JPH03214597A - Jet ionizer - Google Patents

Jet ionizer

Info

Publication number
JPH03214597A
JPH03214597A JP2004631A JP463190A JPH03214597A JP H03214597 A JPH03214597 A JP H03214597A JP 2004631 A JP2004631 A JP 2004631A JP 463190 A JP463190 A JP 463190A JP H03214597 A JPH03214597 A JP H03214597A
Authority
JP
Japan
Prior art keywords
cylindrical member
needle
electrode
pressure gas
axis
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2004631A
Other languages
Japanese (ja)
Inventor
Norio Ogiya
扇谷 典男
Masaaki Isagawa
去来川 正明
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
MIYOSHI DENKI KK
Miyoshi Electronics Corp
Original Assignee
MIYOSHI DENKI KK
Miyoshi Electronics Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by MIYOSHI DENKI KK, Miyoshi Electronics Corp filed Critical MIYOSHI DENKI KK
Priority to JP2004631A priority Critical patent/JPH03214597A/en
Publication of JPH03214597A publication Critical patent/JPH03214597A/en
Pending legal-status Critical Current

Links

Landscapes

  • Elimination Of Static Electricity (AREA)
  • Electron Sources, Ion Sources (AREA)

Abstract

PURPOSE:To make serviceable an already existing high pressure gas piping by furnishing a needle-shaped electrode in a specified place on a cylindrical member, whose open end is connected to the high pressure gas piping, wherein the needle electrode is made in such an arrangement that its base is insulatedly embedded in the direction perpendicular to the axis of the cylindrical member and that the tip reaches the axis substantially. CONSTITUTION:The large wall thickness structural part 11a of a cylindrical member 11 is provided with a thread hole 11b which opens to the outside, an insulation part 12 formed between the backmost part in this thread hole 11b and the pipeline 11c of this cylindrical member 11, and a needle-shaped electrode 13 whose base is embedded in the insulation part 12. The base of this needle electrode 13 is embedded in the insulation part 12 so that the tip reaches substantially the axis X-X of the cylindrical member 11, and a terminal 13a is exposed from the insulation part 12 at the backmost in the thread hole 11b. When a high voltage is impressed between the needle electrode 13 and cylindrical member 11, the high speed air stream flowing through the pipeline 11c is ionized with electric discharging at the tip of the needle electrode 13 and blown to a resin molded semiconductor element on a parts feeder, and electric charges are neutralized to deelectrify it. This permits use of an already existing high pressure gas piping.

Description

【発明の詳細な説明】 (イ)産業上の利用分野 本発明はベレット状半導体素子、樹脂モールド半導体素
子等の除電を行うジェットイオナイザに関し、詳細には
、半導体素子製造工程においてそれら、特に微小サイズ
の半導体素子相互および半導体製造装置との摩擦による
帯電電荷を除電するものであって、静電反発力に基づ《
半導体素子の飛散を防止し、帯電電荷の放電に起因する
半導体素子の電気的破壊を防止するためのジェットイオ
ナイザに関する。
Detailed Description of the Invention (a) Industrial Application Field The present invention relates to a jet ionizer for removing static electricity from pellet-shaped semiconductor elements, resin-molded semiconductor elements, etc. This is a device that eliminates static charges caused by friction between semiconductor devices and semiconductor manufacturing equipment, and is based on electrostatic repulsion.
The present invention relates to a jet ionizer for preventing scattering of semiconductor elements and preventing electrical breakdown of semiconductor elements due to discharge of charged charges.

(口)従来の技術 ウェハ工程以降の半導体素子の製造工程は概ね、ウェハ
を1辺0.35mm〜10mmに切断し半導体素子をペ
レット状に分離するダイシング工程、ペレット状半導体
素子をリードフレームに熱熔着するベレントボンダー工
程、半導体素子とリードフレーム端子間の接続を行うワ
イヤボンダーエ程、樹脂モールド工程、フレームから個
々の半導体素子を分離する切断工程さらには各工程毎に
実施される検査工程等からなる。また、完成半導体素子
外形寸法が3mm0以下となる微小サイズの半導体素子
に関しては、ユーザーサイドでの自動機による実装を考
慮して、完成半導体素子の整列フィルムバック工程が付
加される。
(Example) Conventional technology The semiconductor device manufacturing process after the wafer process generally involves a dicing process in which the wafer is cut into pieces of 0.35 mm to 10 mm on a side and the semiconductor devices are separated into pellets, and a pellet-shaped semiconductor device is heated to a lead frame. A berent bonder process for welding, a wire bonder process for connecting semiconductor elements and lead frame terminals, a resin molding process, a cutting process for separating individual semiconductor elements from the frame, and an inspection process for each process. Consists of etc. Further, for micro-sized semiconductor elements whose external dimensions are 3 mm or less, an alignment film-back process for the completed semiconductor elements is added in consideration of mounting by an automatic machine on the user's side.

さて、工程の性格上、フレームから個々の半導体素子を
分離する切断工程が終了した樹脂モールド半導体素子は
その表裏、向きがランダムとなることが避けられない。
Now, due to the nature of the process, it is inevitable that the resin-molded semiconductor elements after the cutting process of separating the individual semiconductor elements from the frame will be randomly oriented.

