JPH03214095A - Fuel assembly for boiling water reactor - Google Patents
Fuel assembly for boiling water reactorInfo
- Publication number
- JPH03214095A JPH03214095A JP2007152A JP715290A JPH03214095A JP H03214095 A JPH03214095 A JP H03214095A JP 2007152 A JP2007152 A JP 2007152A JP 715290 A JP715290 A JP 715290A JP H03214095 A JPH03214095 A JP H03214095A
- Authority
- JP
- Japan
- Prior art keywords
- fuel
- gadolinia
- fuel assembly
- peak
- concentration
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
- 239000000446 fuel Substances 0.000 title claims abstract description 85
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 title claims abstract description 12
- 238000009835 boiling Methods 0.000 title claims description 6
- 239000002574 poison Substances 0.000 claims abstract description 7
- 231100000614 poison Toxicity 0.000 claims abstract description 7
- 239000000463 material Substances 0.000 claims abstract description 4
- CMIHHWBVHJVIGI-UHFFFAOYSA-N gadolinium(iii) oxide Chemical compound [O-2].[O-2].[O-2].[Gd+3].[Gd+3] CMIHHWBVHJVIGI-UHFFFAOYSA-N 0.000 abstract description 52
- 238000000034 method Methods 0.000 abstract description 2
- 238000002485 combustion reaction Methods 0.000 description 7
- 230000007423 decrease Effects 0.000 description 7
- 230000009257 reactivity Effects 0.000 description 7
- 239000011800 void material Substances 0.000 description 7
- 229910052778 Plutonium Inorganic materials 0.000 description 5
- 230000000694 effects Effects 0.000 description 5
- OYEHPCDNVJXUIW-UHFFFAOYSA-N plutonium atom Chemical compound [Pu] OYEHPCDNVJXUIW-UHFFFAOYSA-N 0.000 description 5
- JFALSRSLKYAFGM-OIOBTWANSA-N uranium-235 Chemical compound [235U] JFALSRSLKYAFGM-OIOBTWANSA-N 0.000 description 4
- 238000010586 diagram Methods 0.000 description 3
- 229910052770 Uranium Inorganic materials 0.000 description 2
- 230000008859 change Effects 0.000 description 2
- 239000002826 coolant Substances 0.000 description 2
- 238000000605 extraction Methods 0.000 description 2
- JFALSRSLKYAFGM-UHFFFAOYSA-N uranium(0) Chemical compound [U] JFALSRSLKYAFGM-UHFFFAOYSA-N 0.000 description 2
- 238000006243 chemical reaction Methods 0.000 description 1
- 230000004907 flux Effects 0.000 description 1
- 238000000465 moulding Methods 0.000 description 1
- 239000003758 nuclear fuel Substances 0.000 description 1
- 238000010248 power generation Methods 0.000 description 1
Classifications
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02E—REDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
- Y02E30/00—Energy generation of nuclear origin
- Y02E30/30—Nuclear fission reactors
Landscapes
- Monitoring And Testing Of Nuclear Reactors (AREA)
- Liquid Carbonaceous Fuels (AREA)
Abstract
Description
【発明の詳細な説明】
〔発明の目的〕
(産業上の利用分野)
本発明は、特に高燃焼度に好適な、経済性と安全性の向
上した沸騰水型原子炉用燃料集合体に関する。DETAILED DESCRIPTION OF THE INVENTION [Object of the Invention] (Industrial Application Field) The present invention relates to a fuel assembly for a boiling water nuclear reactor that is particularly suitable for high burnup and has improved economic efficiency and safety.
