JPH03214916A - Manufacture of surface acoustic wave element - Google Patents

Manufacture of surface acoustic wave element

Info

Publication number
JPH03214916A
JPH03214916A JP986790A JP986790A JPH03214916A JP H03214916 A JPH03214916 A JP H03214916A JP 986790 A JP986790 A JP 986790A JP 986790 A JP986790 A JP 986790A JP H03214916 A JPH03214916 A JP H03214916A
Authority
JP
Japan
Prior art keywords
heat treatment
temperature
surface acoustic
acoustic wave
chip
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP986790A
Other languages
Japanese (ja)
Inventor
Hisatoshi Saito
久俊 斉藤
Shusuke Abe
秀典 阿部
Masashi Omura
正志 大村
Kazuo Miwa
一雄 三輪
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Eneos Corp
Original Assignee
Nippon Mining Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Mining Co Ltd filed Critical Nippon Mining Co Ltd
Priority to JP986790A priority Critical patent/JPH03214916A/en
Publication of JPH03214916A publication Critical patent/JPH03214916A/en
Pending legal-status Critical Current

Links

Landscapes

  • Surface Acoustic Wave Elements And Circuit Networks Thereof (AREA)

Abstract

PURPOSE:To prevent the characteristic of a surface acoustic wave element from being changed due to adhesion by curing an adhesives at a glass dislocation temperature or below after an element chip is adhered by a flexible adhesives, applying degassing processing at the glass dislocation temperature or over and applying heat treatment for a prescribed time or over at the glass dislocation temperature or below so as to eliminate the distortion of the element chip. CONSTITUTION:A flexible adhesives 12 made by using composition ratio of one for a major agent and three for a curing agent is coated to a chip mount part 10b of a terminal board 10, and a surface acoustic wave element 14 is placed on the chip mount base 10b and adhered. Then heat treatment is applied for nearly two hours at a temperature below the glass dislocation temperature Tg (nearly 100 deg.C) of the flexible adhesives 12 to cure the flexible adhesives 12. Then degassing processing to eliminate the evaporation component of the excess curing agent or the like is applied, in which heat treatment is applied for nearly six hours at a temperature over the glass dislocation temperature Tg (nearly 100 deg.C) of the flexible adhesives 12. Then heat treatment is implemented for a long time at a temperature below the glass dislocation temperature Tg (nearly 100 deg.C) of the flexible adhesives 12 to eliminate distortion caused by the curing of the adhesives.

Description

【発明の詳細な説明】 [産業上の利用分野] 本発明は素子チップをチップ載置部に接着剤により接着
する弾性表面波素子の製造方法に関する。
DETAILED DESCRIPTION OF THE INVENTION [Industrial Application Field] The present invention relates to a method for manufacturing a surface acoustic wave device in which a device chip is bonded to a chip mounting portion using an adhesive.