そこで、それに後続するフィルムパック工程、さらには
検査工程に先立って、各種のパーツフィーダにより樹脂
モールド半導体素子の表裏、向きの整列を行う必要が生
ずる。
Therefore, prior to the subsequent film packing process and furthermore the inspection process, it becomes necessary to align the resin molded semiconductor elements front to back and in orientation using various parts feeders.

第6図はそのようなパーツフィーダのうち、樹脂モール
ド半導体素子に王に振動を与えることによって表裏、向
きの整列を行い供給するタイプのパーツフィーダの構造
および動作を概念的に説明するものである. パーツフィーダ(51)は図示しない装置により振動し
ており、その中央部にランダムに載置される多数の樹脂
モールド半導体素子(52)にはこの振動によりランダ
ムな運動エネルギーが付与される。
Figure 6 conceptually explains the structure and operation of one of these parts feeders that applies vibration to resin-molded semiconductor elements to align the front and back sides and feed the parts feeder. .. The parts feeder (51) is vibrated by a device not shown, and random kinetic energy is imparted to a large number of resin-molded semiconductor elements (52) randomly placed in the center of the parts feeder (51).

また、樹脂モールド半導体素子(52)を空気撹拌し、
この整列動作効率を向上させるための高圧ガス(主とし
て乾燥空気が使用されるtcめ以下、高圧空気と称する
゜)がノズル(53)からパーツフィダ(51)に吹き
付けられている。
In addition, the resin molded semiconductor element (52) is agitated with air,
In order to improve the efficiency of this alignment operation, high pressure gas (mainly dry air is used hereafter referred to as high pressure air) is blown from the nozzle (53) to the parts feeder (51).

ランダムに運動する樹脂モールド半導体素子(52)は
数学および物理法則に従ってバーツフィダ(51)の周
辺部に拡散運動し、さらにそのランプ部(54)に導か
れる.詳述しないが、樹脂モールド半導体素子(52)
がランプ部(54)に導かれる間に、およびランプ部(
54)において、裏向きおよび所定の向き以外の樹脂モ
ールド半導体素子(52)がランプ部(54)からパー
ツフィーダ(51)に脱落し、ランプ部(54)を通過
する樹脂モールド半導体素子(52)は表裏、向きが整
列される。この整列された樹脂モールド半導体素子(5
2)はランプ部(54)から図示しない電気特性検査装
置およびフィルムパック装置に送られる. 斯るパーツフィーダにおいて、樹脂モールド半導体素子
(52)がしばしばパーツフィーダ(51)から飛散す
ることが知られている。従来、この原因がノズル(53
)からの高圧空気にあるとされているため、高圧空気の
圧力調整が綿密に行われているものの、これまでこの圧
力調整によっては良好な結果が得られていない.また、
その後の電気特性検査により、半導体素子の構造によっ
ては、電気的不良が発生することが確認されている。
The randomly moving resin-molded semiconductor elements (52) diffuse to the periphery of the bart feeder (51) according to the laws of mathematics and physics, and are further guided to the lamp part (54). Although not detailed, resin molded semiconductor element (52)
is guided to the lamp part (54), and the lamp part (
In 54), the resin molded semiconductor element (52) facing down and in a direction other than the predetermined direction falls from the lamp part (54) to the parts feeder (51), and the resin molded semiconductor element (52) passes through the lamp part (54). The front and back sides are aligned. These aligned resin molded semiconductor elements (5
2) is sent from the lamp section (54) to an electrical property testing device and a film pack device (not shown). It is known that in such parts feeders, resin-molded semiconductor elements (52) often fly off from the parts feeder (51). Conventionally, the cause of this problem was the nozzle (53
), the pressure of the high-pressure air has been carefully adjusted, but good results have not been obtained so far with this pressure adjustment. Also,
Subsequent electrical property tests have confirmed that electrical defects occur depending on the structure of the semiconductor element.

この点に関する発明者の研究により、上記の現象が樹脂
モールドされた半導体素子のパーツフィーダ(51》上
で互いに衝突、反発を繰り返すことによる摩擦帯電に関
係するものであることが解明された。そこで、ノズル(
53)による高圧空気に代えて、イオンブロワを使用す
ることによってこれまで一応の成果が得られている. (ハ)発明が解決しようとする課題 従来、この種の目的に適合するイオナイザは掃供されて
いない。従って、他の目的に使用されるイオンブロワが
使用されているが、,それらイオンブロワは概ね箱型形
状であると共に比較的大型であり、既設の半導体素子製
造装置への支持が困難であった。また、イオン吹き出し
方向の制御、イオン流量の精密制御が困難であり、さら
にファンを備えるため故障の虞があった。
The inventor's research on this point revealed that the above phenomenon is related to frictional electrification caused by repeated collision and repulsion of resin-molded semiconductor elements on the parts feeder (51). ,nozzle(
So far, some results have been obtained by using an ion blower instead of the high-pressure air according to 53). (c) Problems to be Solved by the Invention Hitherto, there has been no ionizer suitable for this type of purpose. Therefore, ion blowers used for other purposes are being used, but these ion blowers are generally box-shaped and relatively large, making it difficult to support existing semiconductor device manufacturing equipment. . Furthermore, it is difficult to control the ion blowing direction and the ion flow rate precisely, and since a fan is provided, there is a risk of failure.