(従来の技術)
沸騰水型原子炉の炉心では、炉心下部から上方に向かう
冷却材の流れに沿って冷却材中にボイドが発生するため
に、減速材の密度は炉心下部で人きく」二部で小さくな
る。このために出力ビーキングが炉心上部に生じやすく
、これを低減することがこれまでの重要な課題であった
。ところが近年では、燃料要素の熱的・機械的強度の向
上に伴ない5出カビ−キングの許容範囲内で1発電コス
ト低減のために燃料経済性を向上させることが要求され
るようになってきた。この点からみると、前記した炉心
上下方向の減速材密度分布を燃料経済性の向上に利用す
ることができる。すなわち。(Prior art) In the core of a boiling water reactor, voids occur in the coolant along the flow of coolant from the bottom of the core upwards, so the density of the moderator decreases at the bottom of the core. becomes smaller in parts. For this reason, power beaking tends to occur in the upper part of the reactor core, and reducing this has been an important issue to date. However, in recent years, with improvements in the thermal and mechanical strength of fuel elements, it has become necessary to improve fuel economy in order to reduce power generation costs within the allowable range of 5-output molding. Ta. From this point of view, the above-mentioned moderator density distribution in the vertical direction of the core can be utilized to improve fuel economy. Namely.
運転の1サイクルにおいて、初期から中期にかけては出
力分布を下部ピークで運転し、末期には出力分布を上方
ピークとする。これにより、運転中には燃料上部のウラ
ン235の燃焼を抑制するとともにプルトニウムを蓄積
し、末期においては燃料上部に十分残っているウラン2
35とTj積したプルトニウムを効率的に燃焼させるこ
とができる。In one cycle of operation, the output distribution is at the lower peak from the beginning to the middle, and the output distribution is at the upper peak at the end. This suppresses the combustion of uranium-235 in the upper part of the fuel and accumulates plutonium during operation.
Plutonium multiplied by 35 and Tj can be efficiently burned.
このような効果を十分に発揮するために提案されている
燃料集合体の一例として、特開昭58−196483で
は、上部のウラン濃縮度を下部よりも大きくシ、かつ可
燃性毒物であるガドリニアを含有する燃料棒の本数を上
部で下部よりも多くしている。As an example of a fuel assembly that has been proposed to fully demonstrate this effect, Japanese Patent Application Laid-Open No. 58-196483 proposes a fuel assembly in which the uranium enrichment in the upper part is higher than that in the lower part, and gadolinia, which is a burnable poison, is added. The number of fuel rods contained in the upper part is greater than that in the lower part.
(発明が解決しようとする課題)
現在、燃料経済性を向上させる一つの手段として、燃料
の濃縮度を高め、取出燃焼度を現在の約30000MW
dへから順次高燃焼度化していくことが計画されている
。ところが、上記のごとき発明はこのような高燃焼度燃
料に対してはその効果を十分に発揮できないことが明ら
かになった。(Problem to be Solved by the Invention) Currently, as a means of improving fuel economy, increasing the enrichment of fuel and reducing the extraction burnup to the current level of approximately 30,000 MW
The plan is to gradually increase the burnup starting from d. However, it has become clear that the above-described invention cannot sufficiently exhibit its effects on such high burnup fuels.
すなわち、前記した減速材密度分布により出力分布が下
ツノピークとなるため、燃料の燃焼は下部の方が上部よ
りも進み、その結果燃料の反応度は下部の方がより早く
低下する。従って、出力分布は、第1サイクルの初期に
おいて最も下方ピークであり、第1サイクル末期さらに
第2.3サイクル・・と燃焼が進むにつれて徐々に平坦
化されていく、高燃焼度燃料では、サイクル長さの最期
化や燃料の炉内滞在期間の延長のためにこのような傾向
がさらに強く、出力分布はむしろ上方ピークとなりやす
い、また、高燃焼度燃料では、燃料集合体あたりの燃料
棒本数を現行の60〜62本から70本以上に増やすこ
とが考えられており、その場合には出力ビーキングの制
限が現在よりも緩和され、これを積極的に利用して燃料
経済性の向上のためにより一層下方ピークで運転すると
、燃焼度分布によって上方ピークとなる傾向がますます
強まる。That is, since the power distribution has a lower horn peak due to the moderator density distribution described above, combustion of the fuel progresses in the lower part than in the upper part, and as a result, the reactivity of the fuel decreases faster in the lower part. Therefore, the power distribution has its lowest peak at the beginning of the first cycle, and gradually flattens out as combustion progresses, from the end of the first cycle to the 2.3rd cycle, and so on. This tendency is even stronger due to the final length and the extension of the fuel residence period in the reactor, and the power distribution tends to peak upwards.Also, with high burnup fuel, the number of fuel rods per fuel assembly is It is being considered to increase the number of engines from the current 60 to 62 to more than 70, and in that case, the restriction on output peaking will be relaxed compared to the current one, and this will be actively used to improve fuel economy. When operating at a lower peak, the burnup distribution tends to have an upper peak.
