JPH0321508B2 - - Google Patents

Info

Publication number
JPH0321508B2
JPH0321508B2 JP61039170A JP3917086A JPH0321508B2 JP H0321508 B2 JPH0321508 B2 JP H0321508B2 JP 61039170 A JP61039170 A JP 61039170A JP 3917086 A JP3917086 A JP 3917086A JP H0321508 B2 JPH0321508 B2 JP H0321508B2
Authority
JP
Japan
Prior art keywords
weight
parts
oxide
tar
coating
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP61039170A
Other languages
Japanese (ja)
Other versions
JPS62197371A (en
Inventor
Kazutomi Funabashi
Koichi Yoshii
Isao Itsushiki
Akio Ninomya
Michinobu Nakazawa
Yoichi Nakamura
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kubota Corp
Nippon Steel Corp
Original Assignee
Kubota Corp
Sumitomo Metal Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kubota Corp, Sumitomo Metal Industries Ltd filed Critical Kubota Corp
Priority to JP61039170A priority Critical patent/JPS62197371A/en
Publication of JPS62197371A publication Critical patent/JPS62197371A/en
Publication of JPH0321508B2 publication Critical patent/JPH0321508B2/ja
Granted legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B28/00Compositions of mortars, concrete or artificial stone, containing inorganic binders or the reaction product of an inorganic and an organic binder, e.g. polycarboxylate cements
    • C04B28/34Compositions of mortars, concrete or artificial stone, containing inorganic binders or the reaction product of an inorganic and an organic binder, e.g. polycarboxylate cements containing cold phosphate binders
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B20/00Use of materials as fillers for mortars, concrete or artificial stone according to more than one of groups C04B14/00 - C04B18/00 and characterised by shape or grain distribution; Treatment of materials according to more than one of the groups C04B14/00 - C04B18/00 specially adapted to enhance their filling properties in mortars, concrete or artificial stone; Expanding or defibrillating materials
    • C04B20/0008Materials specified by a shape not covered by C04B20/0016 - C04B20/0056, e.g. nanotubes
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2111/00Mortars, concrete or artificial stone or mixtures to prepare them, characterised by specific function, property or use
    • C04B2111/20Resistance against chemical, physical or biological attack
    • C04B2111/28Fire resistance, i.e. materials resistant to accidental fires or high temperatures

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Ceramic Engineering (AREA)
  • Materials Engineering (AREA)
  • Structural Engineering (AREA)
  • Organic Chemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Inorganic Chemistry (AREA)
  • Nanotechnology (AREA)
  • Ceramic Products (AREA)

Description

【発明の詳細な説明】[Detailed description of the invention]