またガン形状のイオナイザも知られているが、既設の半
導体素子製造装置への支持はさらに困難であった. 本発明は従来のイオンブロヮあるいはイオナイザに存す
る斯る課題の解決を目的とし、半導体素子製造装置に既
設の高圧空気配管を利用することが可能な、そして取り
付け並びに構造が簡便なジェットイオナイザを提供する
ことを目的とする. (二)課題を解決するための手段 上記した課題は、少なくともその1の開口端部が高圧ガ
ス配管に接続される筒状部材の所定部に、その軸線の直
角方向に基部が絶縁埋設され、且つ先端が軸線に略達す
る針状電極を備える本発明のジェットイオナイザにより
解決される。
Gun-shaped ionizers are also known, but they are more difficult to support in existing semiconductor device manufacturing equipment. The present invention aims to solve the above-mentioned problems with conventional ion blowers or ionizers, and provides a jet ionizer that can utilize existing high-pressure air piping in semiconductor device manufacturing equipment and is simple in installation and structure. With the goal. (2) Means for Solving the Problems The above-mentioned problems are solved by: At least one open end of the cylindrical member is connected to a high-pressure gas pipe at a predetermined portion of the cylindrical member, the base of which is insulated and buried in a direction perpendicular to its axis; This problem is solved by the jet ionizer of the present invention, which includes a needle-like electrode whose tip almost reaches the axis.

(ホ)作用 本発明のジェットイオナイザは、任意個所を切断して得
られる既設の高圧ガス配管の両端部、あるいは既設の高
圧ガス配管の端部を、その筒状部の少なくともその1の
開口端部に接続するのみで使用可能であり、本発明のジ
ェソトイオナイザを介して吹き付けられるイオン流によ
り、半導体素子に帯電する電荷が中和、除電され、ある
いは単一極性の電荷のみとなり半導体素子の飛散、電気
的破壊が回避される。
(E) Function The jet ionizer of the present invention is capable of cutting both ends of an existing high-pressure gas pipe obtained by cutting any part, or at least one open end of the cylindrical part of the existing high-pressure gas pipe. The ion flow sprayed through the Gesoto ionizer of the present invention neutralizes and eliminates the electric charge on the semiconductor element, or reduces the electric charge to only a single polarity. Splashing and electrical damage are avoided.

また、既設の高圧ガス配管を利用するため可動部がなく
、故障の虞がない.さらには、既設の高圧ガス配管は流
量制御機構を備えるためイオン流量制御が極めて容易と
なる. (へ)実施例 以下、第1図及至第5図を参照して本発明の実施例を説
明する. 第1図は本発明の第1の実施例を示し、第1図(A)は
その横断面図、第1図(B)は第1図(A)のY−Y線
により切断した縦断面図を示す。
Additionally, since it uses existing high-pressure gas piping, there are no moving parts, so there is no risk of failure. Furthermore, the existing high-pressure gas piping is equipped with a flow rate control mechanism, making it extremely easy to control the ion flow rate. (F) Embodiments Hereinafter, embodiments of the present invention will be described with reference to FIGS. 1 to 5. FIG. 1 shows a first embodiment of the present invention, FIG. 1(A) is a cross-sectional view thereof, and FIG. 1(B) is a longitudinal cross-sectional view taken along line Y-Y in FIG. 1(A). Show the diagram.