このような燃焼度分布による作用のため、」二記した発
明による燃料集合体では、運転サイクル初期から中期に
かけて出力分布を十分に一ド方ビークとすることができ
ない。Due to the effects of such burnup distribution, in the fuel assembly according to the invention mentioned in section 2, the power distribution cannot be made into a sufficiently one-sided peak from the beginning to the middle of the operating cycle.
ここで、サイクル末期の出力分布を十分上方ピークとす
るために燃料上部の濃縮度をさらに高めると、原子炉停
止時における未臨界度の指標である炉停止余裕が減少す
る。すなわち、冷温時の中性子束分布は上方ピークであ
るため、燃料上部の濃縮度を高めるとさらに上方ピーク
となり、その結果冷温時の反応度が増大し炉停止余裕が
減少するのである。この炉停止余裕の減少を避けるため
に上部の可燃性毒物入り燃料棒の本数や可燃性毒物濃度
を増すことが考えられるが、このような方法では炉停止
余裕を十分には改善できない、すなわち1通常、経済性
向上の観点からガドリニアはサイクル末期には燃焼して
しまうように設J[されるので、最も炉停止余裕が厳し
くなるとr想されるサイクル末期の炉停止余裕はほとん
ど向上できないのである。Here, if the enrichment in the upper part of the fuel is further increased in order to make the power distribution at the end of the cycle reach a sufficiently upper peak, the reactor shutdown margin, which is an index of subcriticality at the time of reactor shutdown, decreases. That is, since the neutron flux distribution at cold temperatures has an upper peak, increasing the enrichment in the upper part of the fuel causes an even higher peak, and as a result, the reactivity at cold temperatures increases and the reactor shutdown margin decreases. In order to avoid this decrease in the reactor shutdown margin, it is possible to increase the number of fuel rods containing burnable poison in the upper part or increase the burnable poison concentration, but such methods cannot sufficiently improve the reactor shutdown margin. Normally, from the perspective of improving economic efficiency, gadolinia is designed so that it burns out at the end of the cycle, so it is almost impossible to improve the reactor shutdown margin at the end of the cycle, when the reactor shutdown margin is considered to be the most severe. .
本発明の[1的は5以上の課題を解決して、特に高燃焼
度燃料において、炉停止余裕を減少させることなく、″
M転サイクル初期から中期にかけて十分下方ピークで運
転し、サイクル末期で上方ピークとなる運転を可能にし
燃料経済性を向上させることである。The first object of the present invention is to solve the problems of 5 or more, and to solve the above problems without reducing reactor shutdown margin, especially in high burnup fuel.
The objective is to improve fuel economy by enabling operation at a sufficiently low peak from the early to middle stages of the M conversion cycle and at a sufficiently high peak at the end of the cycle.
(、s題を解決するための手段) 以上の課題を解決するために、本発明では。 (Means for solving s problem) In order to solve the above problems, the present invention has the following features.
多数の燃料棒を束ねて構成される沸騰水型原を炉用燃料
集合体において、核分裂性物質含有社を燃料集合体の下
部よりも上部において少なく、かつ可燃性毒物を含む燃
料棒の本数を燃料集合体の下部よりも上部において多く
する。In a reactor fuel assembly, a boiling water type material consisting of a large number of fuel rods is bundled, and the number of fuel rods containing fissile material is smaller in the upper part than in the lower part of the fuel assembly, and the number of fuel rods containing burnable poison is reduced. More at the top of the fuel assembly than at the bottom.
