JPH03211776A - Thermoelectric transducer - Google Patents

Thermoelectric transducer

Info

Publication number
JPH03211776A
JPH03211776A JP2006245A JP624590A JPH03211776A JP H03211776 A JPH03211776 A JP H03211776A JP 2006245 A JP2006245 A JP 2006245A JP 624590 A JP624590 A JP 624590A JP H03211776 A JPH03211776 A JP H03211776A
Authority
JP
Japan
Prior art keywords
infrared
thermoelectric conversion
ribbon
film
semiconductor
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2006245A
Other languages
Japanese (ja)
Inventor
Yasunori Tanji
丹治 雍典
Michio Nemoto
根本 道夫
Akihiro Enomoto
榎本 明宏
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Tokin Corp
Original Assignee
Tokin Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Tokin Corp filed Critical Tokin Corp
Priority to JP2006245A priority Critical patent/JPH03211776A/en
Publication of JPH03211776A publication Critical patent/JPH03211776A/en
Pending legal-status Critical Current

Links

Landscapes

  • Photometry And Measurement Of Optical Pulse Characteristics (AREA)
  • Radiation Pyrometers (AREA)

Abstract

PURPOSE:To provide a thermoelectric transducer having an increased heat transfer efficiency by using an arragnement, in which pairs of thermoelectic elements forming a ribbon are arranged thermally in parallel and connected electrically in series, and a predetermined area of the ribbon is coated with an infrared-transmitting film in specific thickness. CONSTITUTION:A thin-film ribbon includes pairs of L-shaped and inverse L- shaped semiconductor members, each pair having a laminated structure of n-type semiconductor, metal, and p-type semiconductor. These semiconductor members are arranged thermally in parallel and connected electrically in series. The L shaped members face an infrared absorber 4 at their corners or striped parts. The striped corners of the ribbon are coated with a 0.2-0.7mum thick film 8. A thermoelectric transducer having such an infrared transmitting film S has an electric generation efficiency six times as large as the conventional one. Therefore, it is possible to obtain a very quick response for infrared detection.

Description

【発明の詳細な説明】 〔産業上の利用分野コ 本発明は非接触型赤外線検出装置に適した熱電気変換装
置に関する。
DETAILED DESCRIPTION OF THE INVENTION [Field of Industrial Application] The present invention relates to a thermoelectric conversion device suitable for a non-contact infrared detection device.

[従来の技術] 第2図(a)、(b)には、従来の赤外線センサ用熱電
気変換モジュールの典型的な構造の例か示されている。
[Prior Art] FIGS. 2(a) and 2(b) show an example of a typical structure of a conventional thermoelectric conversion module for an infrared sensor.

絶縁基板1の上に、半導体(n型)半導体(p型)系薄
膜半導体素子(以下、薄膜リボンと呼ぶ)2が蒸着又は
スパッタ等により放射線状に形成され、半径方向−片を
基本素子として、その複数個が電気的に直列に結合され
る。
Semiconductor (n-type) semiconductor (p-type) thin film semiconductor elements (hereinafter referred to as thin film ribbons) 2 are formed radially on an insulating substrate 1 by vapor deposition or sputtering, with each radial piece serving as a basic element. , a plurality of them are electrically coupled in series.

なお1薄膜リボン2に使用される材料にはゼーベック係
数の大きいBi、Sb、Te等の半導体およびそれらの
化合物が用いられる。
Note that the materials used for the thin film ribbon 2 include semiconductors such as Bi, Sb, and Te, which have large Seebeck coefficients, and compounds thereof.

薄膜リボン2の高熱源部として、熱電気変換モジュール
の中心領域に赤外線吸収体4が配設されている。赤外線
吸収体4としては赤外線吸収率の高い“黒色金”が用い
られている。
As a high heat source part of the thin film ribbon 2, an infrared absorber 4 is arranged in the central region of the thermoelectric conversion module. As the infrared absorber 4, "black gold" having a high infrared absorption rate is used.

