceleration) or more. It has the disadvantage that it is not suitable for fine-grained and subtle suspension control, such as changing the suspension to a hard setting. Furthermore, during deceleration when the brake switch is not operated, such as during engine braking, no detection is possible at all, and of course, no detection is possible during sudden acceleration.

そこで、車両の減速度や加速度を直接検出する方法とし
て車遠センサの信号から得られる車速情報を微分して加
減速度を得ることもできるが、車速センサとしてスピー
ドメータケーブルの回転を磁石とリードスイソチとで検
出する一般の車速パルスを用いる場合には、車速バルス
が車輪1回転に4パルスしか得られないために分解能が
悪い.この結果、演算精度が悪いとか、スピードメータ
ケーブルの振動等により車速パルスにジソタ(パルス周
期の揺ぎ)などが発生するために、検出の応答性を上げ
ようとすると誤検出してしまうという欠点があった. この誤検出を防止するための方法として一番簡単な方法
はGの計夏周期Tを長くして、Tの間にカウントされる
車速パルスの数を多くしてジノタやケーブルの振動など
によるノイズを平均化することであるが、これはサスペ
ンションの制御から要求される応答性の要求値100+
*s〜200as以内とは両立しない. この発明は上記のような問題点を解消するためになされ
たもので、車速パルス信号の応答性と精度の向上の相反
する要求を両立させることのできる車両の加速度演算装
置を得ることを目的とする。
Therefore, as a method of directly detecting the deceleration and acceleration of the vehicle, it is possible to obtain the acceleration/deceleration by differentiating the vehicle speed information obtained from the signal from the remote sensor. When using a general vehicle speed pulse detected by a vehicle speed pulse, the resolution is poor because only 4 vehicle speed pulses are obtained per wheel rotation. As a result, the calculation accuracy is poor, and vibrations in the speedometer cable cause fluctuations in the vehicle speed pulse (fluctuations in the pulse period), resulting in false detections if you try to improve the detection response. was there. The simplest way to prevent this false detection is to lengthen the summer cycle T of G and increase the number of vehicle speed pulses counted during T to avoid noise caused by vibrations of the engine and cables, etc. This is the required response value required from suspension control of 100+
*Incompatible with s~200as. This invention was made to solve the above-mentioned problems, and its purpose is to obtain a vehicle acceleration calculation device that can satisfy the contradictory demands of improving the responsiveness and accuracy of vehicle speed pulse signals. do.

〔課題を解決するための手段〕[Means to solve the problem]