金属材料により形成される筒状部材(11)はその所定
部が厚肉構造とされ、その厚肉構造部(I+.)は外方
に開口するネジ孔(11.)、このネジ孔(llb)の
最深部と筒状部材(11)の管路(11.)間に形成さ
れる絶縁部(12)、さらにはこの絶縁部(12)に基
部が埋設される針状電極(13)を備えている。針状電
+! (13)はその先端が筒状部材(11)の軸線X
−Xに略達するようにその基部が絶縁部(12)に埋設
され、端子(13.)が絶縁部(12)からネジ孔(n
b)の最深部に露出されている.そこで、図示しない高
電圧発生装置の一方の極性のケーブル(14.)が接続
される接続機構(】4)をネジ孔(llb)に縞合して
その端子(14b)と針状電極(13)の端子(13.
)を接続すると共に、筒状部材(11)に設けられる適
宜の方式の端子(lid)に高電圧発生装置の他の極性
の端子に接続されるケーブル(14.)を接続すること
によって針状電極(13)と筒状部材(11)間の放電
か可能となる.斯る構造のジェットイオナイザは針状電
4!<13)に印加される電圧の極性と同極性のイオン
流を生成する.なお、接続機構(14)としてBNCコ
ネクタ、M型コネクターを使用することも可能である. 本発明のジェットイオナイザはパーツフィーダ等に既設
の高圧空気配管の適宜個所を切断し、その切断端部(1
5.) (15. )を筒状部材(11)の開口端部(
11。)(+.1+)に圧大して使用される.なお、高
圧空気配管の径が大きい場合には、図に破線で示すよう
に、高圧空気配管(15. ’ ) (1sb ’ )
に筒状部材(11)が圧入、接続される。また、既設の
高圧空気配管の端部、即ち高圧空気吹き出しノズルの位
置に本発明のジェットイオナイザが使用される場合には
、高圧空気配管の端部に筒状部材(11)の開口端部(
11。>(11,)の何れかが接続され、他方の開口端
部はノズルとして使用される.そして、針状電極(13
)と筒状部材(11)間に高電圧が印加されると、針状
電極(13)の先端部の放電により、筒状部材(11)
の管路(11。)を流れる高速気流がイオン化されて、
パーツフィーダ上の樹脂モールド半導体素子に吹き付け
られる。なお、筒状部材(11)を絶縁樹脂にて形成す
る場合には絶縁部(12)は不要である。
The cylindrical member (11) formed of a metal material has a thick wall structure at a predetermined portion thereof, and the thick wall structure portion (I+.) has a screw hole (11.) opening outward, and this screw hole (llb). ) and an insulating part (12) formed between the deepest part of the pipe (11.) of the cylindrical member (11), and a needle-shaped electrode (13) whose base is embedded in this insulating part (12). We are prepared. Needle electricity +! (13) has its tip aligned with the axis of the cylindrical member (11)
-X, its base is buried in the insulating part (12), and the terminal (13.) is inserted from the insulating part (12) into the screw hole (n
b) is exposed in the deepest part. Therefore, the connection mechanism (4) to which the cable (14.) of one polarity of the high voltage generator (not shown) is connected is fitted in the screw hole (llb), and its terminal (14b) and the needle electrode (13. ) terminal (13.
) and connect the cable (14.) connected to the terminal of the other polarity of the high voltage generator to the terminal (lid) of an appropriate method provided on the cylindrical member (11). Electric discharge is possible between the electrode (13) and the cylindrical member (11). A jet ionizer with such a structure is needle-shaped ionizer 4! <13) Generates an ion flow with the same polarity as the voltage applied to it. Note that it is also possible to use a BNC connector or an M-type connector as the connection mechanism (14). The jet ionizer of the present invention cuts an existing high-pressure air pipe in a parts feeder, etc. at an appropriate location, and then cuts the cut end (1
5. ) (15.) at the open end (
11. ) (+.1+). In addition, if the diameter of the high pressure air piping is large, as shown by the broken line in the figure, the high pressure air piping (15.') (1sb')
The cylindrical member (11) is press-fitted and connected. In addition, when the jet ionizer of the present invention is used at the end of an existing high-pressure air piping, that is, at the position of the high-pressure air blowing nozzle, the open end of the cylindrical member (11) (
11. > (11,) is connected, and the other open end is used as a nozzle. Then, a needle electrode (13
) and the cylindrical member (11), the discharge at the tip of the needle electrode (13) causes the cylindrical member (11) to
The high-speed airflow flowing through the pipe (11.) is ionized,
It is sprayed onto the resin-molded semiconductor elements on the parts feeder. Note that when the cylindrical member (11) is made of insulating resin, the insulating portion (12) is not necessary.

ここで、パーツフィーダ上の樹脂モールド半導体素子の
帯電機構および本発明のジェットイオナイザの除電作用
を説明する。
Here, the charging mechanism of the resin-molded semiconductor element on the parts feeder and the static elimination function of the jet ionizer of the present invention will be explained.