本発明は、主にコークス炉炉内壁並びに炉蓋内
壁保護用の耐熱性および断熱性を有するタール状
物質付着防止性セラミツク被覆組成物に関する。 コークス炉は石炭を約1150℃にて20〜25時間蒸
焼することによつてコークスを製造するもので
あ。この製造時に溶出するタール状物質はコーク
ス炉炉内壁の耐火材に付着し、浸透し、炭化しそ
して硬化する。この炭化硬化したタール状物質は
耐火材の融点を低下させ且つ該耐火材の脆化の原
因となる。また堆積するタール状物質の為に炉蓋
の開閉が困難になり且つ炉蓋のコークス炉に対す
る密封性も悪くなる。 この為、従来より、コークス炉炉蓋に関しては
それに付着する炭化硬化したタール状物質を、耐
火材の表面が出来るだけ損傷しない程度に機械的
に削り落とすことによつて除いてきた。しかしこ
の方法では耐火材表面に炭化硬化したタール状物
質が5mm程度の厚さで残留し且つ耐火材内部への
浸透は防止できない。この方法では、コークス炉
炉蓋のコークス炉に対する密封性は達成される
が、コークス炉炉蓋の保護は達成されず、炉蓋の
耐用寿命は依然として短く、且つ炉内壁について
の問題が全く解決されていない。 またこの従来方法では、炉内壁に付着するター
ル状物質により炉内容積が減つてしまうという欠
点は別として、炉蓋に関しては浸透したタール状
物質を除く為に耐火材自体の表面を削り取ること
も実地においてしばしば必要となり、その削り取
り量も配慮した厚い炉蓋を用いているのが現状で
ある。このように厚い炉蓋を用いると、やはり炉
内容積を狭めてしまうことになり、コークス生産
の経済から不利である。 従つて本発明の課題は、耐熱性、断熱性および
タール状物質付着防止性を有し且つ密封性の高い
セラミツク被覆組成物を見出すことによつて実用
炉内容積を失うことなく、コークス生産性を経済
的に高め並びに耐火材の耐久性を増すことにあ
る。 本発明者は特公昭58−52952にて既に工業用加
熱炉の炉内部用の被覆物として耐熱性、熱伝導
性、密封性および熱放射性の良好な下記の如きセ
ラミツク組成物を提起した。即ちこのセラミツク
組成物は、 (a) 40〜75重量%の熱放射材としての炭化珪素、 (b) 15〜40重量%の、 窒化珪素3〜20重量部、燐酸塩5〜20重量
部、酸化クロム2〜10重量部、炭化タンタル2
〜10重量部およびアルミニウム粉末5〜20重量
部 より成る熱放射助材並びにバインダー および (c) 10〜35重量%の、 酸化アルミニウム1〜10重量部、ガラス粉末
3〜15重量部、酸化ジルコニウム3〜15重量
部、二酸化珪素1〜10重量部、酸化マグネシウ
ム1〜10重量部および酸化鉄1〜10重量部 より成る密着性や塗膜間結合強度を高める添加
物 を含有するものである。 しかしこの熱放射性セラミツク組成物は、コー
クス炉炉内壁並びに炉蓋において、耐熱性に関し
ては満足できるが、タール状物質付着防止性、断
熱性は必ずしも充分満足する結果をもたらしてい
ない(後記比較例参照)。 本発明者は、コークス炉内の苛酷な条件下でも
充分な耐熱効果の他に、優れたタール状物質付着
防止効果および断熱効果を達成するセラミツク被
覆組成物を鋭意検究し、その結果以下の組成のも
のがこれを満足しうることを見出した。 即ち、本発明の対象は、 (a) 20〜50重量%の、 炭化珪素30〜50重量部、窒化珪素20〜40重量
部、マイカ状酸化アルミニウム20〜40重量部、
酸化ジルコニウム10〜25重量部、マイカ粉5〜
15重量部および酸化硼素5〜15重量部 より成る耐熱性およびタール状物質浸透防止性
の付与材、 (b) 15〜40重量%の、 燐酸塩40〜70重量部、酸化イツトリウム15〜
30重量部、溶融シリカ15〜30重量部、高融点ガ
ラス粉5〜20重量部、低融点ガラス粉5〜20重
量部、酸化銅5〜20重量部および酸化クロム5
〜20重量部 より成る密着性、塗膜間結合強度およびタール
状物質付着防止性の付与材並びにバインダーお
よび (c) 5〜20重量%の断熱性付与材としてのチタン
酸カリウム繊維 より成りそしてその成分(a)、(b)および(c)の合計
が100重量%であることを特徴とする、コーク
ス炉炉内壁並びに炉蓋保護用の耐熱性、断熱性
およびタール状物質付着防止性を有するセラミ
ツク被覆組成物である。 各成分の各化合物の使用量に関する臨界的意義
を以下に記す。 (a)成分の耐熱性およびタール状物質浸透防止性
の付与材として働く各成分は全成分の合計に対し
て20〜50重量%の範囲にする必要がある。 (a)成分を組成する各化合物の割合は、 炭化珪素30〜50重量部、窒化珪素20〜40重量
部、マイカ状酸化アルミニウム20〜40重量部、酸
化ジルコニウム10〜25重量部、マイカ粉5〜15重
量部および酸化硼素5〜15重量部 である(但し、これら化合物の合成は常に100重
量%である)。この範囲を越えると耐火材の熱膨
張への追従が困難になり、被覆物の剥落の原因に
なる。また炭化珪素が30重量部、酸化ジルコニウ
ムが10重量部より少ない場合には塗膜の気密性が
損なわれ耐熱性が低下する。窒化珪素が20重量部
より少ない場合には炭化珪素との結合力が弱まり
塗膜硬度が低下する。マイカ状酸化アルミニウム
が20重量部、酸化硼素およびマイカ粉が5重量部
より少ない場合には塗膜中タール状物質の浸入を
阻止する効果が認められない。 封着性、塗膜間結合強度およびタール状物質付
着防止性を付与し且つバインダーとして働く(b)成
分の合計に対して15〜40重量%の範囲にする必要
がある。 (b)成分を組成する個々の化合物およびそれらの
割合は、 燐酸塩40〜70重量部、酸化イツトリウム15〜30
重量部、溶融シリカ15〜30重量部、高融点ガラス
粉5〜20重量部、低融点ガラス粉5〜20重量部、
酸化銅5〜20重量部および酸化クロム5〜20重量
部 である(但し、これら化合物の合計は常に100重
量部である)。 バインダーとして働く燐酸塩が40重量部より少
ない場合、高融点ガラス粉(800℃で溶融する)
および低融点ガラス粉(400℃で溶融する)が各
5重量部より少ない場合にはバインダー効果が得
られず剥落の原因となる。 また高融点ガラス粉および低融点ガラス粉が各
20重量部を超える場合塗膜中に溶融ガラス物質が
多くなりその塗膜は軟化し、充分な塗膜硬度が得
られない。 更に、高融点ガラス粉と低融点ガラス粉との使
用割合(重量)が1:1である場合には、燐酸塩
の400℃における一次焼結および800℃における二
次焼結と関連してこれら両方のガラスが上記の効
果に関して特に有効に作用する。 被覆物の密着性向上、塗膜間結合強度およびタ
ール状物質付着防止の付与材としての酸化イツト
リウムおよび溶融シリカは30重量部を、酸化銅お
よび酸化クロムは20重量部を超えるべきでない。
これら各成分を所定の範囲を超えて用いることも
可能であるが、多量に用いることによる追加的効
果が無いので更に多量に用いる意味がない。また
酸化イツトリウムおよび溶融シリカが15重量部、
酸化銅および酸化クロムが5重量部より少ない場
合には、被覆物の密着性並びに焼結性が低下し塗
膜間結合力が弱く、気孔が多量に発生しタール状
物質の付着防止効果が得られず、タール状物質の
付着溶融により塗膜は脆くなる。 (c)成分の断熱性付与材としてのチタン酸カリウ
ム繊維は、直径0.5〜2.00μ、長さ30〜60μのトン
ネル構造を有する針状結晶を呈している断熱性お
よび耐熱性に富むものである。この成分の使用量
は成分(a)、(b)および(c)の合計の5〜20重量%の範
囲にある必要がある。20重量%より多い場合組成
物を被覆物とした時に塗膜表面の平滑性が失われ
粗面となりタール状物質が付着し易くなる。また
5重量%より少ない場合、断熱効果が得られな
い。 本発明の被覆組成物のコークス炉炉内壁並びに
炉蓋内壁への塗布量には特に臨界がないが、約1
〜1.2Kg/m3程度が効果および経済の面から最適
である。本発明の被覆組成物を基材上に塗布する
際に追加的に約10〜15重量%(組成物全体量を基
準として)の水を該組成物に混入すれば、塗装作
業性が向上することが判つている。 本発明の被覆組成物の基材への塗布は、通例に
用いられる方法、吹きつけ塗装、刷毛塗り、浸漬
法等によつて行うことができる。塗布前の処理と
して、異物の付着が認められる場合は例えばワイ
ヤーブラシまたはデスクサンダーでそれを除去す
る必要がある。塗膜の焼結は例えば自然乾燥後
に、運転の際の炉内の熱によつて直接的に行うこ
とができる。 次に下記実施例並びに比較例によつて本発明を
更に詳細に説明する。 実施例 1 以下の各成分: 炭化珪素22重量部、窒化珪素5重量部、マイカ
状酸化アルミニウム15重量部、酸化ジルコニウム
3重量部、マイカ粉5重量部、酸化硼素2重量
部、燐酸塩15重量部、酸化イツトリウム8重量
部、溶融シリカ4重量部、低融点ガラス粉2重量
部、高融点ガラス粉2重量部、酸化クロム1重量
部、酸化銅1重量部およびチタン酸カリウム繊維
15重量部(以上の合計100重量部) を混合し、これに10重量部の水を混入することに
よつて被覆組成物を得る。これをコークス炉の炉
蓋にスプレーにて1〜1.2Kg/m2の量で塗布する。
次に24時間自然乾燥させる。自然間乾燥後に、こ
の炉蓋をケーシングにうよつて固定する。 炉蓋の内部温度を測定して被覆物の断熱効果を
試験する。この目的の為に、第1図に示すよう
に、385×6990×炉内側375、炉外側436mmの寸法
の台形の耐熱レンガ1の炉外側に面する該レンガ
の縦方向においてその端部から3080mm、横方向に
おいてその端部から218mmの場所に170mmの深さの
穿孔を明け、ケーシング2にそのレンガをセツト
しそして穿孔に熱電対3を埋設する。このように
セツトされた熱電対によつて炉蓋内部温度を測定
して断熱効果を知る。 また一定期間(第2表参照)使用したコークス
炉炉蓋耐火物(定形レンガ)を抜きとり粉砕し耐
火物100g当たりのタール状物質付着量を一カ月
毎に測定する。 結果を第2表に示す。 実施例 2〜5 次の第1表に示す組成のセラミツク被覆組成物
を実施例1における如く製造し、そして実施例1
と同様に試験する。結果を第2表に示す。
The present invention relates to a ceramic coating composition that prevents the adhesion of tar-like substances and has heat resistance and heat insulation properties, mainly for protecting the inner walls of coke ovens and the inner walls of oven lids. A coke oven produces coke by steaming coal at about 1150°C for 20 to 25 hours. The tar-like substances eluted during this production adhere to the refractory material on the inner wall of the coke oven, penetrate, carbonize, and harden. This carbonized and hardened tar-like substance lowers the melting point of the refractory material and causes the refractory material to become brittle. Furthermore, the accumulated tar-like substances make it difficult to open and close the furnace lid, and the sealing performance of the furnace lid against the coke oven also deteriorates. For this reason, conventionally, the carbonized and hardened tar-like substance adhering to the coke oven lid has been removed by mechanically scraping it off to the extent that the surface of the refractory material is not damaged as much as possible. However, with this method, carbonized and hardened tar-like substances remain on the surface of the refractory material to a thickness of approximately 5 mm, and penetration into the interior of the refractory material cannot be prevented. In this method, the sealing of the coke oven cover against the coke oven is achieved, but the