JPH0321399A - Flocculation method of organic sludge - Google Patents

Flocculation method of organic sludge

Info

Publication number
JPH0321399A
JPH0321399A JP1154491A JP15449189A JPH0321399A JP H0321399 A JPH0321399 A JP H0321399A JP 1154491 A JP1154491 A JP 1154491A JP 15449189 A JP15449189 A JP 15449189A JP H0321399 A JPH0321399 A JP H0321399A
Authority
JP
Japan
Prior art keywords
formula
sludge
group
alkyl group
acid
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP1154491A
Other languages
Japanese (ja)
Other versions
JPH0556200B2 (en
Inventor
Kazutomo Takahashi
和友 高橋
Koichi Yamamoto
光一 山本
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Shokubai Co Ltd
Original Assignee
Nippon Shokubai Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Shokubai Co Ltd filed Critical Nippon Shokubai Co Ltd
Priority to JP1154491A priority Critical patent/JPH0321399A/en
Publication of JPH0321399A publication Critical patent/JPH0321399A/en
Publication of JPH0556200B2 publication Critical patent/JPH0556200B2/ja
Granted legal-status Critical Current

Links

Landscapes

  • Separation Of Suspended Particles By Flocculating Agents (AREA)
  • Treatment Of Sludge (AREA)

Abstract

PURPOSE:To efficiently carry out flocculation treatment of sludge and lower the water content of dewatered cake by adding a flocculant of amphoteric electrolytic polymer having a specific formula to an organic sludge after a metal salt is added to and stirred with the sludge and then dewatering the sludge. CONSTITUTION:After a metal salt, which is an inorganic flocculant, is added to and stirred with an organic sludge, an amphoteric electrolytic polymer having a formula I [n is 1-5 integer number and average value >=2; a+b+c=1; R1, R2, R3, R4, stand for H, alkyl; R5 stands for H, alkyl, omega-hydroxy-substituted alkyl; HY stands for basic acid group; and Z stands for amide groups having a formula II (R6, R7 stand for H, alkyl)] is added to the sludge to form flocs. Then, the flocs are dewatered using a dewatering machine such as a screw press-type dewatering machine.