[従来の技術] 弾性表面波素子は弾性表面波を利用したフィルタ、共振
器、発振器等の素子である. 通常の弾性表面波素子は、第3図に示すように、電極ビ
ン10aが形成された端子台10のチップlI置部10
bに接着剤l2により圧電基板の表面に電極が形成され
た弾性表面波素子チップ14がダイボンディングされ、
その上からキャップ16が被せられた構造をしている. しかしながら、従来の弾性表面波素子では、素子チップ
14の裏面を固定する接着剤12の硬化により素子チッ
プ14に応力が印加されて歪みが発生し、弾性表面波素
子の特性が変化してしまう.?かも、素子チップ14に
印加される応力は、接着剤の種類と量、接着面積、硬化
条件、接着剤の経時変化等により異なるため、弾性表面
波素子の特性が大きくばらつく. 例えば、素子チップ14の圧電基板として四ホウ酸リチ
ウム(LizB40■)単結晶基板を用いて400MH
z帯弾性表面波フィルタを製造した場合、素子チップ1
4をチップ載置部Jobにダイボンディングすることに
よる中心周波数の変化を第4図に示す.同図(a)はダ
イボンディングする前の素子チップ14の中心周波数を
示し、同図(b)はダイボンディングした後の素子チッ
プ14の中心周波数を示している.ダイボンディング前
は中心周波数の平均値が414.062Mllzであっ
たのに対し、ダイボンディングすると中心周波数の平均
値が4 1 3.980MHzと、約82Kllz《中
心周波数414.062Mllzに対して約200 p
 pm)減少ずる.すなわち、中心周波数の平均値が約
−82KHz(約−200ppm)変化する.しかも中
心周波数のバラツキが大きくなる.[発明が解決しよう
とする課題] このように、従来の弾性表面波素子では接着剤を用いて
素子チップをダイボンデイングすることにより、弾性表
面波素子としての特性が変化してしまい、そのまま固定
されてしまうという問題があった。
[Prior Art] Surface acoustic wave elements are elements such as filters, resonators, and oscillators that utilize surface acoustic waves. As shown in FIG. 3, a normal surface acoustic wave element includes a chip lI placement part 10 of a terminal block 10 in which an electrode bin 10a is formed.
A surface acoustic wave element chip 14 with electrodes formed on the surface of the piezoelectric substrate is die-bonded to b with an adhesive l2,
It has a structure in which a cap 16 is placed over it. However, in conventional surface acoustic wave devices, stress is applied to the device chip 14 due to the hardening of the adhesive 12 that fixes the back surface of the device chip 14, causing distortion and changing the characteristics of the surface acoustic wave device. ? Moreover, since the stress applied to the element chip 14 varies depending on the type and amount of adhesive, the adhesive area, curing conditions, changes in adhesive over time, etc., the characteristics of the surface acoustic wave element vary greatly. For example, using a lithium tetraborate (LizB40) single crystal substrate as the piezoelectric substrate of the element chip 14,
When manufacturing a z-band surface acoustic wave filter, element chip 1
Figure 4 shows the change in the center frequency caused by die bonding 4 to the chip mounting section Job. FIG. 4(a) shows the center frequency of the element chip 14 before die bonding, and FIG. 2(b) shows the center frequency of the element chip 14 after die bonding. Before die bonding, the average value of the center frequency was 414.062 Mllz, but after die bonding, the average value of the center frequency was 4 1 3.980 MHz, about 82 Kllz (approximately 200 p for the center frequency of 414.062 Mllz).
pm) decreases. That is, the average value of the center frequency changes by about -82 KHz (about -200 ppm). Moreover, the variation in the center frequency increases. [Problems to be Solved by the Invention] As described above, in conventional surface acoustic wave devices, when the device chip is die-bonded using adhesive, the characteristics of the surface acoustic wave device change, and the surface acoustic wave device is not fixed as it is. There was a problem with this.