この発明に係る車両の加速度演算装置は、加減速度の演
真を時刻t0での平均車速v0と、時刻t.十Tでの平
均車速V,とからα。=V,−V,としてT 求める手段を設けたものである. 〔作 用〕 この発明における上記手段は、時間Tの間常に車速パル
スN個の周期より平均車速を求め、この平均車速の変化
が加速か減速かを判定し、もし時間Tの間に平均車速が
加速から減速へ、もし《は滅速から加速へ切り換わった
ときはその時点で加減達の演算を中止し、新たに時間T
を設定し、加減速演算を開始し、時間Tの間常に平均車
速か加速の状態を維持するか、もしくは減速の状態を維
持したとき、加減速度の演算を行う. 〔実施例〕 以下、この発明の車両の加速度検出装置の実施例を図に
ついて説明する.第1図はこの発明の車両の加速度演算
装lを組み込んだサスペンション装置の構成図で、図に
おいて、lは制御装置で、ブレーキスイッチ2,車連セ
ンサ3およびその他の入力情報に応じてショックアブソ
ーバ5中の可変オリフィス6および空気ばね9の連結通
路10の開閉を行う. 上記ブレーキスイッチ2はブレーキベダルl2を踏み込
むことによってオンとなるものである.また、車速セン
サ3はリードスイッチ3aと、複数(この実施例でSN
4極ずつ)のN極とS極を有する円板状の磁石3bと、
ワイヤ3cとにより構成され、ワイヤ3cは車輪7と磁
石3bとの間に連結され、車輸7の回転により、ワイヤ
3cが磁石3bを回転させ、それに対向するリードスイ
ッチ3aが磁極SとNと対向するごとにオン,オフする
ようになっている.このオン.オフのパルス信号が制御
装置1に送られて、車速を演算するようになっている。
The vehicle acceleration calculation device according to the present invention calculates the actual value of acceleration/deceleration based on the average vehicle speed v0 at time t0 and the average vehicle speed v0 at time t. Average vehicle speed V at 10T, and α. =V, -V, and a means to find T. [Function] The above means in the present invention always obtains the average vehicle speed from the period of N vehicle speed pulses during the time T, determines whether the change in the average vehicle speed is acceleration or deceleration, and if the change in the average vehicle speed during the time T changes from acceleration to deceleration, and if << changes from slow speed to acceleration, the calculation of addition/subtraction is stopped at that point, and a new time T is calculated.
is set, the acceleration/deceleration calculation is started, and the acceleration/deceleration calculation is performed when the average vehicle speed or acceleration state is always maintained during the time T, or when the deceleration state is maintained. [Embodiment] Hereinafter, an embodiment of the vehicle acceleration detection device of the present invention will be described with reference to the drawings. FIG. 1 is a block diagram of a suspension system incorporating a vehicle acceleration calculation unit 1 according to the present invention. The connecting passage 10 between the variable orifice 6 and the air spring 9 in 5 is opened and closed. The brake switch 2 is turned on by depressing the brake pedal l2. In addition, the vehicle speed sensor 3 includes a reed switch 3a and a plurality of (in this embodiment, SN
a disk-shaped magnet 3b having N and S poles (4 poles each);
The wire 3c is connected between the wheel 7 and the magnet 3b, and as the wheel 7 rotates, the wire 3c rotates the magnet 3b, and the reed switch 3a facing it rotates between the magnetic poles S and N. It turns on and off each time they face each other. This on. The off pulse signal is sent to the control device 1 to calculate the vehicle speed.

ショックアブソーバ5ば車体4とアーム8間に連結され
ている. さらに、空気ばね9はばね室9a,9bを有し、この両
ばね室9a,9b間には、連結通路10が設けられてお
り、連結通路10を開くと、ばね室9a,9bが連通し
て、ばね定数が柔らかくなり、逆に連結通路10を閉じ
ると、ばね定数が大きくなって固くなる. なお、l1は空気ばね9の補助ばねであり、車体4とア
ーム8間に連結されている. また、上記ショックアブソーバ5はその中の油の通路の
オリフイス径をアクチュエー夕6により「大」に切り換
えると、減衰率は小さくなり、逆にオリフィス径を「小
」に切り換えると減衰率は大きくなる. なお、第1図では前輪の片側のみを示したが、残りの車
輪にも上記と同じようにサスペンション装置が装着され
ている。
A shock absorber 5 is connected between the vehicle body 4 and the arm 8. Furthermore, the air spring 9 has spring chambers 9a and 9b, and a connecting passage 10 is provided between the two spring chambers 9a and 9b. When the connecting passage 10 is opened, the spring chambers 9a and 9b are brought into communication. When the connection passage 10 is closed, the spring constant increases and becomes stiff. Note that l1 is an auxiliary spring for the air spring 9, and is connected between the vehicle body 4 and the arm 8. Furthermore, in the shock absorber 5, when the orifice diameter of the oil passage therein is switched to "large" by the actuator 6, the damping rate decreases, and conversely, when the orifice diameter is switched to "small", the damping rate increases. .. Although only one side of the front wheels is shown in FIG. 1, the remaining wheels are also equipped with suspension devices in the same manner as described above.