(作用)
燃料上部の方が下部よりも濃縮度が低いため反応度が低
くなるので、出力分布を十分下方ピークとすることがで
きる。ただし、下方ピークで燃焼すると下部の燃焼度が
上部よりも早く進むためにF部の反応度が早く低下する
ので、濃縮度分布はどには反応度差が生じない。そこで
、可燃性毒物を含む燃料棒の本数を上部で多くすること
によって、特に燃焼初期から中期にかけて出力分布をド
方ビークとすることができる。さらに、燃料上部の方が
下部よりも濃縮度が低いので、特にサイクル末期におい
て出力分布が上方ピークとなっても炉停止余裕を減少さ
せずにすますことができる。(Function) Since the upper part of the fuel has a lower enrichment degree than the lower part, the reactivity is lower, so that the power distribution can be made to have a sufficiently downward peak. However, when combustion occurs at the lower peak, the burnup in the lower part advances faster than in the upper part, so the reactivity in the F part decreases faster, so no difference in reactivity occurs anywhere in the enrichment distribution. Therefore, by increasing the number of fuel rods containing burnable poison in the upper part, the power distribution can be made to have a double peak, especially from the early stage to the middle stage of combustion. Furthermore, since the upper part of the fuel is less enriched than the lower part, the reactor shutdown margin can be avoided even if the power distribution reaches an upper peak, especially at the end of the cycle.
(実施例)
本発明の一実施例を第1図に示す。第2図は本実施例の
燃料集合体の断面図であり、62本の燃料棒1と2本の
ウォータロッド2とを正方格子状に配列し、これをチャ
ンネルボックス3で囲繞したものである。第1図に示す
とおり、本実施例では、上部の平均濃縮度は3.09v
t%、ガドリニア入リ燃料棒の本数は7本、 ガドリニ
ア濃度は2.5wt%であり、下部の平均濃縮度は3.
35wt%、ガドリニア入り燃料棒の本数は5本、ガド
リニア濃度は2.5wt%である。第3図は、ボイド率
40%時の無限増倍率の燃焼変化であり1曲線4が燃料
」一部、曲線5が燃料下部である。濃縮度差およびガド
リニア入り燃料棒本数の差により下部の無限増倍率が1
′、部よりも大きい。(Example) An example of the present invention is shown in FIG. FIG. 2 is a cross-sectional view of the fuel assembly of this embodiment, in which 62 fuel rods 1 and two water rods 2 are arranged in a square lattice shape, which is surrounded by a channel box 3. . As shown in Figure 1, in this example, the average concentration in the upper part is 3.09v.
t%, the number of fuel rods containing gadolinia is 7, the gadolinia concentration is 2.5 wt%, and the average enrichment in the lower part is 3.
The number of fuel rods containing gadolinia is 5, and the gadolinia concentration is 2.5 wt%. FIG. 3 shows the combustion change with an infinite multiplication factor when the void ratio is 40%, where curve 4 is the fuel part and curve 5 is the lower part of the fuel. The infinite multiplication factor in the lower part is 1 due to the difference in enrichment and the difference in the number of fuel rods containing gadolinia.
′, greater than part.
比較のための従来例として、特開昭58−196483
を第2図の燃料集合体に適用した例を第4図に示す。こ
の従来の燃料は第1図の実施例と比へて、ガドリニア入
り燃料棒本数およびガドリニア1度は同一で、濃縮度が
上下で反転したものである。As a conventional example for comparison, JP-A-58-196483
An example in which this is applied to the fuel assembly shown in FIG. 2 is shown in FIG. Compared to the embodiment shown in FIG. 1, this conventional fuel has the same number of fuel rods containing gadolinia and the same degree of gadolinia, but the enrichment levels are reversed.
従来の燃料の無限増倍率は第3図中に点線で示してあり
1曲線6が燃料上部1曲線7が燃料下部である。本燃料
ではガドリニアが燃え尽きる燃焼度の少し前で無限増倍
率が−に下逆転している。The infinite multiplication factor of the conventional fuel is shown by dotted lines in FIG. 3, where one curve 6 is the upper part of the fuel and the curve 7 is the lower part of the fuel. In this fuel, the infinite multiplication factor reverses to - just before the burnup when gadolinia burns out.
