JPH03215719A - Thermopile - Google Patents

Thermopile

Info

Publication number
JPH03215719A
JPH03215719A JP2009509A JP950990A JPH03215719A JP H03215719 A JPH03215719 A JP H03215719A JP 2009509 A JP2009509 A JP 2009509A JP 950990 A JP950990 A JP 950990A JP H03215719 A JPH03215719 A JP H03215719A
Authority
JP
Japan
Prior art keywords
generating element
thermal power
power generating
heat source
thin film
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2009509A
Other languages
Japanese (ja)
Inventor
Yasunori Tanji
丹治 雍典
Michio Nemoto
根本 道夫
Akihiro Enomoto
榎本 明宏
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Tokin Corp
Original Assignee
Tokin Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Tokin Corp filed Critical Tokin Corp
Priority to JP2009509A priority Critical patent/JPH03215719A/en
Publication of JPH03215719A publication Critical patent/JPH03215719A/en
Pending legal-status Critical Current

Links

Landscapes

  • Radiation Pyrometers (AREA)

Abstract

PURPOSE:To improve the heat conduction efficiency of a thermal power generating element to an infrared-ray absorber without using metal and to simplify the mechanism and improve the mass-productivity by using the thermal power generating element composed of a metallic thin film wire. CONSTITUTION:A thermal power generation module is formed of an insulating substrate 1 of mica, polyimide, polyester, etc., by vapor deposition, sputtering, etc. The thermal power generating element 2 is formed of a semiconductor- metal-semiconductor thin film wire. Further, a metallic plate of aluminum, etc., with a large coefficient of heat conduction is used for a heat sink 5. The heat sink 5 is fixed on the reverse surface of the semiconductor substrate 1 in contact closer to the low heat source part side of the heat power generating element 2 than to the intermediate part between the high heat source part and low heat source part. Consequently, the heat conduction efficiency of the thermal power generating element can be improved greatly, the module structure is simplified, and the mass-productivity is improved.

Description

【発明の詳細な説明】 [産業上の利用分野コ 本発明はサーモパイル.特に各種非接触型赤外線センサ
としてのサーモパイルに関する。
[Detailed Description of the Invention] [Industrial Application Field] The present invention relates to thermopiles. In particular, it relates to thermopiles as various non-contact infrared sensors.

[従来の技術] 従来のサーモパイルの典型的な構造は第2図及び第3図
に示す通りである。絶縁基板1上に.半導体一半導体系
薄膜半導体線2が蒸着又はスパッタ等により形成され,
その対を基本素子とし,その複数個が直列に結合される
。本目的のために使用される熱発電素子材にはゼーベツ
ク係数の大きいBi,Sb,Te等の半導体又はその化
合物が用いられる。
[Prior Art] The typical structure of a conventional thermopile is as shown in FIGS. 2 and 3. on the insulating substrate 1. A semiconductor-semiconductor thin film semiconductor line 2 is formed by vapor deposition or sputtering,
The pair is used as a basic element, and a plurality of the elements are connected in series. Semiconductors such as Bi, Sb, Te, etc., or compounds thereof, which have a large Seebeck coefficient, are used as the thermoelectric element material used for this purpose.

熱発電素子の高熱源部は,このモジュールの中心部に,
低熱源部は外周部になる様に配設されている。該薄膜熱
発電素子の高熱源部の中心部に間隔dをもって赤外線吸
収体4が配設されている。
The high heat source part of the thermoelectric generator is located in the center of this module.
The low heat source section is arranged at the outer periphery. An infrared absorber 4 is disposed at the center of the high heat source portion of the thin film thermoelectric generating element with an interval d.

赤外線吸収体4として,赤外線吸収率の高い“金黒”が
用いられている。
As the infrared absorber 4, "gold black", which has a high infrared absorption rate, is used.