赤外線センサとして用いられる熱電気変換モジュールの
発電の原理は次の通りである。被検出体が発する赤外線
はまず赤外線吸収体4に吸収される。これによって赤外
線吸収体4の温度か上昇する。これを熱源とする熱エネ
ルギは主として熱伝導によって薄膜リボン2の高熱源部
に伝達され。
The principle of power generation of a thermoelectric conversion module used as an infrared sensor is as follows. The infrared rays emitted by the object to be detected are first absorbed by the infrared absorber 4. This causes the temperature of the infrared absorber 4 to rise. Thermal energy using this as a heat source is transmitted to the high heat source portion of the thin film ribbon 2 mainly by thermal conduction.

温度上昇させる。Increase temperature.

他方、薄膜リボン2の径方向に関して外側の部分は低熱
源部として作用し、絶縁基板]の下面に取り付けられた
ヒートシンク5により、一定の温度に保持される。これ
により薄膜リボン2の高熱源部と低熱源部との間に温度
差ΔTが生じ、ゼーベック効果に基く発電が起る。
On the other hand, the radially outer portion of the thin film ribbon 2 acts as a low heat source and is maintained at a constant temperature by a heat sink 5 attached to the lower surface of the insulating substrate. As a result, a temperature difference ΔT is generated between the high heat source portion and the low heat source portion of the thin film ribbon 2, and power generation based on the Seebeck effect occurs.

上記赤外線吸収体4と該熱電気変換素子との間隙は約5
0〜100μm程度である。
The gap between the infrared absorber 4 and the thermoelectric conversion element is approximately 5
It is about 0 to 100 μm.

[発明が解決しようとする課題] しかしなから、上記の様な熱伝達機構では、熱エネルギ
の分散が起り、熱電気変換素子の高熱源部への熱伝達効
率を著しく低下させる。
[Problems to be Solved by the Invention] However, in the heat transfer mechanism as described above, thermal energy is dispersed, which significantly reduces the heat transfer efficiency to the high heat source portion of the thermoelectric conversion element.

そこで1本発明の技術的課題は、従来の赤外線吸収体か
ら熱電気変換素子の高熱源部への熱伝達機構を改善し、
その熱伝達効率を高めた熱電気変換装置を提供すること
にある。
Therefore, one technical problem of the present invention is to improve the heat transfer mechanism from the conventional infrared absorber to the high heat source part of the thermoelectric conversion element,
The object of the present invention is to provide a thermoelectric conversion device with improved heat transfer efficiency.

[課題を解決するための手段] 本発明によれば、半導体(n型)−金属一半導体(p型
)系薄膜リボンを一対とする熱電気変換素子の複数個を
電気的に直列に、且つ熱的に配した熱電気変換装置にお
いて、予め定められた領域の前記薄膜リボンは、0.7
〜2μmの膜厚をもつ赤外線透過膜で被膜されているこ
とを特徴とする熱電気変換装置が得られる。
[Means for Solving the Problems] According to the present invention, a plurality of thermoelectric conversion elements including a pair of semiconductor (n-type)-metal-semiconductor (p-type) thin film ribbons are electrically connected in series, and In a thermally arranged thermoelectric conversion device, the thin film ribbon in a predetermined area has a thickness of 0.7
A thermoelectric conversion device is obtained which is characterized in that it is coated with an infrared transmitting film having a film thickness of ~2 μm.

[発明の原理] イスラエル国立物理研究所のH、T abor教授は。[Principle of the invention] Professor H. T. Abor of the National Physical Laboratory of Israel.

ニッケル又は銀の板に黒色ニッケルを電気メツキするか
、電解アルミニウム板の表面を化学的に黒くすることに
よって表面に薄い層をつくった。その層の厚さは可視光
線の波長より大きいが熱線の波長よりはるかに小さい。
A thin layer was created on the surface by electroplating black nickel onto a nickel or silver plate, or by chemically blackening the surface of an electrolytic aluminum plate. The thickness of the layer is greater than the wavelength of visible light but much smaller than the wavelength of thermal radiation.

このとき可視光線はよく吸収されるが長波長の赤外線に
対しては殆んど透明で、下地の金属の性質を現わす。従
って、常温での長波長輻射を出す事が少なく1日光にさ
らした場合、単純に黒い面よりもはるかに高温になる事
を報告している。
At this time, visible light is well absorbed, but it is almost transparent to long wavelength infrared rays, revealing the properties of the underlying metal. Therefore, it has been reported that it does not emit long-wavelength radiation at room temperature, and when exposed to sunlight, it becomes much hotter than a simply black surface.