本実施例の燃料と従来の燃料を装荷した炉心の特性を以
下に示す。第5図は炉心平均無限増倍率の上下差(下部
の無限増倍率から下部の無限増倍率を引いた値)である
。実線8が本実施例、点線9が従来例である。第3図の
無限増倍率は説明のために同じボイド率で上下を比較し
たものであるが、炉心に装荷すると上部ではボイド率が
高く下部では低いので無限増倍率の上下差はマイナス側
にシフトする。第5図かられかるとおり、本発明による
燃料では、従来例に比べて、サイクル初期から末期直前
まで上下反応度差が小さいので出力分布が下方ピークに
なる。第6図は炉心平均ボイド率である。炉心平均ボイ
ド率は、出力分布が下方ピークでそのピーキング値が大
きいほど大きくなり、逆に出力分布が上方ピークでその
ピーキング値が大きいほど小さくなる。第6図において
、実線10が本実施例1点線11が従来例であり1本発
明によって、サイクル初期から末期直前までボイド率が
高く(すなわち下方ピーク)なっていることがわかる。The characteristics of the core loaded with the fuel of this example and the conventional fuel are shown below. Figure 5 shows the difference between the upper and lower core average infinite multiplication factors (the value obtained by subtracting the lower infinite multiplication factor from the lower infinite multiplication factor). The solid line 8 represents this embodiment, and the dotted line 9 represents the conventional example. The infinite multiplication factor in Figure 3 is a comparison of the upper and lower parts with the same void ratio for explanation, but when loaded into the core, the void ratio is high in the upper part and lower in the lower part, so the difference in the vertical multiplication factor shifts to the negative side. do. As can be seen from FIG. 5, in the fuel according to the present invention, the difference in reactivity between the upper and lower sides is smaller from the beginning of the cycle to just before the end of the cycle than in the conventional example, so that the output distribution has a downward peak. Figure 6 shows the core average void fraction. The core average void fraction increases as the power distribution peaks downward and its peaking value increases, and conversely, as the power distribution peaks upward and its peaking value increases, it decreases. In FIG. 6, the solid line 10 represents the present embodiment, the dotted line 11 represents the conventional example, and it can be seen that according to the present invention, the void ratio is high (that is, a downward peak) from the beginning of the cycle to just before the end.
第5図および第6図では1本発明の実施例と従来例とで
サイクル末期の特性はあまり変わらない。In FIGS. 5 and 6, the characteristics at the end of the cycle do not differ much between the embodiment of the present invention and the conventional example.
しかしながら、運転中には本実施例の方が従来例よりも
下方ピークで運転しているので、この間、燃料上部にお
いてウラン235の減損をより抑制しかつプルトニウム
をより多く蓄積している。その結果、 Hi均濃縮度は
等しいながら、本実施例では従来例に比べで、サイクル
末期の実効増倍率が約0.3%Δに増大している。However, during operation, the present example operates at a lower peak than the conventional example, so during this time, depletion of uranium-235 is more suppressed and more plutonium is accumulated in the upper part of the fuel. As a result, although the Hi average concentration is the same, in this example, the effective multiplication factor at the end of the cycle is increased to about 0.3%Δ compared to the conventional example.
本実施例ではガドリニア濃度を」二部で等しくしたが、
これを1−1:で異ならせてもよい。すなわち、サイク
ル中期において極端に下方ピークとなっている場合には
、下部のガドリニア濃度を上部よりも濃くすることによ
って下方ピークを緩和できるし、逆に、出力ビーキング
に十分余裕がある場合には、[一部のガドリニア濃度を
5部よりも濃くすることによって特にサイクル中期にお
いてより一層ド方ピークにすることができる。In this example, the gadolinia concentration was equalized in two parts.
This may be varied by 1-1:. In other words, if there is an extremely downward peak in the middle of the cycle, the downward peak can be alleviated by making the gadolinia concentration in the lower part higher than in the upper part, and conversely, if there is sufficient margin for output peaking, [By increasing the concentration of a part of gadolinia higher than 5 parts, it is possible to make the peak even more extreme, especially in the middle of the cycle.
本発明の第2の実施例を第7図に示す。この燃料は取出
燃焼度約45000MVd/lの超高燃焼度用燃料であ
り、第8図にその断面図を示すように74本の燃料棒1
と2本の大径のウォータロット12とからなっている。A second embodiment of the invention is shown in FIG. This fuel is an ultra-high burnup fuel with an extraction burnup of approximately 45,000 MVd/l, and as shown in the cross-sectional view of Fig. 8, 74 fuel rods 1
and two large-diameter water rods 12.