パーツフィーダ上の樹脂モールド半導体素子は樹脂モー
ルド半導体素子とパーツフィーダ本体部に通常使用され
るステンレス鋼との摩擦により、また樹脂モールド半導
体素子相互の摩擦により、さらにはパーツフィーダの整
列動作効率を向上させるための高圧空気の帯電により帯
電する.これらの帯電機構のうち第1および第3の帯電
機構による帯電はモールド半導体素子の樹脂の種類等に
より定まる単一極性の帯電であって、帯電量の飽和レベ
ルが存在するtこめ比較的穏やかな帯電であることが予
測される。従って、樹脂モールド半導体素子の飛散等の
主たる原因とならない。また、必要あればこの種の帯電
電荷の中和は容易である。これに対して、第2の帯電機
構によれば、樹脂モールド半導体素子は樹脂の部分毎に
極性が異なって帯電し、異極性の電荷による静電吸着に
より複数の樹脂モールド半導体素子が結合してパッフィ
ーダの整列動作が阻害される。のみならず、振動、高圧
空気攪拌により結合した樹脂モルド半導体素子相互の位
置関係が強制的に変更されると、瞬時に樹脂モールド半
導体素子の同極性電荷が接近することがあり、その静電
反発力により樹脂モールド半導体素子が飛散する。さら
に、樹脂モールド半導体素子上の異なる極性の電荷は時
にその表面で部分放電して、MOS構造の半導体素子を
破壊する. 而、本発明のジェットイオナイザにより樹脂モールド半
導体素子にイオン流が吹き付けられると、異なる極性に
帯電する樹脂の部分のうち、イオン流と逆極性の帯電電
荷は中和、除電される.そして、イオン流と異なる極性
に帯電する部分は、通常、その帯電は飽和レベルに達し
ており、また静電反発力のためイオン流によりさらに高
レベルに帯電することがないため、帯電電荷量の増加が
ない.しかも、この残存電荷は全ての樹脂モールド半導
体素子の全ての個所において極性が同一であるため、静
電吸引が発生せず、従ってパーツフィーダによる整列の
低下が回避されると共に、電荷の放電が生じたとしても
マクロな放電となり、MOS構造の半導体素子の電気的
破壊が回避される。
The resin molded semiconductor elements on the parts feeder improve the alignment operation efficiency of the parts feeder due to the friction between the resin molded semiconductor elements and the stainless steel normally used for the parts feeder body, and the friction between the resin molded semiconductor elements each other. It is charged by charging the high-pressure air. Among these charging mechanisms, the charging by the first and third charging mechanisms is a single-polarity charge determined by the type of resin of the molded semiconductor element, etc., and is relatively mild since there is a saturation level of the charge amount. It is predicted that it is electrostatically charged. Therefore, it does not become a main cause of scattering of resin-molded semiconductor elements. Further, if necessary, this type of charge can be easily neutralized. On the other hand, according to the second charging mechanism, resin molded semiconductor elements are charged with different polarities for each part of the resin, and a plurality of resin molded semiconductor elements are bonded together by electrostatic attraction due to charges of different polarities. The alignment operation of the puff feeder is hindered. In addition, if the mutual positional relationship of resin-molded semiconductor elements bonded together is forcibly changed by vibration or high-pressure air agitation, the same-polarity charges of the resin-molded semiconductor elements may instantaneously approach each other, resulting in electrostatic repulsion. The force causes resin-molded semiconductor elements to scatter. Furthermore, charges of different polarities on the resin-molded semiconductor element sometimes cause partial discharge on its surface, destroying the MOS-structured semiconductor element. When an ion stream is sprayed onto a resin-molded semiconductor element by the jet ionizer of the present invention, among the portions of the resin that are charged with different polarities, charges with a polarity opposite to that of the ion stream are neutralized and eliminated. Parts that are charged to a polarity different from that of the ion flow usually have reached a saturation level, and because of electrostatic repulsion, they are not charged to a higher level by the ion flow. There is no increase. Furthermore, since this residual charge has the same polarity at all locations on all resin-molded semiconductor elements, no electrostatic attraction occurs, and therefore, deterioration of alignment due to the parts feeder is avoided, and charge discharge occurs. Even if this happens, it will be a macroscopic discharge, and electrical breakdown of the semiconductor element of the MOS structure can be avoided.

第2図はジェットイオナイザと高圧空気配管の接続が改
良された前記第1の実施例の変形例を示し、接続手段の
みが図示される同図において、第1の実施例と同一部分
には同一の参照番号が付されている. 本実施例は筒状部材(11)の開口端部(11.)(1
11)にPTネジ加工あるいはメートルネジ加工等を施
し、汎用のクィック継ぎ手(16)の使用を可能にした
ものである.クィック継ぎ手(16)に高圧空気配管(
15.)を挿入すると、クィック継ぎ手(16)が備え
るロックツメ(16’)が高圧空気配管(15.)の外
壁に貫入若しくは押圧されて高圧空気配管(15.)と
クィック継ぎ手(16)との接続が行われ、高圧空気配
管(15.)をクィック継ぎ手(16)内に押し込んだ
後、解放リング(16”)を押し込むことにより高圧空
気配管(15.)が離脱される。
FIG. 2 shows a modification of the first embodiment in which the connection between the jet ionizer and the high-pressure air piping is improved. It has a reference number. In this embodiment, the open end (11.) (1
11) with PT thread processing or metric thread processing, etc., making it possible to use a general-purpose quick joint (16). High pressure air piping (
15. ), the lock claw (16') of the quick joint (16) penetrates or is pressed against the outer wall of the high pressure air pipe (15.), and the connection between the high pressure air pipe (15.) and the quick joint (16) is established. After the high pressure air line (15.) is pressed into the quick fitting (16), the high pressure air line (15.) is released by pushing in the release ring (16'').