Description

【発明の詳細な説明】 [産業上の利用分野] 本発明は各種産業廃水、及び下水、し尿処理等で生じた
無機性及び有機性の汚泥の効率的な脱水方法に関するも
のである. [従来の技術] 従来より、各種産業廃水、及び下水、し尿処理等におい
て、凝集沈殿汚泥や余剰汚泥が生じる.これらの汚泥の
凝集剤として無機性金属塩や有機高分子凝集剤が使用さ
れてきた. しかし汚泥の性状にもよるが、これらの方法では脱水ケ
ーキの含水率を十分に低下させることができない. また、最近、下水処理施設においても分流式の流入方式
が増加しているために汚泥中の有機質が増加する傾向に
あり、特にベルトプレス型脱水機を用いた場合ベルトか
らの脱水ケーキの剥離が不良となり、このため含水率を
比較的高い状態で脱水を止めている状況にある. これらの問題を解消する汚泥の凝集方法として、無m凝
集剤と有機高分子凝集剤を併用する方法、たとえば特開
昭61−216800号、特開昭61−200897号
、特開昭63−1 58200等が提案されている. [発明が解決しようとする問題点] 特開昭59−16599号、特開昭61−216800
号には、たとえばポリ硫酸鉄(@機a2集剤)と有機高
分子凝集剤を併用し、有機高分子凝集剤としてノニオン
性、アニオン性またはカチオン性有機高分子凝集剤を単
独で使用する方法が記載されているが、この方法では脱
水ケーキの含水率の低下が不十分である. また、特開昭61−200897号、特開昭61  2
 0 0 8 9 8 号ニ!.tmfiaf集剤と有
機高分子凝集剤を併用し、しかも有機高分子凝集剤とし
て、カチオン性有機高分子凝集剤とアニオン性有機高分
子凝集剤とを同時に用いる方法が記載されているが、こ
の方法でも脱水ケーキのr布剥離性が不十分である場合
が多く脱水ケーキの含水率の低下も困難である. また、特開昭63−158200号には無R凝集剤と有
機高分子li集剤を併用し、その有機高分子凝集剤とし
て、両性有機高分子凝集剤を用いる方法が記載されてい
るが、P H値を5〜8に厳密に調製する必要があり、
両性有機高分子′a集剤のカチオン当量値、アニオン当
量値またはカチオン当jlfiff/アニオン当量値比
には自ら限界があり、凝集性能、脱水性能を兼ね備えた
汚泥凝集方法は見いだされていない. 本発明の目的は上記のような欠点を解決し、効率的な有
機汚泥のgi集方法を提供することにある.[問題を解
決するための手段] 本発明は有機性汚泥に金属塩を添加して撹拌した後、さ
らに下記一般式(1) R 1 R 2 R 3 ?−CI+2−C− ]  [−CIl■ −C− 1
b[−Cl2−C− ]Ca C=O C O 011 2 0(Ctl2CI1 − N )nH − n(IIY) R4R5       ・・・(1〉 (式中、n=1〜5の整数で、しかもnの平均値は2以
上である・.式中のa,b,cの比率はa+b+c=1
である,R  ,R  ,R  ,R4はそ1  2 
 3 れぞれ水素原子またはアルキル基である.R5は水素原
子、アルキル基またはω−ヒドロキシ基で置換されたア
ルキル基である.HYは一塩基酸である. 2は一般式《2》 一CQNR  R    ・・・(2)67 (式中、R およびR7はそれぞれ水素原子また6 はアルキル基を示す.) で示されるアミド基、または、 一般式(3) − CO 2Cll− CIIOI+  ・・・(3)
I R8R9 (式中、R およびR9はそれぞれ水素原子また8 はアルキル基を示す.》 で示されるヒドロキシアルキル基、または、一般式(4
) −CN       ・・・(4) で示されるニトリル基を示す.] で示される両性高分子電解質からなる両性高分子凝集剤
を添加し、ついで脱水することを特徴とする有機性汚泥
の凝集方法に関するものである.本発明の対象となる有
機性汚泥としては高BOD排水の生物処理等により発生
する汚泥をいい、その例としては下水、し尿処理場で発
生する汚泥、食品工業、化学工業において発生する汚泥
等を挙げることができるが、これらに限定されるもので
ない. 本発明で用いる無機系凝集剤は、金属塩がアルミニウム
の塩または鉄の塩が挙げられる.アルミニウムの塩とし
ては塩化アルミニウム、硫酸アルミニウム、ポリ塩化ア
ルミニウム(PAC)が好適である.鉄の塩としては、
塩化第二鉄、塩化第一鉄、硫酸第一鉄、硫酸第二鉄、ポ
リ硫酸鉄等が好適である. また、無機a2集剤を添加したときの反応時間等は特に
考慮を必要とせず、たとえば添加順序は最初に無機凝集
剤を添加し、つぎに両性高分子凝集剤を添加することが
できる. 本発明で用いる両性高分子凝集剤はつぎの一般式(1)
で示される両性高分子電解質が使用できる. R1     R2      R3 【−CIIz  −C− ]a[−Cl12  −C−
 16  [ −CI+2  −C− ],11 C =Q       COOH         Z
i O(CH2 Cll − N ), H −n(IIY
)l R4 R5      ・・・(1) (式中、n=1〜5の整数で、しかもnの平均値は2以
上である.a,b,cの比率はa 十b 十c=1であ
る.R  ,R  ,R  ,R4はそれぞれ1   
 2    3 水素原子またはアルキル基である。R5は水素原子、ア
ルキル基またはω−ヒドロキシ基で′I1.換されたア
ルキル基である.11Yは一塩基酸である.Zは一般式
(2) −CONR  R    ・・・(2)67 (式中、R6およびR7はそれぞれ水素原子またはアル
キル基を示す.) で示されるアミド基、または、 一般式(3) 一C0 2CH− CIIOI1  ・・・(3)R8
R9 (式中、R8およびR9はそれぞれ水素原子またはアル
キル基を示す.冫 で示されるヒドロキシアルキル基、または、一般式(4
) −CN       ・・・(4) で示されるニトリル基を示す.] pl17ノカチオン当X値(Cv)が0.8〜7.0m
eq/a 、アニオン.当量値(Ay)が0.1〜4.
Omeq/o , Cv/Ayの比が1.0〜25.0
の範囲にあることを特徴とする. また、アクリル酸、メタクリル酸から選ばれる一種以上
のアニオン性単量体(I)を水中にて重合し、又はノニ
オン性単量体(II)と共重合し、該ビニル系カルボン
酸重合#%(ff)に、アニオン性単量体(I)とのモ
ル比が1 . 2nol/not以上になるようにアル
キレンイミンを反応させ、アミノアルキル化し、後に一
塩基酸で酸性化することを特徴とするアミノアルキル基
及びカルボン酸基を有する両性高分子凝集剤である. 本発明における両性高分子凝集剤は、特に制限はないが
、両性高分子凝集剤はアニオン性単量体(1)を水中に
て重合し、又はノニオン性単量体(If)と共重合し、
得られたビニル系カルボン酸重合体(II)に、アニオ
ン性単量体(I)とのモル比が1.2モル/モル以上に
なるようにアルキレンイジンを反応させ、アミノアルキ
ル化し、ついで一塩基酸で酸性化して得られたアミノア
ルキル基及びカルボキシル基を有する両性高分子電解質
であり、アニオン性単量体(I)としてはアクリル酸、
メタクリル酸が好ましい.ノニオン性単量体(II)は
、酸解離特性を考慮して選ばれたものである.アクリル
酸及びメタクリル酸の25℃における酸解離指数はそれ
ぞれ4.3及び4.7であり、アクリル酸またはその塩
はpl14..3以下の水中にて、またメタクリル酸ま
たはその塩はl)H4、7以下の水中にてイオンとして