protection of the coke oven cover is not achieved, the service life of the coke oven cover is still short, and the problem with the inner wall of the oven is not solved at all. Not yet. In addition, with this conventional method, apart from the drawback that the internal volume of the furnace is reduced due to tar-like substances adhering to the inner walls of the furnace, the surface of the refractory material itself must be scraped off to remove the tar-like substances that have penetrated into the furnace lid. Currently, thick furnace lids are used, taking into consideration the amount of scraping that is often necessary in practice. If such a thick furnace lid is used, the internal volume of the furnace will be narrowed, which is disadvantageous from the economic point of view of coke production. Therefore, the object of the present invention is to find a ceramic coating composition that has heat resistance, heat insulation properties, tar-like substance adhesion prevention properties, and has high sealing properties, thereby increasing coke productivity without losing practical furnace volume. The objective is to increase the economical performance and durability of refractory materials. The present inventor has already proposed in Japanese Patent Publication No. 58-52952 the following ceramic composition which has good heat resistance, thermal conductivity, sealing properties and heat radiation properties as a coating for the inside of an industrial heating furnace. That is, this ceramic composition contains (a) 40-75% by weight of silicon carbide as a heat radiating material, (b) 15-40% by weight of 3-20 parts by weight of silicon nitride, 5-20 parts by weight of phosphate, 2 to 10 parts by weight of chromium oxide, 2 parts of tantalum carbide
-10 parts by weight of aluminum oxide, 3-15 parts of glass powder, 3 parts of zirconium oxide, and (c) 10-35% by weight of 1-10 parts by weight of aluminum oxide, 3-15 parts by weight of glass powder, and 3 parts by weight of zirconium oxide. It contains additives that improve adhesion and intercoating bond strength, consisting of ~15 parts by weight, 1 to 10 parts by weight of silicon dioxide, 1 to 10 parts by weight of magnesium oxide, and 1 to 10 parts by weight of iron oxide. However, although this thermally emissive ceramic composition is satisfactory in terms of heat resistance on the inner wall of the coke oven and the oven lid, it does not necessarily provide sufficiently satisfactory results in terms of prevention of tar-like substance adhesion and heat insulation properties (see Comparative Example below). ). The present inventor has conducted extensive research into a ceramic coating composition that achieves sufficient heat resistance even under the harsh conditions inside a coke oven, as well as excellent tar-like substance adhesion prevention and heat insulation effects, and the results are as follows: It has been found that the composition can satisfy this requirement. That is, the object of the present invention is (a) 20 to 50% by weight, 30 to 50 parts by weight of silicon carbide, 20 to 40 parts by weight of silicon nitride, 20 to 40 parts by weight of mica-like aluminum oxide,
10-25 parts by weight of zirconium oxide, 5-5 parts of mica powder
(b) 15 to 40 parts by weight of phosphate, 40 to 70 parts by weight of phosphate, and 15 to 15 parts of yttrium oxide;
30 parts by weight, 15 to 30 parts by weight of fused silica, 5 to 20 parts by weight of high melting point glass powder, 5 to 20 parts by weight of low melting point glass powder, 5 to 20 parts by weight of copper oxide, and 5 parts by weight of chromium oxide.
-20 parts by weight of an agent for imparting adhesion, inter-coating bond strength, and prevention of tar-like substance adhesion, and (c) potassium titanate fiber as a heat-insulating agent of 5 to 20 parts by weight; A product characterized by the total content of components (a), (b) and (c) being 100% by weight, which has heat resistance, heat insulation and tar-like substance adhesion prevention properties for protecting the inner wall and lid of a coke oven. It is a ceramic coating composition. The critical meaning regarding the usage amount of each compound of each component is described below. Each component (a), which acts as an agent for imparting heat resistance and tar-like substance penetration prevention properties, must be in a range of 20 to 50% by weight based on the total of all components. The proportions of each compound constituting component (a) are: 30 to 50 parts by weight of silicon carbide, 20 to 40 parts by weight of silicon nitride, 20 to 40 parts by weight of mica-like aluminum oxide, 10 to 25 parts by weight of zirconium oxide, 5 parts by weight of mica powder. ~15 parts by weight and 5-15 parts by weight of boron oxide (although the synthesis of these compounds is always 100% by weight). If this range is exceeded, it becomes difficult to follow the thermal expansion of the refractory material, causing the coating to peel off. Furthermore, if the amount of silicon carbide is less than 30 parts by weight and the amount of zirconium oxide is less than 10 parts by weight, the airtightness of the coating film will be impaired and the heat resistance will be reduced. If the amount of silicon nitride is less than 20 parts by weight, the bonding force with silicon carbide will be weakened and the hardness of the coating will be reduced. When the amount of mica-like aluminum oxide is less than 20 parts by weight, and the amount of boron oxide and mica powder is less than 5 parts by weight, no effect of inhibiting the infiltration of tar-like substances into the coating film is observed. It is necessary to keep the amount in the range of 15 to 40% by weight based on the total amount of component (b), which provides sealing properties, intercoating bond strength, and tar-like substance adhesion prevention properties and acts as a binder. (b) The individual compounds making up component and their proportions are: 40 to 70 parts by weight of phosphate, 15 to 30 parts by weight of yttrium oxide.
