JPH03214507A - Dielectric porcelain composite - Google Patents

Dielectric porcelain composite

Info

Publication number
JPH03214507A
JPH03214507A JP2006598A JP659890A JPH03214507A JP H03214507 A JPH03214507 A JP H03214507A JP 2006598 A JP2006598 A JP 2006598A JP 659890 A JP659890 A JP 659890A JP H03214507 A JPH03214507 A JP H03214507A
Authority
JP
Japan
Prior art keywords
dielectric
temperature coefficient
capacitance
insulation resistance
dielectric constant
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2006598A
Other languages
Japanese (ja)
Inventor
Hidenori Kuramitsu
秀紀 倉光
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Holdings Corp
Original Assignee
Matsushita Electric Industrial Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Matsushita Electric Industrial Co Ltd filed Critical Matsushita Electric Industrial Co Ltd
Priority to JP2006598A priority Critical patent/JPH03214507A/en
Publication of JPH03214507A publication Critical patent/JPH03214507A/en
Pending legal-status Critical Current

Links

Landscapes

  • Compositions Of Oxide Ceramics (AREA)
  • Inorganic Insulating Materials (AREA)

Abstract

PURPOSE:To obtain the subject dielectric porcelain composite having high dielectric constant, insulation resistance and dielectric breakdown voltage while being excellent in goodness degree Q and having a small electrostatic capacity temperature coefficient. CONSTITUTION:In a formula x [(BaO)(1-m)(CaO)m]-yTiO2-zReO3/2, (x+y+z+1.00, 0.01<=m<=0.30, Re is one or more of rare earth elements to be selected from La, Pr, Nd and Sm), those wherein x, y, z consist of a range of mole ratios surrounded by respective points a, b, c, d, e, f of the table I, are used to constitute a dielectric porcelain composite. Thereby, a goodness degree Q is improved and insulation resistance is heightened without largely changing dielectric constant, an electrostatic capacity temperature coefficient and a value of dielectric breakdown strength.

Description

【発明の詳細な説明】 産業上の利用分野 本発明は誘電率,絶縁抵抗,絶縁破壊電圧が高く、良好
度Qにすぐれ、静電容量温度係数が小さい誘電体磁器組
成物に関するものである。
DETAILED DESCRIPTION OF THE INVENTION Field of Industrial Application The present invention relates to a dielectric ceramic composition that has high dielectric constant, high insulation resistance, high dielectric breakdown voltage, excellent quality Q, and low temperature coefficient of capacitance.

従来の技術 従来から、誘電率,絶縁抵抗が高く、良好度Qにすぐれ
、静電容量温度係数が小さい誘電体磁器組成物として下
記のような系が知られている。
BACKGROUND OF THE INVENTION Conventionally, the following systems have been known as dielectric ceramic compositions that have a high dielectric constant and insulation resistance, an excellent quality Q, and a small temperature coefficient of capacitance.

・BaO−TiO2−Nd203系 ・BaO−T io2−Sm203系 発明が解決しようとする課題 しかし、これらの組成は、例えば0.09Ba00.5
6Ti02 0.35NdO3/2の組成比からなる誘
電体材料を使用し、円板形磁器コンデンサを作製すると
、誘電率二67,静電容量温度係数二N40ppm/℃
,良好度Q : 3000,絶縁抵抗:8.OX101
2Ω,絶縁破壊強度: 3 0 k v/mmであり、
満足のできる値ではない。
・BaO-TiO2-Nd203 system ・BaO-Tio2-Sm203 system Problems to be solved by the invention However, these compositions, for example, 0.09Ba00.5
When a disk-shaped ceramic capacitor is manufactured using a dielectric material with a composition ratio of 6Ti02 0.35NdO3/2, the dielectric constant is 267 and the capacitance temperature coefficient is 2N40ppm/℃.
, Goodness Q: 3000, Insulation resistance: 8. OX101
2Ω, dielectric breakdown strength: 30 kv/mm,
This is not a satisfactory value.

課題を解決するための手段 これらの課題を解決するために本発明は、一般式x [
 (BaO)B−m)(Cab)m]−yTio2z 
R e 03/2と表した時(ただし、x+y+z=1
.00. 0.01≦m≦0.30、ReはLa.Pr
.Nd,Smから選ばれる一種以上の希土類元素)。
Means for Solving the Problems In order to solve these problems, the present invention provides the general formula x [
(BaO)B-m) (Cab)m]-yTio2z
When expressed as R e 03/2 (x+y+z=1
.. 00. 0.01≦m≦0.30, Re is La. Pr
.. one or more rare earth elements selected from Nd, Sm).

x.y.zが以下に表す各点a,b.c.d.e.fで
囲まれるモル比の範囲からなることを特徴とする誘電体
磁器組成物を提案するものである。
x. y. Each point a, b. c. d. e. The present invention proposes a dielectric ceramic composition characterized by having a molar ratio in the range surrounded by f.