サーモパイルが赤外線センサとして用いられる原理は次
の通りである。被検出体から,発生する赤外線(熱エネ
ルギ)は,先づ赤外線吸収体に吸収される。それによっ
て該吸収体の温度が上昇する。これを熱源とする熱エネ
ルギは間隙dを通して該熱発電素子の高温熱源部に伝達
され,その温度を上昇せしめる。他方,低熱源部の温度
は,ほぼヒートシンク5の温度に保持される。以上の様
な理由により該熱発電素子の高熱源部と低熱源部との間
に温度差ΔTが生じ,ゼーベック効果に基づく発電か起
る。
The principle of using a thermopile as an infrared sensor is as follows. The infrared rays (thermal energy) generated from the object to be detected are first absorbed by the infrared absorber. This increases the temperature of the absorber. Thermal energy using this as a heat source is transmitted to the high-temperature heat source portion of the thermoelectric generating element through the gap d, raising its temperature. On the other hand, the temperature of the low heat source section is maintained approximately at the temperature of the heat sink 5. For the above reasons, a temperature difference ΔT occurs between the high heat source portion and the low heat source portion of the thermoelectric power generation element, and power generation based on the Seebeck effect occurs.

[発明が解決しようとする課題] 従来のサーモパイルに用いられている赤外線吸収体4は
 比抵抗が小さく,金属のそれとほぼ同程度である。該
熱発電素子の高熱源部と直接接触すると,その出力電圧
は著しく低下する。上述赤外線吸収体4との間隙dは熱
伝達機構上,小さくするのが望ましい。現行では約50
〜100μω程度である。従って赤外吸収体4の周辺部
と高熱源部との間には1温度差か生じ,赤外線入射光に
対する高熱源部の温度上昇に対する熱的な効率が悪くな
る。又,絶縁基板上の該熱発電素子形成面の裏面に,又
同じ面に樹脂膜を挾んで赤外線吸収体を配設する方法も
ある。しかしいづれの場合も上述の場合と同様に熱伝達
効率は良くない。
[Problems to be Solved by the Invention] The infrared absorber 4 used in conventional thermopiles has a low resistivity, which is almost the same as that of metal. Direct contact with the high heat source portion of the thermoelectric generating element causes its output voltage to drop significantly. It is desirable that the gap d between the infrared absorber 4 and the above-mentioned infrared absorber 4 be made small in view of the heat transfer mechanism. Currently about 50
~100 μω. Therefore, a temperature difference of one level is generated between the peripheral portion of the infrared absorber 4 and the high heat source portion, and the thermal efficiency with respect to the temperature rise of the high heat source portion against incident infrared light becomes poor. There is also a method of disposing an infrared absorber on the back side of the surface on which the thermoelectric generating element is formed on the insulating substrate, or on the same surface with a resin film sandwiched therebetween. However, in either case, the heat transfer efficiency is not good as in the above case.

そこで本発明の技術的課題は,上記欠点に鑑み,金黒を
用いることなく,赤外線吸収体に対する熱発電素子の熱
伝達効率を高め,然も,その機構を簡単化し,R産に適
したサーモパイル(熱発電モジュール)を提供すること
である。
In view of the above-mentioned drawbacks, the technical problem of the present invention is to improve the heat transfer efficiency of the thermoelectric generating element to the infrared absorber without using gold black, and to simplify the mechanism, and to create a thermopile suitable for R production. (thermal power generation module).

[課題を解決するための手段] 本発明によれば.金属薄膜細線よりなる熱発電素子を有
することを特徴とするサーモパイルが得られる。
[Means for solving the problem] According to the present invention. A thermopile characterized in that it has a thermoelectric generating element made of a metal thin film wire is obtained.

また,本発明によれば,前記熱発電素子は,1の前記金
属薄膜細線を互いに離間して縦横に配し,十字形状を呈
して成ること特徴とするサーモパイルが得られる。
Further, according to the present invention, there is obtained a thermopile characterized in that the thermoelectric generating element is formed by arranging one of the metal thin film thin wires spaced apart from each other vertically and horizontally to form a cross shape.