この実験を重視し、この原理を赤外線センサ用熱電気変
換装置の集熱効果を高めることに応用することにした。
We focused on this experiment and decided to apply this principle to improving the heat collection effect of thermoelectric conversion devices for infrared sensors.

赤外線吸収体として使用されていた黒色金薄膜もまた、
膜厚を適当に調整することによって、赤外線の透過率か
著しく異なることが明らかになった。
The black gold thin film used as an infrared absorber also
It has become clear that by appropriately adjusting the film thickness, the infrared transmittance can be significantly different.

第4図には黒体の分光放射発散度と波長λとの関係を示
す。図から明らかな様に温度によって。
FIG. 4 shows the relationship between the spectral radiant emittance of a black body and the wavelength λ. As is clear from the figure, depending on the temperature.

分光放射発散度は異なる。The spectral radiant emittance is different.

従って、H、T abor教授の実験結果に基づくと赤
外線透過膜は被検出体の温度によって若干具なる。即ち
、被検出体が高温の場合、その透過膜の膜厚はその温度
に応じてより薄いものを用いる方が好ましい。
Therefore, based on the experimental results of Professor H. Tabor, the infrared transmitting film differs slightly depending on the temperature of the object to be detected. That is, when the temperature of the object to be detected is high, it is preferable to use a thinner transmission membrane depending on the temperature.

[実施例コ 本発明の熱電気変換装置の一実施例を第1図(a)〜(
d)に示す。
[Example] An example of the thermoelectric conversion device of the present invention is shown in FIGS.
Shown in d).

第1図(a)には、本発明に係る熱電気変換装置の一実
施例の平面図が示されている。
FIG. 1(a) shows a plan view of an embodiment of a thermoelectric conversion device according to the present invention.

第1図(b)には、第1図(a)の熱電気変換装置を線
A−Aに沿って切断した断面図が示されている。
FIG. 1(b) shows a cross-sectional view of the thermoelectric conversion device of FIG. 1(a) taken along line A-A.

従来の第2図との相違点を特に詳しく述べる。The differences from the conventional FIG. 2 will be described in particular detail.

本発明に係る熱電気変換装置は、絶縁基板1の中心領域
上に形成された赤外線吸収体4と、その上面にストライ
ブ状に、周囲には四方に延在するようにそれぞれ形成さ
れた薄膜半導体素子(以下、薄膜リボンと呼ぶ)2と、
絶縁基板1の下面に設けられたヒートシンク5、出力端
子6及びアース端子7と、更に、ストライブ状の薄膜リ
ボン2を被膜するように形成された赤外線吸収膜8とか
ら構成される。
The thermoelectric conversion device according to the present invention includes an infrared absorber 4 formed on the central region of an insulating substrate 1, a thin film formed in a stripe shape on the upper surface of the infrared absorber 4, and a thin film extending in all directions around the infrared absorber 4. A semiconductor element (hereinafter referred to as a thin film ribbon) 2,
It is composed of a heat sink 5, an output terminal 6, and a ground terminal 7 provided on the lower surface of an insulating substrate 1, and an infrared absorbing film 8 formed to cover the striped thin film ribbon 2.

薄膜リボン2は、半導体(n型)−金属一半導体(p型
)の一対の半導体をL字状、逆り字状に形成し、この半
導体複数個を第1図Ca)のように熱的に並列に、電気
的には直列に接続する。この際、L字の半導体の曲がり
部、即ち、ストライブ部は赤外線吸収体4と対向するよ
うに配されている。
The thin film ribbon 2 is formed by forming a pair of semiconductors (n-type) - metal and semiconductor (p-type) in an L-shape or inverted shape, and thermally heats the plurality of semiconductors as shown in Fig. 1 Ca). electrically connected in parallel and in series. At this time, the bent portion of the L-shaped semiconductor, that is, the striped portion is arranged to face the infrared absorber 4.

この薄膜リボン2のストライブ部を更に、0.7第1表 以下ポロ 〜2μ■の膜厚をもつ赤外線透過膜8でコーティングす
る。
The striped portion of the thin film ribbon 2 is further coated with an infrared transmitting film 8 having a film thickness of 0.7 μm to 2 μm.