(以  下  余  白) 作用 第1図は本発明にかかる組成物の主成分の組成範囲を示
す三元図であり、主成分の組成範囲を限定した理由を第
1図を参照しながら説明する。すなわち、A領域では焼
結が著しく困難である。また、B領域では良好度Qが低
下し実用的でなくなる。さらに、C,D@域では静電容
量温度係数がマイナス側に大きくなりすぎて実用的でな
くなる。そして、E領域では静電容量温度係数がプラス
方向に移行するが、誘電率が小さ《実用的でなくなる。
(Margins below) Function Figure 1 is a ternary diagram showing the composition range of the main components of the composition according to the present invention, and the reason for limiting the composition range of the main components will be explained with reference to Figure 1. . That is, sintering is extremely difficult in region A. Furthermore, in region B, the quality Q decreases, making it impractical. Furthermore, in the C and D@ ranges, the capacitance temperature coefficient becomes too large on the negative side, making it impractical. In region E, the temperature coefficient of capacitance shifts to the positive direction, but the dielectric constant is small (not practical).

また、ReをLa.Pr.Nd.Smから選ぶことによ
り、La.Pr,Nd,Smの順で誘電率を大きく下げ
ることなく、静電容量温度係数をプラス方向に移行する
ことが可能であり、La.Pr,Nd,Smの1種ある
いはそれらの組合せにより静電容量温度係数の調節が可
能である。
Also, Re is La. Pr. Nd. By selecting from Sm, La. It is possible to shift the capacitance temperature coefficient in the positive direction without greatly lowering the dielectric constant in the order of Pr, Nd, and Sm, and La. The capacitance temperature coefficient can be adjusted by using one of Pr, Nd, and Sm or a combination thereof.

また、BaOをCaOで置換することにより、誘電率,
静電容量温度係数,絶縁破壊強度の値を太き《変えるこ
とな《、良好度Qを向上させ、絶縁抵抗を高くする効果
を有しているが、その置換率mが0.01未満では置換
効果はな《、一方0.30を超えると良好度Q,絶縁抵
抗が低下し、静電容量温度係数もマイナス側に大きくな
りすぎ実用的でなくなる。
In addition, by replacing BaO with CaO, the dielectric constant,
It has the effect of increasing the capacitance temperature coefficient and dielectric breakdown strength without changing the values, improving the quality Q and increasing the insulation resistance, but if the substitution rate m is less than 0.01, On the other hand, if it exceeds 0.30, the goodness Q and insulation resistance will decrease, and the capacitance temperature coefficient will also become too large on the negative side, making it impractical.

実施例 以下に、本発明を具体的実施例により説明する。Example The present invention will be explained below using specific examples.

(実施例1) 出発原料には化学的に高純度のBaC○3,CaCO3
,TiO2, La2o3,PrsO目,Nd203お
よびSm2(h粉末を下記の第1表に示す組成比になる
ように秤量し、めのうボールを備えたゴム内張りのボー
ルミルに純水とともに入れ、湿式混合後、脱水乾燥した
。この乾燥粉末を高アルミナ質のルツボに入れ、空気中
で1100℃にて2時間仮焼した。この仮焼粉末を、め
のうボールを備えたゴム内張りのボールミルに純水とと
もに入れ、湿式粉砕後、脱水乾燥した。この粉砕粉末に
、有機バインダーを加え、均質とした後、32メッシュ
のふるいを通して整粒し、金型と油圧プレスを用いて成
形圧力1ton/cn(で直径15mm,厚み0.4m
に成形した。次いで、この成形円板をジルコニア粉末を
敷いたアルミナ質のサヤに入れ、空気中にて下記の第1
表に示す温度で2時間焼成し、第1表に示す組成比の誘
電体磁器を得た。
(Example 1) Chemically high purity BaC○3, CaCO3 are used as starting materials.
, TiO2, La2o3, PrsO, Nd203, and Sm2 (h powders were weighed to have the composition ratio shown in Table 1 below, and put into a rubber-lined ball mill equipped with an agate ball with pure water, and after wet mixing, It was dehydrated and dried. This dried powder was placed in a high alumina crucible and calcined in air at 1100°C for 2 hours. This calcined powder was placed in a rubber-lined ball mill equipped with agate balls together with pure water. After wet pulverization, it was dehydrated and dried. An organic binder was added to this pulverized powder to make it homogeneous, and then it was sized through a 32-mesh sieve, and a molding pressure of 1 ton/cn (with a diameter of 15 mm) was formed using a mold and a hydraulic press. Thickness 0.4m
It was molded into. Next, this molded disk was placed in an alumina pod covered with zirconia powder, and the following first step was carried out in the air.
Firing was carried out for 2 hours at the temperature shown in the table to obtain dielectric porcelain having the composition ratio shown in Table 1.