また、車高センサ14が車体4に取り付けられており、
この車高センサl4はアーム10.15を介してアーム
8に連結され、制御装置lは車高センサl4の出力信号
を入力として、車高調整手段13を制御して上記空気ば
ね9の空気圧を上昇あるいは下降させることにより、任
意の目標車高に調整することもできる。
Further, a vehicle height sensor 14 is attached to the vehicle body 4,
This vehicle height sensor l4 is connected to the arm 8 via an arm 10.15, and the control device l uses the output signal of the vehicle height sensor l4 as input to control the vehicle height adjusting means 13 to adjust the air pressure of the air spring 9. By raising or lowering the height, it is possible to adjust to any target vehicle height.

次に上記のように構成したサスペンション装置において
、車速センサ3の出力から車速および加減速度を演算す
る方法について説明する.第2図に車速センサ3の出力
波形を示す. さて、リードスイッチ3aのオンーオフの信号若しくは
チヤタリングやノイズなどを除去した後の波形整形後の
パルス信号には、次のような特性がある。
Next, a method of calculating vehicle speed and acceleration/deceleration from the output of the vehicle speed sensor 3 in the suspension system configured as described above will be explained. Figure 2 shows the output waveform of the vehicle speed sensor 3. Now, the on-off signal of the reed switch 3a or the pulse signal after waveform shaping after removing chattering, noise, etc. has the following characteristics.

まず、第1は磁石3bの偏心などの工作誤差による成分
で、この実施例のように1回転当り4個のパルス101
〜104を出力するものであれば、?,−14のそれぞ
れの周期の誤差の要因になる.第2の誤差はワイヤ3c
の縄とび現象によるもので、これは時間とともに変わる
が、やはりt.1,,1・・・t.の周期の揺ぎの原因
になる.ところが、これらの誤差や揺ぎの成分は、その
発生原因からワイヤ3cの1回転若しくは磁石3b1回
転ごとに正確な回転数の情報を出すものであり、第2図
では、t,〜t2〜t34t4+j+ユtS+j!ユt
いtl1=t,+4が成立し、tooユt.ユt1■が
成立する. そこで、車速を正確にかつ最も応答性よく演算する最適
な方法は、tIo.tlI+ ’ I!を求めてその逆
数から車速を計算する。
First, the first component is a component due to machining errors such as eccentricity of the magnet 3b, and as in this embodiment, there are four pulses 101 per rotation.
What if it outputs ~104? , -14, each period becomes a factor of error. The second error is wire 3c
This is due to the rope-jumping phenomenon of t. 1,,1...t. This causes fluctuations in the period of . However, due to the cause of their occurrence, these error and fluctuation components provide accurate information on the number of rotations for each rotation of the wire 3c or for each rotation of the magnet 3b, and in FIG. tS+j! Yut
tl1=t,+4 holds, and too t. Ut1■ is established. Therefore, the optimal method for calculating vehicle speed accurately and with the most responsiveness is tIo. tlI+' I! Calculate the vehicle speed from its reciprocal.