第1図(b)に示されるように、赤外線透過膜8の領域
を除く領域を透明絶縁被膜9でコーティングして、熱電
気変換装置を構成する。
As shown in FIG. 1(b), a region other than the infrared transmitting film 8 is coated with a transparent insulating film 9 to construct a thermoelectric conversion device.

薄膜リボン2の両端部には、出力端子6が接続され前述
した従来例と同様の発電の原理で出力電圧を得ることが
できる。
Output terminals 6 are connected to both ends of the thin film ribbon 2, and an output voltage can be obtained using the same power generation principle as in the conventional example described above.

使用に際しては、例えば、熱を発するホットブレー) 
(230mmX 230+m)の面に対して直角に、中
心から600 mm離れた位置に本発明に係る熱電気変
換装置を設置する。
When using, for example, a hot brake that generates heat)
The thermoelectric conversion device according to the present invention is installed at a position 600 mm away from the center and perpendicular to the plane (230 mm x 230+ m).

赤外線透過膜8の材料の種類と膜厚δの異なる熱電気変
換装置についての実験データを第1表に示す。第1表に
はホットプレート面の温度100℃に於ける熱電気変換
装置で発電される出力電圧が示されている。本願出願人
は、赤外線センサ用熱電気変換装置の集熱効果を高める
ために、赤外線透過膜の種類、膜厚δを変化させて上述
の実験結果を得た。
Table 1 shows experimental data for thermoelectric conversion devices in which the infrared transmitting film 8 is made of different materials and has different film thicknesses δ. Table 1 shows the output voltage generated by the thermoelectric converter when the temperature of the hot plate surface is 100°C. The applicant obtained the above experimental results by varying the type and thickness δ of the infrared transmitting film in order to enhance the heat collection effect of the thermoelectric converter for an infrared sensor.

これにより、膜厚は0.7〜2μ■の場合が最適であり
、このような赤外線透過膜8を有する熱電気変換素子の
発電効率を従来のものの約6倍に向上させることができ
、赤外線検出の応答速度を著しく速くてきる。
As a result, the optimum film thickness is 0.7 to 2μ■, and the power generation efficiency of the thermoelectric conversion element having such an infrared transmitting film 8 can be improved to about six times that of the conventional one. The detection response speed is significantly increased.

第2図は第1図(a)、(b)の変形例で、反射板10
を用いて、集熱効果を高めている。
FIG. 2 shows a modification of FIGS. 1(a) and (b), in which the reflector 10
is used to enhance the heat collection effect.

C発明の効果コ 本発明によれば、熱電気変換装置に用いられた熱電気変
換素子の発電効率が従来のものの約6倍に向上し、赤外
線検出の応答速度は著しく速くなった。
C Effects of the Invention According to the present invention, the power generation efficiency of the thermoelectric conversion element used in the thermoelectric conversion device has been improved to about 6 times that of the conventional one, and the response speed of infrared detection has become significantly faster.

【図面の簡単な説明】[Brief explanation of drawings]

第1図(a)は本発明による赤外線センサ用熱電気変換
装置の一実施例の平面図、第1図(b)は第1図(a)
の線A−Aに沿って切断した断面図で、第2図は第1図
(a)、(b)の変形例を示す断面図、第3図(a)は
従来の熱電気変換装置の平面図、第3図(b)は第3図
(a)の線AAに沿って切断した断面図、第4図は黒体
の分光放射発散度と波長λとの関係を示す図である。 図中。 1・・・絶縁基板、2・・・薄膜半導体素子(薄膜リボ
ン)、4・・・赤外線吸収体、5川ヒートシンク、6・
・出力端子、7・・・アース端子、8・・・赤外線透過
膜。 9・・・透明絶縁被膜、10・・・反射板。 第1図 (α) 第2図 第3図
FIG. 1(a) is a plan view of an embodiment of a thermoelectric conversion device for an infrared sensor according to the present invention, and FIG. 1(b) is a plan view of an embodiment of the thermoelectric conversion device for an infrared sensor according to the present invention.
FIG. 2 is a sectional view showing a modification of FIGS. 1(a) and (b), and FIG. 3(a) is a cross-sectional view of a conventional thermoelectric conversion device. The plan view, FIG. 3(b) is a sectional view taken along the line AA in FIG. 3(a), and FIG. 4 is a diagram showing the relationship between the spectral radiant emittance of a black body and the wavelength λ. In the figure. DESCRIPTION OF SYMBOLS 1... Insulating substrate, 2... Thin film semiconductor element (thin film ribbon), 4... Infrared absorber, Gokawa heat sink, 6...
・Output terminal, 7... Earth terminal, 8... Infrared transmitting film. 9...Transparent insulating film, 10...Reflector plate. Figure 1 (α) Figure 2 Figure 3