第3図は第1の実施例の他の変形例を示し、第1の実施
例と同一部分には同一の参照番号が付されている.本実
施例は筒状部材(11)の成形時に、放電ギャップ並び
にそれに接続される高電圧ケーブルを一体成形したもの
であって、斯る構造は高電圧発生装置に接続される同軸
ケーブル(16)の芯線(16.)に針状電極(13)
を、外線(1sb)に環状対向電極(17)を接続した
後に一体樹脂成形することにより得られる.なお、高電
圧発生装置に接続されるケーブル(16)は同軸ケーブ
ルである必要はなく、針状電i(13)および環状対向
電極(17)の形状も図示の形状に限定されるものでは
ない.また、同図は同軸ケーブル(16)の引き畠し方
向が筒状部材(11)の軸線と直角である例を示すが、
このような形状のジェットイオナイザは高電圧ケーブル
(16)の支持により比較的簡便に支持することができ
、特に、パーツフィーダの吹き出しノズルの位置に使用
される場合に適する。但し、同軸ケーブル(16)が平
行に引き出されるよう形成することも可能であり、その
ような形状のジェットイオナイザは高圧空気配管途中へ
の接続に適する。
FIG. 3 shows another modification of the first embodiment, in which the same parts as in the first embodiment are given the same reference numerals. In this embodiment, the discharge gap and the high voltage cable connected thereto are integrally molded during the molding of the cylindrical member (11), and such a structure includes the coaxial cable (16) connected to the high voltage generator. Needle electrode (13) on the core wire (16.)
is obtained by integral resin molding after connecting the annular counter electrode (17) to the outside wire (1sb). Note that the cable (16) connected to the high voltage generator does not need to be a coaxial cable, and the shapes of the needle electrode (13) and the annular counter electrode (17) are not limited to the shapes shown in the figure. .. Furthermore, the figure shows an example in which the direction in which the coaxial cable (16) is pulled is perpendicular to the axis of the cylindrical member (11).
A jet ionizer having such a shape can be supported relatively easily by supporting the high voltage cable (16), and is particularly suitable for use at a blow nozzle position of a parts feeder. However, it is also possible to form the coaxial cable (16) so that it is drawn out in parallel, and a jet ionizer having such a shape is suitable for connection to the middle of high-pressure air piping.

第4図を参照して本発明のさらに他の実施例を説明する
Still another embodiment of the present invention will be described with reference to FIG.

本実施例はパーツフィーダ等に既設の高圧空気配管の多
くが樹脂管により行われることに着目した6のであって
、そのような比較的強度が低い配管への針状電極の貫通
により高圧空気配管内にイオン化のための針状電極(l
3)を形成せんとするものである.なお、本実施例では
対向電極も同時に貫通させても良いし、また特に対向電
極は形成されなくても基本的な動作には支障がない。
This example focuses on the fact that many of the existing high-pressure air piping in parts feeders, etc. are made of resin pipes, and the high-pressure air piping is made by penetrating the needle-like electrodes into such piping, which has relatively low strength. There is a needle electrode (l) for ionization inside the
3). In this embodiment, the counter electrode may also be passed through at the same time, or even if the counter electrode is not formed, there is no problem in basic operation.

本実施例の半円筒状部材(21)は、先の実施例と同様
に、同軸ケーブル(16)の芯線(16.)に針状電極
(図示しない)を、その外線(托,)を対向電極、例え
ば係止機構(17)に接続されるようなしてから絶縁樹
脂により一体成形して得られる。本実施例は半円筒状部
材(21)の針状電極を樹脂製の高圧空気配管(15)
に貫通させ、係止機構(17)にて係止して使用される
。本実施例は、図示されるように、構造並びに設置が極
めて簡便である。
Similar to the previous embodiment, the semi-cylindrical member (21) of this embodiment has a needle-like electrode (not shown) attached to the core wire (16.) of the coaxial cable (16), and its outer wire (21) facing the core wire (16.). It is obtained by integrally molding it with an insulating resin after being connected to an electrode, for example, a locking mechanism (17). In this example, the needle-like electrode of the semi-cylindrical member (21) is connected to a high-pressure air pipe (15) made of resin.
It is used by passing it through and being locked by the locking mechanism (17). As shown in the figures, this embodiment is extremely simple in structure and installation.

第5図(A)(B)を参照して本発明の他の実施例を説
明する。なお、第5図(B)は第5図(A)のY−Y線
断面図である. 本実施例も比較的強度が低い配管への針状電極(13)
の貫通により高圧空気配管内にイオン化のための針状電
極(13)を形成せんとするものであって、第4図に示
した実施例と同様に使用される。
Another embodiment of the present invention will be described with reference to FIGS. 5(A) and 5(B). Note that FIG. 5(B) is a sectional view taken along the Y-Y line of FIG. 5(A). This example also uses needle-shaped electrodes (13) for piping with relatively low strength.
The purpose is to form a needle-like electrode (13) for ionization in the high-pressure air piping by penetrating the pipe, and it is used in the same manner as the embodiment shown in FIG.

本実施例では半円筒状部材(21)は絶縁樹脂により形
成され、その所定部が厚肉構造とされる.その厚肉構造
部(21.)は外方に開口するネジ孔(21b)このネ
ジ孔(21.)の最深部に基部が埋設される針状電極(
13)、パッキン(16)および高圧空気配管(15)
と半円筒状部材(21)を結合する係止機構(17)を
備えている。針状電!(13)はその先端が半筒状部材
(21)の軸線X−Xに略達するようにその基部が埋設
され、端子(13.)がネジ孔(21.)の最深部に露
畠されている。そこで、ネジ孔(2lb)に図示しない
高電圧発生装置の一方のケーブル(14.)に接続され
る接続機構(14)を綿合してその端子(14b)と針
状電極(11。)の端子(llf)を接続することによ
って針状電極(11.)と筒状部材(11)間の放電が
可能となる。
In this embodiment, the semi-cylindrical member (21) is made of insulating resin, and a predetermined portion thereof has a thick wall structure. The thick structure part (21.) has a screw hole (21b) opening outward, and a needle-shaped electrode (21.) whose base is buried in the deepest part of the screw hole (21.).
13), packing (16) and high pressure air piping (15)
A locking mechanism (17) is provided for coupling the semi-cylindrical member (21) to the semi-cylindrical member (21). Needle electricity! The base of (13) is buried so that its tip almost reaches the axis X-X of the semi-cylindrical member (21), and the terminal (13.) is exposed at the deepest part of the screw hole (21.). There is. Therefore, the connection mechanism (14) that is connected to one cable (14.) of a high voltage generator (not shown) is inserted into the screw hole (2lb), and the terminal (14b) and the needle electrode (11.) are connected. By connecting the terminal (llf), discharge between the needle electrode (11.) and the cylindrical member (11) becomes possible.