存在するものの割合が急激に減少し、I)H3.5以下
の水中においてはいずれの単量体も実質的に非解離状態
にある. 一方、酸解離指数の小さいスルホン酸基等を有するアニ
オン性単量体においてはpt+2〜3程度の低pll域
においてもイオン種の存在量が多いので、これらの単量
体を使用しても本発明の優れた効果を得ることができな
い. ノニオン性単量体(II)としては、前記の単量体(I
)と共重合可能な任意のノニオン性単量体を用いること
ができ、たとえば一般式(5〉で示されるアミド基を有
ずるビニル型単量体を用いることができる. CH2 11R2 R1−C −C−N < II     R3      ・・・(5)0 一a式(5)においてR  ,R2およびR3は水1 素またはアルキル基であり、、具体例としてアクリルア
ミド、メタクリルアミド、N,N−ジメチルアクリルア
ミド、N,N−ジメチルメタクリルアミド、N,N−ジ
エチルアクリルアミド、N,N−ジエチルメタクリルア
ミド等を挙げることができる.また、一般式(6)で示
されるヒドロキシアルキル基を有するビニル系単量体を
用いることもできる. 11 R, −C −Co  Cll−CI+  −011 
  ・・・(6)11 0 R2R3 −fi式(6)においてR,R2およびR3は水1 素またはアルキル基であり、具体例としてはヒトロキシ
エチルアルリレート、ヒドロキシェチルメタクリレート
、ヒドロキシプロビルアクリレート、ヒドロキシプロビ
ルメタクリレート等を挙げることができる.その他にア
クリロニトリル等も挙げられる. なお、ノニオン性単量体(II)は両性高分子脱水剤の
分子量やイオン当量の調節等を目的として使用されるも
のである.通常ビニル系カルボン酸重合体(III)の
うち50モル%以下が好ましい.本発明の方法によって
製造される両性高分子脱水剤においては、カチオン当量
値Cvが0.8〜7.OIleq/g、アニオン当量値
^vIfi0. 1 〜4. 0neq/gノ範囲にあ
り、Cv/Avの比が1.0〜25.0の範囲となるよ
うに、ビニル系カルボン酸重合体(II)の重合時にお
いてアニオン性単量体(I)、ノニオン性単量体(II
)の使用lを決めることが必要である. また、アミノアルキル化時においてはビニル系カルボン
酸重合体(I[)とアルキレンイミンの使用量を決める
ことが必要である. 使用されるアルキレンイミンは1.2−アルキレンイミ
ン(アジリジン)であり、そのうち1.2プロビレンイ
ミンおよびエチレンイミンはそれらの入手可能性および
比較的安価であることのゆう特に好ましい.所望ならば
他の置換1,2アジリジンでもよい. カチオン当量値Cvが0.8neq/gより小さいと両
性としての特性が現われに<<、汚泥の凝集処理、脱水
処理において脱水性が悪いので好ましくなく、また、カ
チオン当量値Cvが7 . 0 nec+/gより大き
いものは両性としての特性が現われにくい.さらに、ア
ニオン当量値^VがO.leq/gより小さいと両性と
しての特性が現れにくく、アニオン当量値Ayが4.O
n+eq/gを越えると水中での溶解性が低下する傾向
があるので好ましくない.Cv/^V値が1.0より小
さくて相対的にアニオン当該値が大きすぎるとカチオン
性基の効果が滅殺されるので好ましくない,また、Cv
/Av flUが25を越えるとアニオン性基の割合が
少なすぎるので両性としての充分な作用が期待できない
.ビニル系カルボン酸重合体(III)の重合は通常の
方法、通常のアゾ系やレドックス系等のラジカル重合開
始剤を用いることができる.またアミノアルキル化も既
知方法で行なわれる.合成にあたっては、Cv値が0 
. 8 〜7 . 0meq/a.Av値が0。
DETAILED DESCRIPTION OF THE INVENTION [Field of Industrial Application] The present invention relates to an efficient method for dewatering inorganic and organic sludge generated from various industrial wastewaters, sewage, human waste treatment, etc. [Prior Art] Conventionally, flocculated and precipitated sludge and surplus sludge are generated in various industrial wastewater, sewage, and human waste treatments. Inorganic metal salts and organic polymer flocculants have been used as flocculants for these sludges. However, depending on the properties of the sludge, these methods cannot sufficiently reduce the water content of the dehydrated cake. In addition, recently, there has been an increase in the use of separate flow systems in sewage treatment facilities, which has resulted in an increase in organic matter in sludge, and in particular when using a belt press type dehydrator, peeling of the dewatered cake from the belt is becoming more difficult. As a result, dehydration has been stopped at a relatively high moisture content. As a sludge flocculation method to solve these problems, a method using a non-molecular flocculant and an organic polymer flocculant in combination, such as JP-A-61-216800, JP-A-61-200897, JP-A-63-1 58200 etc. have been proposed. [Problems to be solved by the invention] JP-A-59-16599, JP-A-61-216800
For example, the method of using polyferric sulfate (@Ki A2 collector) in combination with an organic polymer flocculant, and using a nonionic, anionic or cationic organic polymer flocculant alone as the organic polymer flocculant. has been described, but this method does not sufficiently reduce the moisture content of the dehydrated cake. Also, JP-A-61-200897, JP-A-61-2