この第2の実施例では燃料経済性向」二のためにいくつ
かの工夫が凝らされており、炉心外への中性子の漏れを
低減するために上端部の全長の2724および下端部の
全長の1/24の部分をガドリニアを含まない天然ウラ
ンとし、サイクル末期でのガドリニアの残留による反応
度損失の低減と炉停止余裕の増大のために上端部のすぐ
下の全長の3724の部分の濃縮度を低くガドリニア装
荷鼠を減らしている。本発明は、これらを除いた全長の
18/24を占める中央部分に適用されており、その」
二部は下部に比べて、 平均濃縮度が0.4νL%低く
、ガドリニア入り燃料棒の本数は4本多く、その燃料棒
のガドリニア濃度は1.0wt%低い。In this second embodiment, several measures have been taken to improve the fuel economy, and in order to reduce the leakage of neutrons out of the reactor core, the total length of the upper end is 2724 mm, and the total length of the lower end is 1 mm. The part 24 is made of natural uranium that does not contain gadolinia, and the enrichment of the part 3724 of the total length immediately below the upper end is changed to reduce reactivity loss due to residual gadolinia at the end of the cycle and increase margin for reactor shutdown. Low gadolinia loading rat is reduced. The present invention is applied to the central portion, which occupies 18/24 of the total length excluding these.
Compared to the lower part, the average enrichment in the second part is 0.4 νL% lower, the number of fuel rods containing gadolinia is 4 more, and the gadolinia concentration in the fuel rods is 1.0 wt% lower.
この第2の実施例のように、本発明は、端部を除く中央
の大部分に適用すればその機能は十分に発揮することが
できる。As in the second embodiment, the present invention can fully exhibit its functions if applied to most of the center excluding the ends.
本発明によれば、特に高燃焼度燃料において。 According to the invention, especially in high burnup fuels.
運転サイクル初期から中期にかけて下方ピークで運転で
き、この間に燃料上部のウラン235の減損を抑制する
とともにプルトニウムを蓄積し、すイクル末期には出力
分布を一ヒ方ピークとすることができるので、燃料上部
のウラン235およびプルトニウムを効率的に燃焼させ
ることができる。It is possible to operate at a downward peak from the beginning to the middle of the operating cycle, during which time the depletion of uranium-235 in the upper part of the fuel is suppressed and plutonium is accumulated, and the power distribution can be brought to a single peak at the end of the cycle. The upper uranium-235 and plutonium can be burned efficiently.
さらに、燃料上部の濃縮度をr部よりも低くしであるの
で炉停止余裕も改善できる。これらの効果によって、安
全性を損なうこと無く燃料経済性を向上させることがで
きろ。Furthermore, since the enrichment in the upper part of the fuel is lower than in the r part, the reactor shutdown margin can be improved. These effects can improve fuel economy without compromising safety.
第1図は本発明の第1の実施例の燃料の上下濃縮度およ
びガドリニア分布を表す図、第2図は本発明の第1の実
施例の燃料の断面図、第3図は本発明の第1の″A施例
の燃料の上部および下部の無限増倍率の燃焼変化を表す
図、第4図は従来例の燃料の」二部濃縮度およびガドリ
ニア分布を表す図、第5図は本発明の第1の実施例の燃
料を装荷した炉心における無限増倍率の上下差を表す図
、第6図は本発明の第1の実施例の燃料を装荷した炉心
における平均ボイド率を表す図、第7図は本発明の第2
の実施例の燃料の上下濃縮度およびガドリニア分布を表
す図、第8図は本発明の第2の実施例の燃料の断面図で
ある。
1・・・燃料棒
2・・・ウォータロッド
3・・・チャンネルボックス
12・・・太径ウォータロッドFIG. 1 is a diagram showing the vertical enrichment and gadolinia distribution of the fuel according to the first embodiment of the present invention, FIG. 2 is a cross-sectional view of the fuel according to the first embodiment of the present invention, and FIG. The first figure shows the combustion change of the upper and lower part of the fuel of Example A, Figure 4 shows the two-part enrichment and gadolinia distribution of the fuel of the conventional example, and Figure 5 shows the FIG. 6 is a diagram showing the vertical difference in the infinite multiplication factor in the core loaded with the fuel of the first embodiment of the invention, and FIG. 6 is a diagram showing the average void fraction in the core loaded with the fuel of the first embodiment of the invention. FIG. 7 shows the second embodiment of the present invention.