parts by weight, 15 to 30 parts by weight of fused silica, 5 to 20 parts by weight of high melting point glass powder, 5 to 20 parts by weight of low melting point glass powder,
5 to 20 parts by weight of copper oxide and 5 to 20 parts by weight of chromium oxide (although the sum of these compounds is always 100 parts by weight). High melting point glass powder (melts at 800°C) if the phosphate acting as binder is less than 40 parts by weight
If the amount of low melting point glass powder (melts at 400°C) is less than 5 parts by weight each, no binder effect will be obtained and this will cause flaking. In addition, high melting point glass powder and low melting point glass powder are
When the amount exceeds 20 parts by weight, the amount of molten glass substance increases in the coating film, which softens the coating film and makes it impossible to obtain sufficient coating hardness. Furthermore, when the ratio (weight) of high melting point glass powder and low melting point glass powder is 1:1, these are Both glasses work particularly well with respect to the above-mentioned effects. Yttrium oxide and fused silica should not exceed 30 parts by weight, and copper oxide and chromium oxide should not exceed 20 parts by weight as agents to improve the adhesion of the coating, strengthen the bond between coatings, and prevent the adhesion of tar-like substances.
Although it is possible to use each of these components in an amount exceeding the predetermined range, there is no additional effect by using a large amount, so there is no point in using a larger amount. In addition, 15 parts by weight of yttrium oxide and fused silica,
If the amount of copper oxide and chromium oxide is less than 5 parts by weight, the adhesion and sinterability of the coating will be reduced, the bonding strength between the coatings will be weak, and a large amount of pores will be generated, resulting in a poor tar-like substance adhesion prevention effect. The paint film becomes brittle due to adhesion and melting of tar-like substances. The potassium titanate fiber as the heat-insulating property imparting material of component (c) exhibits needle-like crystals having a tunnel structure with a diameter of 0.5 to 2.00 μm and a length of 30 to 60 μm, and has excellent heat-insulating properties and heat resistance. The amount of this component used should be in the range of 5 to 20% by weight of the total of components (a), (b) and (c). When the amount is more than 20% by weight, when the composition is used as a coating, the surface of the coating loses its smoothness and becomes rough, making it easy for tar-like substances to adhere. Moreover, if it is less than 5% by weight, no heat insulating effect can be obtained. There is no particular criticality to the amount of the coating composition of the present invention applied to the inner wall of the coke oven and the inner wall of the oven lid, but approximately 1
~1.2Kg/m 3 is optimal from the viewpoint of effectiveness and economy. If the coating composition of the present invention is additionally mixed with about 10 to 15% by weight (based on the total weight of the composition) of water when the composition is applied onto a substrate, coating workability is improved. It is known that. The coating composition of the present invention can be applied to a substrate by a commonly used method such as spray coating, brush coating, dipping, and the like. As a pre-coating treatment, if any foreign matter is observed, it is necessary to remove it with a wire brush or desk sander, for example. The coating can be sintered, for example, after natural drying, directly by the heat in the furnace during operation. Next, the present invention will be explained in more detail using the following examples and comparative examples. Example 1 The following components: 22 parts by weight of silicon carbide, 5 parts by weight of silicon nitride, 15 parts by weight of mica-like aluminum oxide, 3 parts by weight of zirconium oxide, 5 parts by weight of mica powder, 2 parts by weight of boron oxide, 15 parts by weight of phosphate. 8 parts by weight of yttrium oxide, 4 parts by weight of fused silica, 2 parts by weight of low-melting point glass powder, 2 parts by weight of high-melting point glass powder, 1 part by weight of chromium oxide, 1 part by weight of copper oxide, and potassium titanate fiber.
A coating composition is obtained by mixing 15 parts by weight (total of 100 parts by weight) and adding 10 parts by weight of water. This is applied to the lid of a coke oven by spraying in an amount of 1 to 1.2 kg/m 2 .
Then let it air dry for 24 hours. After natural drying, the furnace lid is moved and fixed to the casing. The internal temperature of the furnace cover is measured to test the insulation effect of the coating. For this purpose, as shown in FIG. A hole with a depth of 170 mm is made at a location 218 mm from the end in the lateral direction, the brick is set in the casing 2, and a thermocouple 3 is buried in the hole. The temperature inside the furnace lid is measured using the thermocouple set in this way to determine the insulation effect. In addition, the coke oven lid refractories (shaped bricks) that have been used for a certain period of time (see Table 2) are removed and crushed, and the amount of tar-like substances deposited per 100 g of refractories is measured every month. The results are shown in Table 2. Examples 2-5 Ceramic coating compositions having the compositions shown in Table 1 below were prepared as in Example 1 and
Test in the same way. The results are shown in Table 2.