または、t1とt2とt3とt4をそれぞれメモリして
おいて、4個の平均値を求めて、その平均値より車速を
求める.その次は、t!とt,とt4とt,の4個の平
均値を求めてその平均値より車速を求める. このようにして、tlOの区間、その次はtl1の区間
、次はt+zの区間での移動平均値を次々と求めてい《
ことにより、車速を判断する.このようにすれば、正確
でしかも応答性のよい車速の演算や判定が実現できる.
このような平均化の処理や演算は制御装置1にマイクロ
コンピュータを用い、パルスエノヂの入力毎にその各周
期t,・・・t,,のカウントをマイクロコンピュータ
のタイマで行い、かつマイクロコンピュータのメモリへ
各周期t1・・・1nの記憶を行うことにより、容易に
実現できる. 次に第2図に示したa点とb点間での車速の加減速度を
求めるのには、a点での車速vl.oc1/tI0と、
b点での車速y ,,oc l / l ,4と、a点
で容易に計算できる. さらに、車速か上昇したときには、たとえば、様にd点
とe点も計算できる. また、車速の上昇とともに、パルス数が増えるため、T
,>T,と計算間隔を縮めていくこともできる. 上記のようにして演算された加減速度が所定の値を越え
るような急な加減達を検出して、サスペンションの特性
を制御する場合に下記のような問題がある. つまり、本来は上記計算により車体の加速度,減速度は
正確に演算できるが、この車速パルスは車輪1回転で4
パルスしか発生しないため、特に低車速では上記Tを長
くしないと、↓茎の演算のdt 精度がでない. サスペンション制御の応答性の要求からは、逆にTは1
0(1+s〜200+s程度以上に長くするわけにはい
かない. 逆に、Tを短かいままにすると、±ヱの演算精dt 度がでない欠点がある. また、高速になれば、パルス数が増えてTを短かくでき
るが、車両の走行に伴なう車体振動に応じてスピードメ
ータケープルが振動して、車速パルスの揺ぎが生じ、G
(加速度)の演算値に娯差゛が生じる欠点がある。
Alternatively, store t1, t2, t3, and t4 in memory, calculate the average value of the four values, and calculate the vehicle speed from the average value. Next is t! Find the four average values of , t, t4, and t, and calculate the vehicle speed from the average value. In this way, the moving average values in the tlO interval, then the tl1 interval, and then the t+z interval are successively calculated.
This determines the vehicle speed. In this way, it is possible to calculate and judge vehicle speed accurately and with good responsiveness.
For such averaging processing and calculations, a microcomputer is used as the control device 1, and each period t,...t,, is counted by a timer of the microcomputer for each input of pulse energy, and the memory of the microcomputer is used. This can be easily realized by storing each cycle t1...1n. Next, to find the acceleration/deceleration of the vehicle speed between points a and b shown in FIG. 2, the vehicle speed at point a, vl. oc1/tI0 and
The vehicle speed at point b can be easily calculated from y ,,oc l / l ,4 and point a. Furthermore, when the vehicle speed increases, points d and e can also be calculated, for example. Also, as the vehicle speed increases, the number of pulses increases, so T
, >T, the calculation interval can be shortened. When detecting a sudden acceleration/deceleration in which the acceleration/deceleration calculated as described above exceeds a predetermined value and controlling the characteristics of the suspension, the following problems occur. In other words, although the acceleration and deceleration of the vehicle body can be calculated accurately using the above calculation, this vehicle speed pulse is 4 times per rotation of the wheel.
Since only pulses are generated, especially at low vehicle speeds, unless the above T is made long, the dt accuracy of the ↓ stem calculation will be poor. Conversely, T is 1 due to the responsiveness requirements of suspension control.
It cannot be made longer than about 0 (1 + s to 200 + s). On the other hand, if T is kept short, there is a drawback that the calculation accuracy of ±ヱ is not accurate. Also, as the speed increases, the number of pulses increases. However, the speedometer cable vibrates in response to the vibration of the vehicle body as the vehicle travels, causing fluctuations in the vehicle speed pulse, and the G
There is a drawback that there is a difference in the calculated value of (acceleration).