FIG. 8 is a cross-sectional view of the fuel according to the second embodiment of the present invention. 1... Fuel rod 2... Water rod 3... Channel box 12... Large diameter water rod
Claims (1)
集合体において、核分裂性物質含有量が燃料集合体の下
部領域よりも上部領域において少なく、かつ可燃性毒物
を含む燃料棒の本数が燃料集合体の下部領域よりも上部
領域において多いことを特徴とする沸騰水型原子炉用燃
料集合体。In a fuel assembly for a boiling water reactor consisting of a large number of fuel rods bundled together, the content of fissile material is lower in the upper region than in the lower region of the fuel assembly, and the number of fuel rods that contain burnable poison. 1. A fuel assembly for a boiling water reactor, characterized in that the amount of water is larger in an upper region than in a lower region of the fuel assembly.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP02007152A JP3117207B2 (en) | 1990-01-18 | 1990-01-18 | Fuel assembly for boiling water reactor |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP02007152A JP3117207B2 (en) | 1990-01-18 | 1990-01-18 | Fuel assembly for boiling water reactor |
Publications (2)
Publication Number | Publication Date |
---|---|
JPH03214095A true JPH03214095A (en) | 1991-09-19 |
JP3117207B2 JP3117207B2 (en) | 2000-12-11 |
Family
ID=11658099
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP02007152A Expired - Fee Related JP3117207B2 (en) | 1990-01-18 | 1990-01-18 | Fuel assembly for boiling water reactor |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP3117207B2 (en) |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2016138767A (en) * | 2015-01-26 | 2016-08-04 | 原子燃料工業株式会社 | Fuel assembly and reactor core |
-
1990
- 1990-01-18 JP JP02007152A patent/JP3117207B2/en not_active Expired - Fee Related
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2016138767A (en) * | 2015-01-26 | 2016-08-04 | 原子燃料工業株式会社 | Fuel assembly and reactor core |
Also Published As
Publication number | Publication date |
---|---|
JP3117207B2 (en) | 2000-12-11 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US4587090A (en) | Fuel assembly for boiling water reactor | |
US5337337A (en) | Fuel assembly | |
JPH03214095A (en) | Fuel assembly for boiling water reactor | |
JP3124046B2 (en) | LWR fuel assemblies | |
JP2963712B2 (en) | Fuel assembly for boiling water reactor | |
JPS63187191A (en) | Fuel aggregate | |
EP0613152A1 (en) | Mid-enrichment axial blanket for a nuclear reactor fuel rod | |
JP2966877B2 (en) | Fuel assembly | |
JP3085715B2 (en) | Reactor operation method | |
JPS6151275B2 (en) | ||
JP2557414B2 (en) | Fuel assembly for boiling water reactor | |
JP2988731B2 (en) | Reactor fuel assembly | |
JPS59147295A (en) | Fuel assembly | |
JPH0555836B2 (en) | ||
JP3943624B2 (en) | Fuel assembly | |
JP2811597B2 (en) | Fuel assembly for boiling water reactor | |
JP5547957B2 (en) | Boiling water reactor core | |
JPS61181993A (en) | Fuel aggregate for pressure tube type reactor | |
JPS62259088A (en) | Fuel aggregate | |
JPH06118188A (en) | Fuel assembly and core for boiling water reactor | |
JPS60238784A (en) | Fuel aggregate | |
JPH04122888A (en) | Fuel assembly and core of nuclear reactor | |
JPH0769447B2 (en) | Fuel assembly | |
JPS62276494A (en) | Fuel aggregate for boiling water type reactor | |
JPH0216477B2 (en) |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20081006 Year of fee payment: 8 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20081006 Year of fee payment: 8 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20091006 Year of fee payment: 9 |
|
LAPS | Cancellation because of no payment of annual fees |