【表】 比較例 1(特公昭58−52952に相当する) 以下の成分: 炭化珪素45重量部、窒化珪素3重量部、リン酸ア
ルミニウム12重量部、酸化クロム3重量部、炭化
タンタル5重量部、アルミニウム粉末6重量部、
酸化アルミニウム7重量部、酸化マグネシウム2
重量部、酸化鉄4重量、ガラス粉5重量部、酸化
ジルコン6重量部および二酸化珪素2重量部 から実施例1と同様にセラミツク被覆組成物を製
造し、これについても実施例1と同様な試験を行
う。結果を第2表に示す。 比較例 2 この比較例では被覆塗装を施さずに実施例1と
同様に試験を行う(ブランク試験)。結果を第2
表に示す。
[Table] Comparative Example 1 (corresponding to Japanese Patent Publication No. 58-52952) The following components: 45 parts by weight of silicon carbide, 3 parts by weight of silicon nitride, 12 parts by weight of aluminum phosphate, 3 parts by weight of chromium oxide, 5 parts by weight of tantalum carbide. , 6 parts by weight of aluminum powder,
7 parts by weight of aluminum oxide, 2 parts by weight of magnesium oxide
A ceramic coating composition was prepared in the same manner as in Example 1 from parts by weight of iron oxide, 4 parts by weight of iron oxide, 5 parts by weight of glass powder, 6 parts by weight of zirconium oxide, and 2 parts by weight of silicon dioxide, and was also subjected to the same tests as in Example 1. I do. The results are shown in Table 2. Comparative Example 2 In this comparative example, a test is conducted in the same manner as in Example 1 without applying coating (blank test). Second result
Shown in the table.