このように、演冨誤差と応答性とは互いに相反する性質
をもっているので、双方を同時に満足させることは困難
であった. そこで、この発明は下記のように解決した.すなわち、
加減速度を計測しているTの間、車速センサ3のリード
スイ,チ3aから制御装置1に車速バルスが入力される
ごとに、演算される平均車速が1パルス前に演算された
平均車達と比べて加速状態であるか、もしくは減速状態
であるかを判定し、もし加速から減速へ、減速から加速
へ切り換わったときには、その時点で加減速度の計測を
中止し、現在行っている加減速度の演算を無効にする. 加減速の切り換わった時点から新たに計測時間Tを設定
して、加減速度の計測を開始し、Tの間常に加速中か、
もしくは減速中であったとき初めて加減速度の演算を行
う. このようにすることにより、種々の要因から発生する車
速バルスのゆらぎによる加減速度の誤検出を防止するこ
とができ、かつ、実際に急加減速を開始した時点から加
減速の計測を開始することにより、応答性を損うことの
ない車両の加減速検出装置となる。
In this way, the performance error and responsiveness have contradictory properties, so it has been difficult to satisfy both simultaneously. Therefore, this invention solved the problem as follows. That is,
During T when acceleration/deceleration is being measured, each time a vehicle speed pulse is input to the control device 1 from the reed switch 3a of the vehicle speed sensor 3, the calculated average vehicle speed is compared to the average vehicle speed calculated one pulse before. The comparison is made to determine whether the state is accelerating or decelerating. If there is a change from acceleration to deceleration or from deceleration to acceleration, measurement of acceleration/deceleration is stopped at that point, and the current acceleration/deceleration is Disables the operation. Set a new measurement time T from the point when acceleration/deceleration is switched, start measuring acceleration/deceleration, and check if the vehicle is constantly accelerating during T.
Alternatively, calculation of acceleration/deceleration is performed for the first time when the vehicle is decelerating. By doing this, it is possible to prevent false detection of acceleration/deceleration due to fluctuations in the vehicle speed pulse caused by various factors, and it is possible to start measurement of acceleration/deceleration from the point at which sudden acceleration/deceleration actually starts. This provides a vehicle acceleration/deceleration detection device that does not impair responsiveness.

加速中.減速中の判定は上記平均車速より判定しても良
いし、最新の車速パルス周期とNパルス前の車速パルス
周期を比較して判定しても良い。
Accelerating. Deceleration may be determined based on the average vehicle speed, or may be determined by comparing the latest vehicle speed pulse cycle with the vehicle speed pulse cycle N pulses before.

第3図はこの発明の一実施例による動作の流れを示すフ
ローチャートである.まず、スタート30より始まり、
ステップ31で車速センサ3のリードスイッチ3aから
車,速パルスが制御装置lへの入力の有無を確認する. 車速パルスが無ければ、車速パルスが入力されるまでス
テップ31で待機する. これは加減達の演算を行うのに最新の車速パルスの入力
で演算された車速を用いるためである。
FIG. 3 is a flowchart showing the flow of operations according to an embodiment of the present invention. First, starting from the start 30,
In step 31, it is checked whether a vehicle speed pulse is input from the reed switch 3a of the vehicle speed sensor 3 to the control device l. If there is no vehicle speed pulse, the process waits in step 31 until a vehicle speed pulse is input. This is because the vehicle speed calculated based on the latest vehicle speed pulse input is used to calculate the addition/subtraction.

ステップ3lで車速パルスが制御装置1に入力されると
、ステソプ32へ進み、加減速度の計測時間Tを設定し
て加減速の計測を開始する。
When the vehicle speed pulse is input to the control device 1 in step 3l, the process proceeds to the step controller 32, sets acceleration/deceleration measurement time T, and starts measurement of acceleration/deceleration.

この計測時間Tは加減速度検出の精度と応答性を両立さ
せるために車速によって可変としても良い. ステップ33では、車連センサの最新の1パルス分の周
期を計測し、ステップ34では、ステップ33で計測さ
れた車連パルス周期をNパルス前の周期と入れ替えて記
憶する. このようにすることにより、常に最新のNパルス分の車
速パルス周期が記憶されていることになる. ステップ35では、この最新のNパルスの周期を平均化
して、平均車速を演算する。
This measurement time T may be variable depending on the vehicle speed in order to achieve both accuracy and responsiveness of acceleration/deceleration detection. In step 33, the cycle of the latest one pulse of the vehicle-related sensor is measured, and in step 34, the vehicle-related pulse cycle measured in step 33 is replaced with the cycle of N pulses before and stored. By doing this, the vehicle speed pulse cycle for the latest N pulses is always stored. In step 35, the cycles of the latest N pulses are averaged to calculate the average vehicle speed.