本実施例はパーツフィーダ等に既設の樹脂製高圧空気配
管の適宜個所にその針状電極(13)を貫通し、さらに
係止機構(17)により、係止して設置が完了する. 以上、本発明のジェットイオナイザを半導体素子の帯電
電荷の中和、除電を例として説明したが、既に明らかな
ように本発明は、例えばプラスティック製造工程におけ
るペレットの空気搬送時の帯電電荷の除電、あるいは逆
に任意の材料の帯電にも使用可能であり、実施例に限定
されるものではない. (})発明の効果 以上述べたように本発明のジェットイ才ナイザは、任意
個所を切断して得られる既設の高圧ガス酔管の両端部、
あるいは既設の高圧ガス配管の端部を、その筒状部の少
なくともその1の開口端に圧入するのみで使用可能であ
り、格別の支持構造を必要としない。
In this embodiment, the needle-like electrode (13) is passed through appropriate locations of the resin high-pressure air piping installed in the parts feeder, etc., and is further locked by the locking mechanism (17) to complete the installation. Above, the jet ionizer of the present invention has been described using as an example the neutralization and removal of the charged charges of a semiconductor element, but as is already clear, the present invention is applicable to, for example, the neutralization of the charged charges during air transport of pellets in the plastic manufacturing process, Alternatively, it can be used to charge any material, and is not limited to the examples. (}) Effects of the Invention As described above, the jet reducer of the present invention can cut both ends of an existing high-pressure gas pipe, which can be obtained by cutting arbitrary points.
Alternatively, it can be used simply by press-fitting the end of an existing high-pressure gas pipe into at least one open end of the cylindrical part, and no special support structure is required.

また、既設の高圧ガス配管を利用するため可動部がなく
、故障の虞がない。
Additionally, since it uses existing high-pressure gas piping, there are no moving parts, so there is no risk of failure.

さらに、半導体製造工程に使用して、半導体素子の飛散
、静電破壊が回避される. さらにまた、クィック継ぎ手が使用される場合には高圧
空気配管との接続が簡便、確実となる。
Furthermore, when used in semiconductor manufacturing processes, scattering of semiconductor elements and electrostatic damage can be avoided. Furthermore, when a quick joint is used, the connection to the high pressure air piping becomes simple and reliable.

【図面の簡単な説明】[Brief explanation of drawings]

第1図(A)は本発明の第1の実施例の横断面図、第1
図(B)は第1図(A)のY−Y線断面図、第2図は第
1の実施例の変形例である第2の実施例の横断面図、第
3図は第1の実施例の他の変形例である第3の実施例の
横断面図、第4図は本発明の第4の実施例の横断面図、
第5図(A)は本発明の第5の実施例の横断面図、第5
図(B)は第5図(A)のY−Y線断面図、第6図は樹
脂モールド半導体素子の表裏、向きの整列を行うパーツ
フィーダの上面図である. 11・・・筒状部材、  12−・・絶縁部、  13
・・針状電極、  14・・・接続機構.
FIG. 1(A) is a cross-sectional view of the first embodiment of the present invention;
Figure (B) is a sectional view taken along the Y-Y line in Figure 1 (A), Figure 2 is a cross-sectional view of the second embodiment, which is a modification of the first embodiment, and Figure 3 is a cross-sectional view of the second embodiment, which is a modification of the first embodiment. A cross-sectional view of the third embodiment, which is another modification of the embodiment, FIG. 4 is a cross-sectional view of the fourth embodiment of the present invention,
FIG. 5(A) is a cross-sectional view of the fifth embodiment of the present invention;
Figure (B) is a sectional view taken along the Y--Y line in Figure 5 (A), and Figure 6 is a top view of a parts feeder that aligns the front and back sides of resin-molded semiconductor elements. 11... Cylindrical member, 12-... Insulating part, 13
...acicular electrode, 14...connection mechanism.