[実施例] 本発明のサーモパイルは,マイ力,ポリイミド,ポリエ
ステル等の絶縁基板1の上に蒸着又はスパッタ等により
形成される。熱発電素子2は半導体金属一半導体系薄膜
線から成る。又ヒートシンク5には熱伝導係数の大きい
,アルミニューム等の金属板が用いられる。ヒートシン
ク5は絶縁基板1の裏面で,該熱発電素子2の高熱源部
と低熱源部との中間部より低熱源部側に密着固定される
[Example] The thermopile of the present invention is formed on an insulating substrate 1 made of aluminum, polyimide, polyester, or the like by vapor deposition, sputtering, or the like. The thermoelectric generating element 2 is composed of a semiconductor metal-semiconductor thin film wire. Further, the heat sink 5 is made of a metal plate such as aluminum, which has a large thermal conductivity coefficient. The heat sink 5 is tightly fixed on the back surface of the insulating substrate 1 closer to the low heat source part than the intermediate part between the high heat source part and the low heat source part of the thermoelectric generating element 2.

低熱源部の温度はヒートシンク5の温度に保持される。The temperature of the low heat source section is maintained at the temperature of the heat sink 5.

素子保護膜として,該熱発電素子2の上面に弾性力のあ
る樹脂膜を形成する事も出来る。その厚みは5μm以下
に制御される。樹脂コーティング材としてはポリイミド
等が用いられる。その熱伝導率は0.0015 〜0.
0020W/cm−degで絶縁基板1のそれと,ほぼ
同程度である。又その形成方法としては量産性を考慮し
,スピンコーティング法が用いられる。尚,樹脂コーテ
ィングの際,該熱発電モジュールの出力端子6上には樹
脂膜が形成されない様に,マスキング等の手段が考慮さ
れている。
An elastic resin film can also be formed on the upper surface of the thermoelectric generating element 2 as an element protective film. Its thickness is controlled to 5 μm or less. Polyimide or the like is used as the resin coating material. Its thermal conductivity is 0.0015~0.
It is approximately the same level as that of the insulating substrate 1 at 0020 W/cm-deg. In addition, the spin coating method is used as the formation method in consideration of mass production. Note that during resin coating, measures such as masking are taken into consideration so that a resin film is not formed on the output terminal 6 of the thermoelectric power generation module.

本発明になるサーモパイル(熱発電モジュール)が従来
のそれに比して優れている点は次の通りである。
The thermopile (thermal power generation module) according to the present invention has the following advantages over conventional ones.

■半導体一金属一半導体からなる薄膜細線からなる基本
素子の金属薄膜細線部を高熱源部とするとき,この金属
薄膜細線は従来の赤外線吸収体の機能をも兼ており,特
にこれを必要としない。従来の様に熱供給体を介さずと
も,金属薄膜細線内に吸収された熱エネルギは両半導体
薄膜細線先端部に直接伝達される。それ故その熱伝達効
率も高い。
■When a thin metal film wire part of a basic element consisting of a thin film wire composed of a semiconductor, a metal, and a semiconductor is used as a high heat source, this thin metal film wire also functions as a conventional infrared absorber, so it is especially necessary to do not. Thermal energy absorbed in the metal thin film wire is directly transmitted to the tips of both semiconductor thin film wires, without going through a heat supply body as in the conventional case. Therefore, its heat transfer efficiency is also high.

■該熱発電素子対は夫々直角に配設される様な機構をも
つため該発電素子数を従来のものより50%以上,多く
配設する事が容易になった。
(2) Since the thermoelectric generating element pairs have a mechanism in which they are arranged at right angles to each other, it has become easy to arrange the number of thermoelectric generating elements to be more than 50% larger than that of the conventional type.

■該熱発電モジュールの配列機構が十字形であるため,
両出力端子とアース端子をその間に配設する事が出来,
モジュールの小型がより可能になった。
■Since the arrangement mechanism of the thermoelectric power generation module is cross-shaped,
Both output terminals and the ground terminal can be placed between them.
It has become possible to make the module more compact.