ステップ36では、加減速度の計測を開始したところか
どうかを判定し、計測を開始したところであれば、ステ
ップ37へ進み、今回演算された平均車達を記憶する. この記憶された平均車速は加減速度を演算するときの弐
  〇  の初速v0となる.ステップ36で既に加減
速度を計測中と判断されたときは、ステップ38へ進む
.このステップ38では、今回演算された平均車速と1
パルス前に演算された平均車速を比較して、加速状態か
滅速状態かを比較する. この比較の結果、今回加速であれば、ステップ38aへ
進み、今回加速であることを記憶してステップ39へ進
む. このステップ39では、前回が加速であったか減速であ
ったかを判定し、もし前回も加速であれば、ステップ4
1へ進み、もし前回が減速であれば、加減速が減速から
加速へ切り換わったと判定し、ステップ32へ戻り、加
減速度の計測を始めからやり直す. ステップ38で減速と判定されたときは、ステップ38
bへ進み、今回減速であることを記憶して、ステップ4
0へ進む. ステ,プ40では、前回が加速であったか減速であった
かを判定し、もし、前回が減速であれば、ステップ4l
へ進み、もし、前回が加速であれば、加減速が加速から
減速へ切り換わったと判定し、ステップ32へ戻り、加
減速度の計測を始めからやり直す. 第3図のフローチャートにおいて、点線で囲ったこのス
テソブ38からステップ40までの判定を加えることに
より、車速センサケーブルの回転むら等の要因による車
速パルスの不正確さからくる加減速度の誤検出を防止す
ることができ、かつ実際に車両が加速状態もし《は減速
状態になったときには、応答性を損うことなく、加減速
度の計測を開始することができる. ステップ41では、加減速度の計測を開始してから計測
時間Tが経遇したかどうかを判定し、もしまだ計測を開
始してから時間Tが経遇していなければ、ステップ42
へ進み、次の車速バルスの入力を待ち、車速パルスの入
力があれば、ステップ33へ戻り、新たに平均車速の演
算を行う.ステソプ41で計測時間Tが経遇しておれば
、ステップ43へ進み、最後に演算された平均車速v,
と、計測開始時に記憶しておいた初速v0と時間Tより
加減速度を(  T  )として演真し求める。
In step 36, it is determined whether or not measurement of acceleration/deceleration has just started. If measurement has just started, the process advances to step 37, and the average vehicle calculated this time is stored. This memorized average vehicle speed becomes the initial speed v0 when calculating acceleration/deceleration. If it is determined in step 36 that acceleration/deceleration is already being measured, the process advances to step 38. In this step 38, the average vehicle speed calculated this time and 1
The average vehicle speed calculated before the pulse is compared to determine whether the vehicle is accelerating or decelerating. As a result of this comparison, if it is acceleration this time, the process proceeds to step 38a, where it is memorized that it is acceleration this time, and the process proceeds to step 39. In this step 39, it is determined whether the previous time was acceleration or deceleration, and if the previous time was also acceleration, step 4
1, and if the previous time was deceleration, it is determined that the acceleration/deceleration has switched from deceleration to acceleration, and the process returns to step 32, where the measurement of acceleration/deceleration is restarted from the beginning. When it is determined in step 38 that deceleration is occurring, step 38
Proceed to step b, remembering that this time it is deceleration, and step 4
Go to 0. In step 40, it is determined whether the previous time was acceleration or deceleration, and if the previous time was deceleration, step 4l is performed.
If the previous time was acceleration, it is determined that the acceleration/deceleration has switched from acceleration to deceleration, and the process returns to step 32 to start measuring the acceleration/deceleration from the beginning. In the flowchart of Fig. 3, by adding the determinations from Step 38 to Step 40, which are surrounded by dotted lines, false detection of acceleration/deceleration due to inaccurate vehicle speed pulses due to factors such as uneven rotation of the vehicle speed sensor cable can be prevented. In addition, when the vehicle actually accelerates or decelerates, measurement of acceleration and deceleration can be started without impairing responsiveness. In step 41, it is determined whether the measurement time T has elapsed since the start of acceleration/deceleration measurement, and if the time T has not elapsed since the start of measurement, step 42
Step 3 waits for the next vehicle speed pulse input, and if a vehicle speed pulse is input, returns to step 33 and calculates the average vehicle speed anew. If the measurement time T has passed in the step 41, the process advances to step 43, and the last calculated average vehicle speed v,
Then, the acceleration/deceleration is calculated as (T) from the initial velocity v0 and time T that were stored at the beginning of the measurement.