本発明は、上記事情を考慮してなされたもので、素子チ
ップをチップ載置部にグイボンデイングしても特性が変
化しないような弾性表面波素子の製造方法を提供するこ
とを目的とする. [課題を解決するための手段] 上記目的は、弾性表面波素子チップを可撓性接着剤によ
りチップ載置部に接着ずる接着工程と、前記可撓性接着
剤のガラス転移温度以下の温度で熱処理して、前記可視
性接着剤を硬化する第1の熱処理工程と、1気圧以下の
雰囲気圧状態で前記ガラス転位温度以上の温度で熱処理
して、前記可視性接着剤から揮発成分を除く脱ガス処理
を行う第2の熱処理工程と、前記ガラス転位温度以下の
温度で所定時間以上熱処理して、前記弾性表面波素子チ
ップの歪みを除去する第3の熱処理工程とを有すること
を特徴とする弾性表面波素子の製造方法によって達成さ
れる. [作用] 本発明によれば、素子チップを可撓性接着剤で接着した
後、ガラス転移温度以下で接着剤を硬化し、その後、ガ
ラス転移温度以上で脱ガス処理をした後に、ガラス転位
温度以下で所定時間以上熱処理して、素子チップの歪み
を除去するようにしたので、接着により弾性表面波素子
の特性が変化せず、しかも、長期間安定した素子特性を
確保できる. [実施例] 本発明の一実施例による弾性表面波素子の製造方法を第
1図を用いて説明する.素子チツプ14の圧電基板とし
て四ホウ酸リチウム(Li.Bt07》単結晶基板を用
いて400MHz帯弾性表面波共振子フィルタを製造す
る場合を例として説明する. 本実施例では、可視性接着剤としてエボキシ系接着剤を
用いている.例えば、主剤にエコボンド(ECCOBO
ND)45クリア、硬化剤にキャタリスト(CATAL
I ST)1 5クリアを用いたエボキシ系可撓性接着
剤《グレース社製》を用いる. 先ず、主剤を1、硬化剤を3の割合で調製した可撓性接
着剤12を端子台10のチツプ載置部10bに塗布する
《ステップSIO), 次に、弾性表面波素子チツプ14をチツブ載置台10b
に載せて接着する(ステップSit).次に、可撓性接
着剤12のガラス転位温度Tg《約100℃》以下の温
度、例えば約85℃で約2時間熱処理を行い、可撓性接
着剤12を硬化させる《ステップ31 2).ガラス転
位温度Tg以下の温度で硬化させるのは、ガラス転位温
度Tg以上にすると、可撓性接着剤12自身の変成が進
行して、揮発成分によるガス発生、接着剤の硬度変化が
起き、素子チップ14の劣化や周波数変化が著しく進行
するためである. 次に、例えば−76mmHgの真空中で、可視性接着剤
12のガラス転位温度Tg(約100℃)以上の温度、
例えば約100℃で約6時間熱処理を行い、過剰の硬化
剤等の揮発成分を除去する脱ガス処理を行う《ステップ
813).この脱ガス処理をすることにより、高温で長
期間保管したときでも弾性表面波素子の特性の安定を確
保できる.次に、可撓性接着剤12のガラス転位温度T
g(約100℃)以下の温度、例えば約85℃で長時間
熱処理し、接着剤の硬化により生じた歪みを除去する熱
処理を行う《ステップ314).第2図に熱処理時間と
周波数変化量の関係を示す。同図から明らかなように、
脱ガス処理の後に−400ppm変化していたくすなわ
ち、400ppm減少していた)中心周波数が、熱処理
時間の経過と共に徐々に回復する.約140時間でグイ
ボンディング前の状態(約Oppm)になり、500時
間を越えたところで完全に安定する.したがって、約1
50〜200時間以上熱処理すれば、接着剤の硬化によ
り生じた歪みがほぼ除去されることがわかる. その後
、ワイヤボンディングをした後にキャップ16を被せて
シールし、弾性表面波素子を完成する。
The present invention has been made in consideration of the above circumstances, and an object of the present invention is to provide a method for manufacturing a surface acoustic wave device in which the characteristics do not change even when the device chip is bonded to the chip mounting portion. [Means for Solving the Problems] The above object is to provide a bonding process in which a surface acoustic wave element chip is bonded to a chip mounting portion using a flexible adhesive, and a bonding process at a temperature below the glass transition temperature of the flexible adhesive. a first heat treatment step in which the visible adhesive is cured by heat treatment; and a desorption step in which volatile components are removed from the visible adhesive by heat treatment at a temperature equal to or higher than the glass transition temperature under an atmospheric pressure of 1 atmosphere or less. It is characterized by comprising a second heat treatment step of performing gas treatment, and a third heat treatment step of performing heat treatment at a temperature below the glass transition temperature for a predetermined period of time or more to remove distortion of the surface acoustic wave element chip. This is achieved by a manufacturing method for surface acoustic wave devices. [Function] According to the present invention, after bonding element chips with a flexible adhesive, the adhesive is cured at a temperature below the glass transition temperature, and then degassing is performed at a temperature above the glass transition temperature. Since the distortion of the element chip is removed by heat treatment for a predetermined period of time below, the characteristics of the surface acoustic wave element do not change due to adhesion, and moreover, stable element characteristics can be ensured over a long period of time. [Example] A method for manufacturing a surface acoustic wave device according to an example of the present invention will be explained with reference to FIG. An example will be explained in which a 400 MHz band surface acoustic wave resonator filter is manufactured using a lithium tetraborate (Li.Bt07) single crystal substrate as the piezoelectric substrate of the element chip 14. In this example, as the visible adhesive An epoxy adhesive is used. For example, the main ingredient is Ecobond (ECCOBO).
ND) 45 Clear, Catalyst (CATAL) as hardening agent
I ST) 1 Use a flexible epoxy adhesive (manufactured by Grace) using 5 clear. First, a flexible adhesive 12 prepared at a ratio of 1 part base material and 3 parts curing agent is applied to the chip mounting portion 10b of the terminal block 10 (step SIO). Next, the surface acoustic wave element chip 14 is placed on the chip. Mounting table 10b
(Step Sit). Next, heat treatment is performed at a temperature below the glass transition temperature Tg (approximately 100° C.) of the flexible adhesive 12, for example, approximately 85° C., for approximately 2 hours to harden the flexible adhesive 12 (Step 31 2). The reason for curing at a temperature lower than the glass transition temperature Tg is that if the temperature is higher than the glass transition temperature Tg, the flexible adhesive 12 itself undergoes metamorphosis, gas generation due to volatile components, and changes in the hardness of the adhesive occur, causing the element to deteriorate. This is because the deterioration and frequency change of the chip 14 progresses significantly. Next, in a vacuum of -76 mmHg, for example, a temperature higher than the glass transition temperature Tg (about 100 °C) of the visible adhesive 12,
For example, heat treatment is performed at approximately 100° C. for approximately 6 hours, and degassing treatment is performed to remove volatile components such as excess curing agent (Step 813). This degassing treatment ensures the stability of the surface acoustic wave device's characteristics even when stored at high temperatures for long periods of time. Next, the glass transition temperature T of the flexible adhesive 12
(Step 314) FIG. 2 shows the relationship between heat treatment time and frequency change amount. As is clear from the figure,
The center frequency (which had changed by -400 ppm after the degassing treatment, that is, it had decreased by 400 ppm) gradually recovered as the heat treatment time progressed. It reaches the pre-bonding state (approximately Oppm) in about 140 hours, and becomes completely stable after more than 500 hours. Therefore, about 1
It can be seen that the distortion caused by the curing of the adhesive is almost completely removed by heat treatment for 50 to 200 hours or more. Thereafter, wire bonding is performed and a cap 16 is placed and sealed to complete the surface acoustic wave element.