[発明の効果] 本発明ニよって,従来のサーモパイル(熱発電モジュー
ル)よりも熱発電素子の熱伝達効率を著しく向上させる
事が可能となりモジュール構造も.より単純化され量産
性の良いサーモパイルを提供する事が可能となった。
[Effects of the Invention] According to the present invention, it is possible to significantly improve the heat transfer efficiency of the thermoelectric generation element compared to conventional thermopiles (thermoelectric generation modules), and the module structure can also be improved. It has become possible to provide a thermopile that is simpler and easier to mass produce.

【図面の簡単な説明】 第1図は本発明によるサーモパイルの1実施例を示す図
.第2図及び第3図は従来の典型的なサーモパイルの実
施例を示す。 1・・・絶縁基板,2・・・薄膜半導体素子,3・・・
コーティング樹脂,4・・・赤外線吸収体,5・・・ヒ
ートシンク,6・・・出力端子,7・・・アース端子。 箔1図
[Brief Description of the Drawings] Fig. 1 is a diagram showing one embodiment of a thermopile according to the present invention. FIGS. 2 and 3 show examples of typical conventional thermopiles. 1... Insulating substrate, 2... Thin film semiconductor element, 3...
Coating resin, 4... Infrared absorber, 5... Heat sink, 6... Output terminal, 7... Earth terminal. Foil 1 diagram

Claims (1)

【特許請求の範囲】 1)金属薄膜細線よりなる熱発電素子を有することを特
徴とするサーモパイル。 2)第1請求項記載のサーモパイルにおいて、前記熱発
電素子は、1の前記金属薄膜細線を互いに離間して縦横
に配し、十字形状を呈して成ること特徴とするサーモパ
イル。
[Scope of Claims] 1) A thermopile characterized by having a thermoelectric generating element made of thin metal thin film wires. 2) The thermopile according to claim 1, wherein the thermopile is characterized in that the thermoelectric generating element is formed by arranging one of the metal thin film thin wires spaced apart from each other vertically and horizontally to form a cross shape.
JP2009509A 1990-01-20 1990-01-20 Thermopile Pending JPH03215719A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2009509A JPH03215719A (en) 1990-01-20 1990-01-20 Thermopile

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2009509A JPH03215719A (en) 1990-01-20 1990-01-20 Thermopile

Publications (1)

Publication Number Publication Date
JPH03215719A true JPH03215719A (en) 1991-09-20

Family

ID=11722215

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2009509A Pending JPH03215719A (en) 1990-01-20 1990-01-20 Thermopile

Country Status (1)

Country Link
JP (1) JPH03215719A (en)

Similar Documents

Publication Publication Date Title
US3956017A (en) Optoelectric transducer
US7884277B2 (en) Apparatus for the conversion of electromagnetic radiation in electric energy and corresponding process
US6958443B2 (en) Low power thermoelectric generator
US20130206199A1 (en) Device and Method for Hybrid Solar-Thermal Energy Harvesting
JPH0690030A (en) Thermo-element sheet
TW201138170A (en) Thermoelectric generating module
US8288646B2 (en) Pyroelectric solar technology apparatus and method
JPS63318175A (en) Thermopile
CA2061105A1 (en) Thermoelectric device
JPH03215719A (en) Thermopile
US3441449A (en) Thermoelectric system
US20120216847A1 (en) Pyroelectric solar technology apparatus and method
JP2929204B2 (en) Thermopile
JPS60260166A (en) Photoelectricity-thermoelectricity energy converting device
JPS60127770A (en) Thermoelectric generating element
JPS6267888A (en) Thermoelectric power generation device
JPH01105582A (en) Solar light generating element
JPH05126643A (en) Infrared sensor
JPS5899647A (en) Solar heat collector with solar cell
KR20100030762A (en) Thermoelectric sensor using ge material
JPH03211776A (en) Thermoelectric transducer
JPH0823508B2 (en) Thermopile
JPH0227827B2 (en)
JPH02206733A (en) Infrared ray sensor
JPS5835991A (en) High-density thermoelectric element