なお、計測時間Tをカウントするタイマは図示しない割
込ルーチンで一定時間毎に減算されて、0でクリソブさ
れるものとする. また、車速か掻く低速では、加減速度の演真に時間がか
かりすぎるので、このため所定の車速以下の領域では、
加減速度の演算を中止して、不要な判定を省略すること
ができる。
It is assumed that the timer that counts the measurement time T is decremented at regular intervals by an interrupt routine (not shown) and reset to 0. Also, at very low vehicle speeds, it takes too much time to calculate the acceleration/deceleration, so in the region below a predetermined vehicle speed,
It is possible to cancel calculation of acceleration/deceleration and omit unnecessary determination.

〔発明の効果〕〔Effect of the invention〕

以上のように、この発明によれば、車両の加減速を計測
中、加速中か減速中かを常に判定し、一定時間加速が継
続したとき、または減速がm続したとき、加減速度を演
算するようにしたので、車速センサケーブルの回転むら
等の要因による車速パルス信号の不正確さに起因する精
度の向上と応答性のアップの相反する要求を両立させる
ことができる。
As described above, according to the present invention, while measuring the acceleration/deceleration of a vehicle, it is always determined whether the vehicle is accelerating or decelerating, and when acceleration continues for a certain period of time or deceleration continues for m, the acceleration/deceleration is calculated. As a result, it is possible to satisfy the conflicting demands of improving accuracy and increasing responsiveness, which are caused by the inaccuracy of the vehicle speed pulse signal due to factors such as uneven rotation of the vehicle speed sensor cable.

また、加減速の演算周期は車速に応じて切り換え、高速
時ほど演算周期を短縮することで、より応答性を向上す
ることができる.
In addition, responsiveness can be further improved by switching the acceleration/deceleration calculation cycle depending on the vehicle speed and shortening the calculation cycle at higher speeds.

【図面の簡単な説明】[Brief explanation of drawings]

第1図はこの発明の一実施例による車両の加速度検出装
置を組み込んだサスペンション装置の構成図、第2図は
同上実施例における車速センサの出力波形図、第3図は
同上実施例の動作を説明するためのフローチャートであ
る。 1・・・制御装置、2・・・ブレーキスイッチ、3・・
・車速センサ、4・・・車体、5・・・ショックアブソ
ーバ、7・・・車輪、9・・・空気ばね、14・・・車
高センサ。 なお、図中同一符号は同一、又は相当部分を示す。
FIG. 1 is a block diagram of a suspension device incorporating a vehicle acceleration detection device according to an embodiment of the present invention, FIG. 2 is an output waveform diagram of a vehicle speed sensor in the embodiment, and FIG. 3 shows the operation of the embodiment. It is a flow chart for explanation. 1...Control device, 2...Brake switch, 3...
-Vehicle speed sensor, 4...Vehicle body, 5...Shock absorber, 7...Wheel, 9...Air spring, 14...Vehicle height sensor. Note that the same reference numerals in the figures indicate the same or equivalent parts.