本発明は上記実施例に限らず種々の変形が可能である. 例えば、可撓性接着剤としては上記実施例で用いたエボ
キシ系接着剤に限らず、他の種類の可撓性接着剤でもよ
い.他の可視性接着剤を用いた場合、各工程における熱
処理温度や熱処理温度も、使用する接着剤に応じて異な
る. [発明の効果] 以上の通り、本発明によれば、素子チップを可視性接着
剤で接着した後、ガラス転移温度以下で接着剤を硬化し
、その後、ガラス転移温度以上で脱ガス処理をした後に
、ガラス転位温度以下で所定時間以上熱処理して、素子
チップの歪みを除去するようにしたので、接着により弾
性表面波素子の特性が変化せず、しかも長期間安定した
特性の弾性表面波素子を製造することができる.
The present invention is not limited to the above embodiments, and various modifications are possible. For example, the flexible adhesive is not limited to the epoxy adhesive used in the above embodiments, but other types of flexible adhesives may be used. When using other visible adhesives, the heat treatment temperature in each step also differs depending on the adhesive used. [Effects of the Invention] As described above, according to the present invention, after bonding element chips with a visible adhesive, the adhesive is cured at a temperature below the glass transition temperature, and then degassed at a temperature above the glass transition temperature. Later, the device chip was heat-treated at a temperature below the glass transition temperature for a predetermined period of time to remove distortion, so that the characteristics of the surface acoustic wave device did not change due to adhesion, and the surface acoustic wave device had stable characteristics for a long period of time. can be manufactured.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は本発明の一実施例による弾性表面波素子の製造
方法を示す図、 第2図は同弾性表面波素子の製造方法における熱処理時
間と周波数変化量の関係を示すグラフ、第3図は弾性表
面波素子の組立て分解図、第4図は弾性表面波フィルタ
におけるグイボンディング前後の中心周波数の変化を示
すグラフである. 図において、 lO・・・端子台 10a・・・電極ピン 10b・・・チップ載置部 12・・・接着剤 14・・・素子チップ 16・・・キャップ 熱9JL理温度=85’C 第2 図 鶴3図
FIG. 1 is a diagram showing a method for manufacturing a surface acoustic wave device according to an embodiment of the present invention, FIG. 2 is a graph showing the relationship between heat treatment time and frequency change amount in the method for manufacturing a surface acoustic wave device, and FIG. is an exploded view of the surface acoustic wave device, and FIG. 4 is a graph showing the change in center frequency before and after bonding in the surface acoustic wave filter. In the figure, lO...terminal block 10a...electrode pin 10b...chip mounting part 12...adhesive 14...element chip 16...cap heat 9JL physical temperature = 85'C 2nd Three cranes

Claims (1)