0 0 8 9 No. 8 Ni! .. A method is described in which a tmfiaf collector and an organic polymer flocculant are used together, and a cationic organic polymer flocculant and an anionic organic polymer flocculant are used simultaneously as the organic polymer flocculant. However, the removability of the dehydrated cake from the cloth is often insufficient, and it is also difficult to reduce the moisture content of the dehydrated cake. Furthermore, JP-A-63-158200 describes a method in which a non-R flocculant and an organic polymer li-collecting agent are used in combination, and an amphoteric organic polymer flocculant is used as the organic polymer flocculant. It is necessary to strictly adjust the PH value to 5-8,
The cation equivalent value, anion equivalent value, or cation equivalent jlfiff/anion equivalent value ratio of the amphoteric organic polymer 'a collector has its own limits, and a sludge flocculation method that combines flocculation performance and dewatering performance has not been found. The purpose of the present invention is to solve the above-mentioned drawbacks and provide an efficient method for collecting organic sludge. [Means for solving the problem] In the present invention, after adding a metal salt to organic sludge and stirring it, the following general formula (1) R 1 R 2 R 3 ? -CI+2-C- ] [-CIl■ -C- 1
b[-Cl2-C-]Ca C=O CO 011 2 0 (Ctl2CI1-N)nH-n(IIY) R4R5...(1> (wherein, n is an integer from 1 to 5, and n The average value of is 2 or more.The ratio of a, b, and c in the formula is a+b+c=1
, R , R , R , R4 is so 1 2
3 Each is a hydrogen atom or an alkyl group. R5 is a hydrogen atom, an alkyl group, or an alkyl group substituted with an ω-hydroxy group. HY is a monobasic acid. 2 is an amide group represented by the general formula <<2>> 1CQNR R ... (2) 67 (in the formula, R and R7 each represent a hydrogen atom or 6 represents an alkyl group), or the general formula (3) -CO2Cll- CIIOI+...(3)
I R8R9 (In the formula, R and R9 each represent a hydrogen atom or 8 represents an alkyl group.) Or a hydroxyalkyl group represented by the general formula (4
) -CN...(4) represents a nitrile group. ] This relates to a method for flocculating organic sludge, which is characterized by adding an amphoteric polymer flocculant consisting of an amphoteric polymer electrolyte shown in the following, and then dewatering. The organic sludge that is the subject of the present invention refers to sludge generated through biological treatment of high BOD wastewater, examples of which include sludge generated in sewage and human waste treatment plants, and sludge generated in the food industry and chemical industry. These include, but are not limited to. Examples of the inorganic flocculant used in the present invention include aluminum salts or iron salts as metal salts. Preferred aluminum salts include aluminum chloride, aluminum sulfate, and polyaluminum chloride (PAC). As an iron salt,