【表】 上記第2表に示すように、本発明の被覆組成物
の場合には360日経過後であつても比較例2の被
覆物なしの場合との比較から18〜90℃の炉蓋内部
温度の断熱効果が達成され、またタール状物質付
着量についても約70〜78%抑制されていることが
判る。 更に、比較例1の被覆組成物の場合の結果と比
較くしてみると、本発明の被覆組成物が優れた断
熱効果を示し且つタール状物質の付着も著しく抑
制されるていることが判る。
[Table] As shown in Table 2 above, in the case of the coating composition of the present invention, even after 360 days, the temperature inside the furnace lid was 18 to 90°C compared to the case without coating in Comparative Example 2. It can be seen that a temperature insulation effect was achieved, and the amount of tar-like substances deposited was also suppressed by approximately 70 to 78%. Furthermore, when compared with the results for the coating composition of Comparative Example 1, it can be seen that the coating composition of the present invention exhibits an excellent heat insulating effect and also significantly suppresses the adhesion of tar-like substances.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は、本発明の被覆組成物の断熱効果を測
定する為に炉蓋の耐火レンガに熱電対をセツトし
た状態を示すレンガの切断面図である。図中の記
号は以下の意味を有する。 1……レンガ、2……ケーシング、3……熱電
対。
FIG. 1 is a cross-sectional view of a refractory brick of a furnace lid in which a thermocouple is set in order to measure the heat insulating effect of the coating composition of the present invention. The symbols in the figure have the following meanings. 1...Brick, 2...Casing, 3...Thermocouple.