Claims (1)

【特許請求の範囲】[Claims] 車両の車輪速度に比例したパルス信号を発生する車速セ
ンサと、上記パルス信号の最新のN個の第1のパルス周
期を計測してこのN個のパルス周期の前のパルス周期の
データと入れ換えて記憶する手段と、この手段で記憶さ
れた上記最新のN個の第1のパルス周期から第1の平均
車速を演算するとともにこの第1のパルス周期の発生か
ら所定の時間T_0終了後に上記車速センサから発生し
たパルスの第2のパルス周期から第2の平均車速を演算
し、かつ上記第1のパルス周期から上記第2のパルス周
期までの時間T_1を計測して(V_2−V_1)/T
_1の演算値より上記車両の加減速度を判定する手段と
を備えた車両の加減速演算装置。
A vehicle speed sensor that generates a pulse signal proportional to the wheel speed of the vehicle, and a vehicle speed sensor that measures the latest N first pulse periods of the pulse signal and replaces these N pulse periods with data of the previous pulse period. a means for storing, and a means for calculating a first average vehicle speed from the latest N first pulse cycles stored by the means, and a vehicle speed sensor for calculating a first average vehicle speed after a predetermined time T_0 from the generation of the first pulse cycle. A second average vehicle speed is calculated from the second pulse period of the pulse generated from , and the time T_1 from the first pulse period to the second pulse period is measured to calculate (V_2-V_1)/T.
An acceleration/deceleration calculation device for a vehicle, comprising means for determining the acceleration/deceleration of the vehicle from the calculated value of _1.
JP1080190A 1990-01-20 1990-01-20 Acceleration arithmetic unit for vehicle Pending JPH03215751A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP1080190A JPH03215751A (en) 1990-01-20 1990-01-20 Acceleration arithmetic unit for vehicle

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP1080190A JPH03215751A (en) 1990-01-20 1990-01-20 Acceleration arithmetic unit for vehicle

Publications (1)

Publication Number Publication Date
JPH03215751A true JPH03215751A (en) 1991-09-20

Family

ID=11760439

Family Applications (1)

Application Number Title Priority Date Filing Date
JP1080190A Pending JPH03215751A (en) 1990-01-20 1990-01-20 Acceleration arithmetic unit for vehicle

Country Status (1)

Country Link
JP (1) JPH03215751A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008271780A (en) * 2007-03-27 2008-11-06 Railway Technical Res Inst Pantograph and method of improvement for follow characteristics thereof

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008271780A (en) * 2007-03-27 2008-11-06 Railway Technical Res Inst Pantograph and method of improvement for follow characteristics thereof

Similar Documents

Publication Publication Date Title
US4624477A (en) Automobile suspension system
JP2799571B2 (en) Speed detector
JPS59210374A (en) Wheel speed arithmetic device
JPH0147324B2 (en)
JPH01226469A (en) Drive controller for vehicle
JP4071834B2 (en) Anti-lock control method
JPS6247722B2 (en)
JP2836832B2 (en) Method and apparatus for determining a steering position in an automotive steering mechanism
JPH03215751A (en) Acceleration arithmetic unit for vehicle
JP2935563B2 (en) Control method of wheel slip in vehicle
JPS62218873A (en) Wheel speed identifying and processing system
JPH0126886B2 (en)
JPS6317105A (en) Electronically controlled suspension device
JPH0665545B2 (en) Anti-skid device malfunction prevention control method and malfunction prevention control device
JP3210418B2 (en) Estimated vehicle speed calculation device
JPS632802B2 (en)
US5960377A (en) Speed calculation derived from distance pulses utilizing acceleration
JPS6242146B2 (en)
JPH10226328A (en) Device for detecting unevenness of road surface
JP2744880B2 (en) Pulse width measurement device and rotation speed measurement device
JPH042513A (en) Suspension control device
JPS63172397A (en) Jammed running detector
JP3194763B2 (en) Method and apparatus for estimating vehicle speed in vehicle
JPH09236612A (en) Rotating speed sensor
JPH0568363B2 (en)