Claims (2)

【特許請求の範囲】[Claims] (1)半導体(n型)−金属−半導体(p型)系薄膜リ
ボンを一対とする熱電気変換素子の複数個を電気的に直
列に、且つ熱的に並列に配した熱電気変換装置において
、予め定められた領域の前記薄膜リボンは、0.7〜2
μmの膜厚をもつ赤外線透過膜で被膜されていることを
特徴とする熱電気変換装置。
(1) In a thermoelectric conversion device in which a plurality of thermoelectric conversion elements each consisting of a pair of semiconductor (n-type)-metal-semiconductor (p-type) thin film ribbons are arranged electrically in series and thermally in parallel. , the thin film ribbon in a predetermined area has a thickness of 0.7 to 2
A thermoelectric conversion device characterized by being coated with an infrared transmitting film having a film thickness of μm.
(2)特許請求の範囲第1項記載の熱電気変換装置にお
いて、前記赤外線透過膜として、黒色金属又は黒色金属
化合物を用いることを特徴とする熱電気変換装置。
(2) The thermoelectric conversion device according to claim 1, wherein a black metal or a black metal compound is used as the infrared transmitting film.
JP2006245A 1990-01-17 1990-01-17 Thermoelectric transducer Pending JPH03211776A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2006245A JPH03211776A (en) 1990-01-17 1990-01-17 Thermoelectric transducer

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2006245A JPH03211776A (en) 1990-01-17 1990-01-17 Thermoelectric transducer

Publications (1)

Publication Number Publication Date
JPH03211776A true JPH03211776A (en) 1991-09-17

Family

ID=11633116

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2006245A Pending JPH03211776A (en) 1990-01-17 1990-01-17 Thermoelectric transducer

Country Status (1)

Country Link
JP (1) JPH03211776A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2020107772A (en) * 2018-12-28 2020-07-09 国立研究開発法人物質・材料研究機構 Thermopile type temperature control element

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2020107772A (en) * 2018-12-28 2020-07-09 国立研究開発法人物質・材料研究機構 Thermopile type temperature control element

Similar Documents

Publication Publication Date Title
US3956017A (en) Optoelectric transducer
KR0135119B1 (en) Infrared detector
US3076861A (en) Electromagnetic radiation converter
FR2431187A1 (en) CONCENTRATOR MODULE FOR ALIGNMENTS OF SOLAR CELLS
KR20140090909A (en) Infrared detector and infrared image sensor
JPH0690030A (en) Thermo-element sheet
JPWO2003006939A1 (en) Infrared array detector
JPH03211776A (en) Thermoelectric transducer
JPH09133578A (en) Infrared detection element
JP2929204B2 (en) Thermopile
JPS60260166A (en) Photoelectricity-thermoelectricity energy converting device
US20190013455A1 (en) Thermoelectric device
JPH0234975A (en) Photovoltaic element
JPS5899647A (en) Solar heat collector with solar cell
JPH05126643A (en) Infrared sensor
US3436274A (en) Solid backed thermopile
JPH01105582A (en) Solar light generating element
JP7090904B2 (en) Power generator
JPH03215719A (en) Thermopile
JPH02206733A (en) Infrared ray sensor
US11788893B1 (en) Nanoscale bolometer operating near the thermodynamic limit
Saidov Solar thermocell with low-bandgap photoheated layers
CN112563400B (en) Photo-thermal detector based on platinum diselenide-bismuth telluride and preparation method thereof
JP2564939Y2 (en) Thermopile infrared detector
GB869710A (en) Improvements in or relating to radiation detectors