Claims (1)

【特許請求の範囲】 1 (a) 20〜50重量%の、 炭化珪素30〜50重量部、窒素珪素20〜40重量
部、マイカ状酸化アルミニウム20〜40重量部、
酸化ジルコニウム10〜25重量部、マイカ粉5〜
15重量部および酸化硼素5〜15重量部 より成る耐熱性およびタール状物質浸透防止性
の付与材、 (b) 15〜40重量%の、 燐酸塩40〜70重量部、酸化イツトリウム15〜
30重量部、溶融シリカ15〜30重量部、高融点ガ
ラス粉5〜20重量部、低融点ガラス粉5〜20重
量部、酸化銅5〜20重量部および酸化クロム5
〜20重量部 より成る密着性、塗膜間結合強度およびタール
状物質付着防止性の付与材並びにバインダーお
よび (c) 5〜20重量%の断熱性付与材としてのチタン
酸カリウム繊維 より成りそしてその成分(a)、(b)および(c)の合計
が100重量%であることを特徴とする、コーク
ス炉炉内壁並びに炉蓋保護用の耐熱性および断
熱性を有するタール状物質付着防止性セラミツ
ク被覆組成物。
[Scope of Claims] 1 (a) 20 to 50% by weight of silicon carbide, 30 to 50 parts by weight, silicon nitrogen, 20 to 40 parts by weight, mica-like aluminum oxide, 20 to 40 parts by weight,
10-25 parts by weight of zirconium oxide, 5-5 parts of mica powder
(b) 15 to 40 parts by weight of phosphate, 40 to 70 parts by weight of phosphate, and 15 to 15 parts by weight of yttrium oxide;
30 parts by weight, 15 to 30 parts by weight of fused silica, 5 to 20 parts by weight of high melting point glass powder, 5 to 20 parts by weight of low melting point glass powder, 5 to 20 parts by weight of copper oxide, and 5 parts by weight of chromium oxide.
(c) 20 parts by weight of an agent for imparting adhesion, inter-coating bond strength, and prevention of tar-like substance adhesion; and (c) 5 to 20 parts by weight of potassium titanate fibers as an agent for imparting heat insulation. A tar-like substance adhesion-preventing ceramic having heat resistance and heat insulation properties for protecting coke oven inner walls and oven lids, characterized in that the sum of components (a), (b), and (c) is 100% by weight. Coating composition.
JP61039170A 1986-02-26 1986-02-26 Heat-resistant and heat-insulating ceramic coating composition that prevents the adhesion of tar-like substances and is used to protect the inner walls and lid of coke ovens. Granted JPS62197371A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP61039170A JPS62197371A (en) 1986-02-26 1986-02-26 Heat-resistant and heat-insulating ceramic coating composition that prevents the adhesion of tar-like substances and is used to protect the inner walls and lid of coke ovens.