【特許請求の範囲】  弾性表面波素子チップを可撓性接着剤によりチップ載
置部に接着する接着工程と、 前記可撓性接着剤のガラス転移温度以下の温度で熱処理
して、前記可撓性接着剤を硬化する第1の熱処理工程と
、 1気圧以下の雰囲気圧状態で前記ガラス転位温度以上の
温度で熱処理して、前記可撓性接着剤から揮発成分を除
く脱ガス処理を行う第2の熱処理工程と、 前記ガラス転位温度以下の温度で所定時間以上熱処理し
て、前記弾性表面波素子チップの歪みを除去する第3の
熱処理工程と を有することを特徴とする弾性表面波素子の製造方法。
[Scope of Claims] An adhesion step of adhering a surface acoustic wave element chip to a chip mounting portion with a flexible adhesive; and a heat treatment at a temperature below the glass transition temperature of the flexible adhesive to a first heat treatment step for curing the flexible adhesive; and a degassing step for removing volatile components from the flexible adhesive by heat treatment at a temperature equal to or higher than the glass transition temperature under an atmospheric pressure of 1 atmosphere or lower. 2, and a third heat treatment step of removing distortion of the surface acoustic wave device chip by performing heat treatment at a temperature equal to or lower than the glass transition temperature for a predetermined period of time or more. Production method.
JP986790A 1990-01-19 1990-01-19 Manufacture of surface acoustic wave element Pending JPH03214916A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP986790A JPH03214916A (en) 1990-01-19 1990-01-19 Manufacture of surface acoustic wave element

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP986790A JPH03214916A (en) 1990-01-19 1990-01-19 Manufacture of surface acoustic wave element

Publications (1)

Publication Number Publication Date
JPH03214916A true JPH03214916A (en) 1991-09-20

Family

ID=11732091

Family Applications (1)

Application Number Title Priority Date Filing Date
JP986790A Pending JPH03214916A (en) 1990-01-19 1990-01-19 Manufacture of surface acoustic wave element

Country Status (1)

Country Link
JP (1) JPH03214916A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20180311597A1 (en) * 2017-04-28 2018-11-01 Stephen Saint-Vincent Process and Apparatus for In-line Densification of a Heterogeneous Fluid using Acoustic Energy

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20180311597A1 (en) * 2017-04-28 2018-11-01 Stephen Saint-Vincent Process and Apparatus for In-line Densification of a Heterogeneous Fluid using Acoustic Energy
US11161060B2 (en) * 2017-04-28 2021-11-02 Agar Corporation, Inc. Process and apparatus for in-line densification of a heterogeneous fluid using acoustic energy

Similar Documents

Publication Publication Date Title
TW522644B (en) Acoustic wave filter and method of forming the same
US7596849B1 (en) Method of assembling a wafer-level package filter
JP2010187373A (en) Composite substrate and elastic wave device using the same
JP2007214902A (en) Surface acoustic wave device
CN110649909B (en) Surface acoustic wave filter device wafer level packaging method and structure thereof
JP2007134889A (en) Composite piezoelectric substrate
JP2005229455A (en) Compound piezoelectric substrate
JP2006304206A (en) Surface acoustic wave element, composite piezoelectric chip, and manufacturing method thereof
JP4554398B2 (en) Surface acoustic wave device and method for manufacturing surface acoustic wave device
US20100269319A1 (en) Method for manufacturing surface acoustic wave device
JP2006245994A5 (en)
US6604267B2 (en) Method for manufacturing a piezoelectric device
JPH03214916A (en) Manufacture of surface acoustic wave element
JP2003283289A (en) Surface acoustic wave device
JP2010068484A (en) Combined piezoelectric substrate
JPH01228310A (en) Production of piezoelectric resonator
JP2017079439A (en) Composite substrate manufacturing method
JP3291046B2 (en) Surface acoustic wave device and method of manufacturing the same
JP3206187B2 (en) Manufacturing method of chip type piezoelectric resonator
JP3070267B2 (en) Manufacturing method of chip type piezoelectric resonator
JP2007324652A (en) Surface acoustic wave device
JPS62141811A (en) Surface acoustic wave element
JP2002043889A (en) Packaging and sealing structure and sealing method for bare saw chip and high-frequency circuit module
JP5049676B2 (en) Piezoelectric component and manufacturing method thereof
JPH04132736U (en) surface acoustic wave filter