(以 下 余 白) く 第 1 表 〉 このようにして得られた誘電体磁器円板は、厚みと直径
を測定し、誘電率,良好度Q,静電容量温度係数測定用
試料は、誘電体磁器円板の両面全体に銀電極を焼き付け
、絶縁抵抗,絶縁破壊強度測定用試料は、誘電体磁器円
板の外周より内側に1+nmの幅で銀電極のない部分を
設け、銀電極を焼き付けた。そして、誘電率,良好度Q
,静電容量温度係数は、横河・ヒューレット・パッカー
ド■製デジタルLCRメータのモデル4275Aを使用
し、測定温度20℃,測定電圧1 . O V r m
 s、測定周波数IMHzでの測定より求めた。なお、
静電容量温度係数は、20℃と85℃の静電容量を測定
し、次式により求めた。
(Left below) Table 1 The thickness and diameter of the dielectric porcelain disc thus obtained were measured, and the dielectric constant, goodness Q, and capacitance temperature coefficient measurement sample were Silver electrodes are baked onto both sides of the dielectric porcelain disk, and a sample for measuring insulation resistance and dielectric breakdown strength is prepared by providing a 1+nm wide part without silver electrodes inside the outer circumference of the dielectric porcelain disk, and baking the silver electrodes. Ta. And the dielectric constant, goodness Q
, the temperature coefficient of capacitance was measured using a digital LCR meter model 4275A manufactured by Yokogawa/Hewlett-Packard ■ at a measurement temperature of 20°C and a measurement voltage of 1. O V r m
s, determined by measurement at a measurement frequency of IMHz. In addition,
The temperature coefficient of capacitance was determined by measuring capacitance at 20° C. and 85° C. using the following formula.

TC= (C−Co)/CoX1/65X106TC:
静電容量温度係数(ppm/℃)Co:20℃での静電
容量(pF) C :85℃での静電容量(pF) また、誘電率は次式より求めた。
TC= (C-Co)/CoX1/65X106TC:
Temperature coefficient of capacitance (ppm/°C) Co: Capacitance at 20°C (pF) C: Capacitance at 85°C (pF) Further, the dielectric constant was determined from the following formula.

K=143.8XCoXt/D2 K:誘電率 Co:20℃での静電容量(pF) D :誘電体磁器の直径(聰) t :誘電体磁器の厚み(m) さらに、絶縁抵抗は、構河・ヒューレット・パッカード
(株)製HRメータのモデル4329Aを使用し、測定
電圧50V.D.C..測定時間1分間による測定より
求めた。
K = 143.8X Co Using HR meter model 4329A manufactured by Hewlett-Packard Co., Ltd., the measurement voltage was 50V. D. C. .. It was determined by measurement with a measurement time of 1 minute.

そして、絶縁破壊強度は、菊水電子工業(株)製高電圧
電源PH335K−3形を使用し、試料をシリコンオイ
ル中に入れ、昇圧速度50V/seeにより求めた絶縁
破壊電圧を誘電体厚みで除算し、1tw+当りの絶縁破
壊強度とした。
The dielectric breakdown strength was determined by using a high-voltage power supply PH335K-3 type manufactured by Kikusui Electronics Co., Ltd., placing the sample in silicone oil, and dividing the dielectric breakdown voltage determined by a voltage increase rate of 50 V/see by the dielectric thickness. The dielectric breakdown strength was defined as the dielectric breakdown strength per 1 tw+.

試験条件を第1表に併せて示し、試験結果を下記の第2
表に示す。
The test conditions are also shown in Table 1, and the test results are shown in Table 2 below.
Shown in the table.

(以 下 余 白) なお、実施例における誘電体磁器の作製方法では、Ba
COs,CaCO3,’rto2,Lat.3,Prs
o++,Nd203および、Sm203を使用したが、
この方法に限定されるものではなく、所望の組成比にな
るように、BaTiO3などの化合物、あるいは炭酸塩
,水酸化物など空気中での加熱により、Bad.Cab
.TiO2,La203.P r 6 01 I* N
 d 2 0 3およびSm203となる化合物を使用
しても実施例と同程度の特性を得ることができる。
(Left below) In addition, in the method for producing dielectric ceramic in the example, Ba
COs, CaCO3, 'rto2, Lat. 3.Prs.
o++, Nd203 and Sm203 were used, but
The method is not limited to this method, but Bad. Cab
.. TiO2, La203. P r 6 01 I * N
Characteristics comparable to those of the examples can be obtained even when compounds forming d 2 0 3 and Sm 203 are used.