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP61039170A JPS62197371A (en) 1986-02-26 1986-02-26 Heat-resistant and heat-insulating ceramic coating composition that prevents the adhesion of tar-like substances and is used to protect the inner walls and lid of coke ovens.

Publications (2)

Publication Number Publication Date
JPS62197371A JPS62197371A (en) 1987-09-01
JPH0321508B2 true JPH0321508B2 (en) 1991-03-22

Family

ID=12545643

Family Applications (1)

Application Number Title Priority Date Filing Date
JP61039170A Granted JPS62197371A (en) 1986-02-26 1986-02-26 Heat-resistant and heat-insulating ceramic coating composition that prevents the adhesion of tar-like substances and is used to protect the inner walls and lid of coke ovens.

Country Status (1)

Country Link
JP (1) JPS62197371A (en)

Families Citing this family (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0633205B2 (en) * 1988-10-08 1994-05-02 九州耐火煉瓦株式会社 Coating material for carbon-containing bricks
JPH0287045U (en) * 1988-12-21 1990-07-10
JP2748328B2 (en) * 1994-05-17 1998-05-06 朝日化学工業株式会社 Glaze for hot application to coke oven refractories and method of forming glaze layer
CN1051067C (en) * 1994-05-17 2000-04-05 朝日化学工业株式会社 Glazing layer forming composition for hot coating of oven refractory and method of forming glazing layer
JP2007112690A (en) * 2005-10-17 2007-05-10 Yuta Saito Glaze
PL3297972T3 (en) * 2016-07-14 2020-11-16 Resco Products, Inc. Dry composition formulated to be combined with water to form a jamb spray mix and method of treating a refractory brick surface region in a coke oven with it
CA2979489A1 (en) 2016-07-14 2018-01-14 Resco Products, Inc. Jamb spray mixes including fused silica and methods of utilizing the mixes
CN111718143A (en) * 2020-06-10 2020-09-29 西安建筑科技大学 A kind of high wear-resistant and anti-skid pavement aggregate, pavement and preparation method

Also Published As

Publication number Publication date
JPS62197371A (en) 1987-09-01

Similar Documents

Publication Publication Date Title
CA1228370A (en) Oxidation prohibitive coatings for carbonaceous articles
EP0773203B1 (en) Glazing layer forming composition for hot coating of oven refractory and method of forming glazing layer
JPWO2017073115A1 (en) Coating liquid and method for producing refractory having coating layer
JPH06287468A (en) Coating to protect material from reaction with air at high temperature
JPH0321508B2 (en)
US2013625A (en) Refractory article
WO1998038144A1 (en) Coating material for carbonization chamber in coke furnace and method of applying the same
JP5174751B2 (en) Silicon carbide and titanium carbide containing amorphous refractories
KR100490988B1 (en) Composition of Al2O3-SiC-C typed refractories with high oxidation resistance
KR101236300B1 (en) An antioxidant composition for carbon-containing refractories and a method for restraining initial oxidation of carbon-containing refractories by using the same
JP2989790B2 (en) Coke oven
KR101041528B1 (en) Coke Oven Carbonization Refractory Surface Coatings
JP2748328B2 (en) Glaze for hot application to coke oven refractories and method of forming glaze layer
JP3128213B2 (en) Glaze for forming glassy glaze layer on refractory surface in furnace and method for forming glassy glaze layer
JPH01167268A (en) Carbon-containing uncalcined refractory
JPH0329745B2 (en)
JPS6048550B2 (en) Corrosion-resistant paint for high-temperature molten metals
KR100446898B1 (en) Compositions of Alsica brick
JPH07166090A (en) Heat-resistant coating material
SU798506A1 (en) Protective coating for termocouple tips
JPS63307690A (en) High-temperature oxidation preventing paint for electrode
Yang et al. Effect of heat treatment on microstructure and oxidation resistance of SiO2-B4C-glass coating on alumina-carbon refractories
JPS5855109B2 (en) Corrosion resistant for low melting point molten metals
US3754949A (en) Protective coating for materials exposed to molten aluminum and its alloys
KR20040021246A (en) Inorganic coating composition superior good heat emissivity and adhesion