Ferric chloride, ferrous chloride, ferrous sulfate, ferric sulfate, polyferrous sulfate, etc. are suitable. Further, there is no need to particularly consider the reaction time etc. when adding the inorganic A2 collector; for example, the order of addition can be such that the inorganic flocculant is added first, and then the amphoteric polymer flocculant is added. The amphoteric polymer flocculant used in the present invention has the following general formula (1)
Ampholytic polymer electrolytes shown in can be used. R1 R2 R3 [-CIIz -C- ]a[-Cl12 -C-
16 [ -CI+2 -C- ], 11 C = Q COOH Z
iO(CH2Cll-N), H-n(IIY
)l R4 R5 ... (1) (In the formula, n = an integer from 1 to 5, and the average value of n is 2 or more. The ratio of a, b, c = 1, .R , R , R , R4 are each 1
2 3 A hydrogen atom or an alkyl group. R5 is a hydrogen atom, an alkyl group or an ω-hydroxy group; 'I1. It is a substituted alkyl group. 11Y is a monobasic acid. Z is an amide group represented by the general formula (2) -CONR R (2)67 (in the formula, R6 and R7 each represent a hydrogen atom or an alkyl group), or a general formula (3) -C0 2CH- CIIOI1...(3)R8
R9 (wherein R8 and R9 each represent a hydrogen atom or an alkyl group, or a hydroxyalkyl group represented by the general formula (4)
) -CN...(4) represents a nitrile group. ] The X value (Cv) per pl17 cation is 0.8 to 7.0 m
eq/a, anion. The equivalent value (Ay) is 0.1 to 4.
Omeq/o, Cv/Ay ratio is 1.0 to 25.0
It is characterized by being in the range of In addition, one or more anionic monomers (I) selected from acrylic acid and methacrylic acid are polymerized in water or copolymerized with nonionic monomers (II), and the vinyl carboxylic acid polymerization #% (ff) and the anionic monomer (I) at a molar ratio of 1. This is an amphoteric polymer flocculant having an aminoalkyl group and a carboxylic acid group, which is characterized by reacting an alkylene imine to a concentration of 2nol/not or more, aminoalkylating it, and then acidifying it with a monobasic acid. The amphoteric polymer flocculant in the present invention is not particularly limited; ,
The obtained vinyl carboxylic acid polymer (II) is reacted with an alkyleneidine such that the molar ratio with the anionic monomer (I) is 1.2 mol/mol or more, aminoalkylated, and then It is an amphoteric polymer electrolyte having an aminoalkyl group and a carboxyl group obtained by acidification with a basic acid, and the anionic monomer (I) is acrylic acid,
Methacrylic acid is preferred. The nonionic monomer (II) was selected in consideration of its acid dissociation properties. The acid dissociation index of acrylic acid and methacrylic acid at 25°C is 4.3 and 4.7, respectively, and acrylic acid or its salt has a pl14. .. In water with H3 or less, the proportion of methacrylic acid or its salts as ions rapidly decreases in water with H4 or less, and I) in water with H3.5 or less, the proportion of methacrylic acid or its salts decreases rapidly. The body is also essentially in a non-dissociated state. On the other hand, in the case of anionic monomers having sulfonic acid groups etc. with a small acid dissociation index, the abundance of ionic species is large even in the low pll range of about pt+2 to 3, so even if these monomers are used, the It is not possible to obtain the superior effects of the invention. As the nonionic monomer (II), the above-mentioned monomer (I