また、主成分をあらかじめ仮焼し、副成分を添加しても
実施例と同程度の特性を得ることができる。
Further, even if the main component is calcined in advance and the subcomponents are added, properties comparable to those of the examples can be obtained.

また、上述の基本組成のほかに、Si02.MnO2,
Fe203,ZnOなど一般にフラックスと考えられて
いる塩類,酸化物などを、特性を損なわない範囲で加え
ることもできる。
In addition to the above-mentioned basic composition, Si02. MnO2,
Salts, oxides, etc. that are generally considered to be fluxes, such as Fe203 and ZnO, can also be added within a range that does not impair the properties.

発明の効果 以上のように本発明によれば、誘電率,絶縁抵抗,絶縁
破壊電圧が高く、良好度Qにすぐれ、静電容量温度係数
が小さいため、製品の小型化,大容量化,特性向上が可
能である。
Effects of the Invention As described above, according to the present invention, the dielectric constant, insulation resistance, and dielectric breakdown voltage are high, the quality Q is excellent, and the temperature coefficient of capacitance is small, so that the product can be made smaller, larger in capacity, and have better characteristics. Improvement is possible.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は本発明にかかる組成物の主成分の組成範囲を説
明する三元図である。
FIG. 1 is a ternary diagram illustrating the composition range of the main components of the composition according to the present invention.

Claims (1)

【特許請求の範囲】  一般式 x[(BaO)_(_1_−_m_)(CaO)_m]
−yTiO_2−zReO_3_/_2と表した時(た
だし、x+y+z=1.00,0.01≦m≦0.30
、ReはLa,Pr,Nd,Smから選ばれる一種以上
の希土類元素)。 x,y,zが以下に表す各点a,b,c,d,e,fで
囲まれるモル比の範囲からなることを特徴とする誘電体
磁器組成物。
[Claims] General formula x [(BaO)_(_1_-_m_)(CaO)_m]
-yTiO_2-zReO_3_/_2 (where x+y+z=1.00, 0.01≦m≦0.30
, Re is one or more rare earth elements selected from La, Pr, Nd, and Sm). A dielectric ceramic composition characterized in that x, y, and z are in a molar ratio range surrounded by points a, b, c, d, e, and f shown below.
JP2006598A 1990-01-16 1990-01-16 Dielectric porcelain composite Pending JPH03214507A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2006598A JPH03214507A (en) 1990-01-16 1990-01-16 Dielectric porcelain composite

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2006598A JPH03214507A (en) 1990-01-16 1990-01-16 Dielectric porcelain composite

Publications (1)

Publication Number Publication Date
JPH03214507A true JPH03214507A (en) 1991-09-19

Family

ID=11642770

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2006598A Pending JPH03214507A (en) 1990-01-16 1990-01-16 Dielectric porcelain composite

Country Status (1)

Country Link
JP (1) JPH03214507A (en)

Similar Documents

Publication Publication Date Title
JPH03214507A (en) Dielectric porcelain composite
JPH04188506A (en) Dielectric porcelain composition
JPS6256361A (en) Dielectric ceramic composition
JP2568567B2 (en) Dielectric porcelain composition
JP2568565B2 (en) Dielectric porcelain composition
JP2676778B2 (en) Dielectric porcelain composition
JPH11130527A (en) Dielectric ceramic composition and its production
JPH03216911A (en) Dielectric porcelain composition
JPH03219502A (en) Dielectric porcelain composition
JP2568566B2 (en) Dielectric porcelain composition
JP3024768B2 (en) Dielectric porcelain composition
JPS62243207A (en) Dielectric porcelain compound
JPH0383855A (en) Production of barium titanate-based semiconductor porcelain
JPH04174907A (en) Dielectric porcelain composition material
JPH042007A (en) Dielectric porcelain composite
JPH0467514A (en) Dielectric porcelain composite
JPH06283028A (en) Dielectric ceramic composite
JPH04174904A (en) Dielectric porcelain composition material
JPH04167309A (en) Dielectric porcelain compound
JPH03263706A (en) Dielectric porcelain composition
JPS62243208A (en) Dielectric porcelain compound
JPH02267161A (en) Dielectric ceramic composition
JPH04174906A (en) Dielectric porcelain composition material
JPH04174908A (en) Dielectric porcelain composition material
JPH02267164A (en) Dielectric porcelain composition