Claims (7)

【特許請求の範囲】[Claims] (1)少なくともその1の開口端部が高圧ガス配管に接
続される筒状部材の所定部に、その軸線の直角方向に基
部が絶縁埋設され、且つ先端が軸線に略達する針状電極
を備えるジェットイオナイザ。
(1) At least one open end of the cylindrical member is connected to a high-pressure gas pipe, at a predetermined portion of the cylindrical member, and is provided with a needle-like electrode whose base is insulated and buried in a direction perpendicular to its axis, and whose tip almost reaches the axis. jet ionizer.
(2)前記筒状部材が絶縁樹脂により形成され、その両
開口端部に、切断された高圧ガス配管の開口端部がそれ
ぞれ圧入される請求項1記載のジェットイオナイザ。
(2) The jet ionizer according to claim 1, wherein the cylindrical member is formed of an insulating resin, and the open ends of cut high-pressure gas piping are press-fitted into both open ends of the cylindrical member.
(3)前記筒状部材の所定部が厚肉構造とされ、この厚
肉構造部に前記針状電極およびこの針状電極と高電圧電
源との外部接続のための機構を備える請求項1記載のジ
ェットイオナイザ。
(3) A predetermined portion of the cylindrical member has a thick wall structure, and the thick wall structure includes the needle electrode and a mechanism for externally connecting the needle electrode to a high voltage power source. jet ionizer.
(4)前記針状電極およびその外部リード線が前記筒状
部材と一体成形される請求項1記載のジェットイオナイ
ザ。
(4) The jet ionizer according to claim 1, wherein the needle electrode and its external lead wire are integrally molded with the cylindrical member.
(5)前記開口端部がネジ加工されて、クィック継ぎ手
が結合される請求項1記載のジェットイオナイザ。
(5) The jet ionizer according to claim 1, wherein the open end is threaded and a quick joint is connected thereto.
(6)高圧ガス配管外周面に当接する少なくとも1の半
筒状部を備え、その1の半筒状部にはその軸線に直角方
向に、且つ先端が半筒状部の軸線に略達する針状電極が
絶縁配置されてなり、この針状電極が高圧ガス配管に貫
通されることを特徴とするジェットイオナイザ。
(6) At least one semi-cylindrical part that comes into contact with the outer circumferential surface of the high-pressure gas pipe, and a needle that extends perpendicularly to the axis of the first semi-cylindrical part and whose tip reaches approximately the axis of the semi-cylindrical part. A jet ionizer characterized in that a needle-shaped electrode is arranged in an insulated manner, and the needle-shaped electrode is penetrated by a high-pressure gas pipe.
(7)半導体素子製造工程における自動機のガス搬送、
整列のための高圧ガス配管に接続される請求項1あるい
は請求項6記載のジェットイオナイザ。
(7) Gas transportation in automatic machines in the semiconductor device manufacturing process;
The jet ionizer according to claim 1 or claim 6, wherein the jet ionizer is connected to a high pressure gas pipe for alignment.
JP2004631A 1990-01-16 1990-01-16 Jet ionizer Pending JPH03214597A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2004631A JPH03214597A (en) 1990-01-16 1990-01-16 Jet ionizer

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2004631A JPH03214597A (en) 1990-01-16 1990-01-16 Jet ionizer

Publications (1)

Publication Number Publication Date
JPH03214597A true JPH03214597A (en) 1991-09-19

Family

ID=11589368

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2004631A Pending JPH03214597A (en) 1990-01-16 1990-01-16 Jet ionizer

Country Status (1)

Country Link
JP (1) JPH03214597A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009283981A (en) * 2009-08-31 2009-12-03 Renesas Technology Corp Method for manufacturing semiconductor integrated circuit apparatus
JP2010021086A (en) * 2008-07-14 2010-01-28 Kazuo Okano Corona discharge ionizer
JP2014078487A (en) * 2012-09-21 2014-05-01 Trinc:Kk Static eliminator for part feeder

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010021086A (en) * 2008-07-14 2010-01-28 Kazuo Okano Corona discharge ionizer
JP2009283981A (en) * 2009-08-31 2009-12-03 Renesas Technology Corp Method for manufacturing semiconductor integrated circuit apparatus
JP2014078487A (en) * 2012-09-21 2014-05-01 Trinc:Kk Static eliminator for part feeder

Similar Documents

Publication Publication Date Title
JP6049634B2 (en) A device for monitoring particles in aerosols
US6118645A (en) Self-balancing bipolar air ionizer
US10099225B2 (en) Air cleaning device
KR101048589B1 (en) Ion generator
JP2014501391A5 (en)
TW205605B (en)
JPH01274396A (en) Method and apparatus for ionizing gas
JPH0917593A (en) Device and method for air ionization
TW201010516A (en) Ionizer
JP2008248347A (en) Plasma generator in which the circumference of plasma gun is made electrically neutral
JPH03214597A (en) Jet ionizer
JP4664152B2 (en) Ionizer nozzle
JP2010113838A (en) Pellet supply device
US4635161A (en) Device for removing static charge, dust and lint from surfaces
JP2014503077A (en) Particle monitoring apparatus and method
WO2021131519A1 (en) Electrostatic precipitator
US20090293718A1 (en) Methods and apparatus for an ionizer
TW201204618A (en) Non-contact carrying device for wiring substrate and method for fabricating wiring substrate
KR100990420B1 (en) Discharge electrode
JP4543436B2 (en) Ion generator and static eliminator
JP2004055317A (en) Nozzle type static eliminator
JP7011817B2 (en) Static elimination device and static elimination method
CN213152448U (en) Modular ion discharge head device
JP2011129351A (en) Ac high-voltage radiation system static eliminator
CA2157611C (en) Self-balancing bipolar air ionizer