) Any nonionic monomer copolymerizable with CH2 11R2 R1-C - can be used, for example, a vinyl type monomer having an amide group represented by the general formula (5>) can be used. C-N < II R3...(5)0 1a In formula (5), R, R2 and R3 are water or an alkyl group, specific examples include acrylamide, methacrylamide, N,N-dimethylacrylamide , N,N-dimethylmethacrylamide, N,N-diethylacrylamide, N,N-diethylmethacrylamide, etc.Also, vinyl monomers having a hydroxyalkyl group represented by general formula (6) 11 R, -C -Co Cll-CI+ -011
... (6) 110 R2R3 -fi In the formula (6), R, R2 and R3 are hydrogen or an alkyl group, and specific examples include hydroxyethyl allylate, hydroxyethyl methacrylate, hydroxypropyl acrylate. , hydroxypropyl methacrylate, etc. Other examples include acrylonitrile. The nonionic monomer (II) is used for the purpose of adjusting the molecular weight and ionic equivalent of the amphoteric polymer dehydrating agent. Usually, it is preferably 50 mol% or less of the vinyl carboxylic acid polymer (III). The amphoteric polymer dehydrating agent produced by the method of the present invention has a cation equivalent value Cv of 0.8 to 7. OIleq/g, anion equivalent value ^vIfi0. 1 to 4. During the polymerization of the vinyl carboxylic acid polymer (II), the anionic monomer (I), Nonionic monomer (II
) is necessary to determine the use l. Furthermore, during aminoalkylation, it is necessary to determine the amounts of vinyl carboxylic acid polymer (I[) and alkylene imine to be used. The alkylene imines used are 1,2-alkylene imines (aziridines), of which 1,2 propylene imine and ethylene imine are particularly preferred because of their availability and relative cost. Other substituted 1,2 aziridines may be used if desired. If the cation equivalent value Cv is less than 0.8 neq/g, amphoteric characteristics will appear, which is not preferable because the dewatering property will be poor in sludge flocculation treatment and dewatering treatment, and if the cation equivalent value Cv is less than 7. If it is larger than 0 nec+/g, it is difficult for hermaphrodite characteristics to appear. Furthermore, the anion equivalent value ^V is O. When it is smaller than leq/g, amphoteric characteristics are difficult to appear, and the anion equivalent value Ay is 4. O
If it exceeds n+eq/g, the solubility in water tends to decrease, which is not preferable. If the Cv/^V value is less than 1.0 and the anion value is too large, the effect of the cationic group will be destroyed, which is not preferable.
When /Av flU exceeds 25, the proportion of anionic groups is too small and sufficient amphoteric action cannot be expected. The vinyl carboxylic acid polymer (III) can be polymerized by a conventional method using a conventional radical polymerization initiator such as an azo type or a redox type. Aminoalkylation is also carried out using known methods. When synthesizing, the Cv value is 0.
.. 8-7. 0meq/a. Av value is 0.

1〜4 . 0 +1eQ/Q,CV/^V比1.0〜
25.0の範囲になるようモノマーの組成量を制御する
ことができる. また、固有粘度[η]値が[η]=1.0〜25.0d
J/gになるよう重合条件、重合触媒量等を制御するこ
とが望ましい. 本発明においては両性有機高分子凝集剤を添加し、フロ
ックを形成させた後、公知の手法により脱水されるが、
脱水機としては、たとえばスクリュープレス型脱水機、
フィルタープレス型脱水機、ベルトプレス型脱水機、ス
クリューデカンター等を使用することができる. [実 施 例] 以下実施例により更に具体的に説明するが、本発明はこ
れらにより何ら限定されるものではない.系カルボン酸
重合体(III)にエチレンイミンを用いてカチオン当
量/アニオン当量のバランスを考慮しつつアミノエチル
化し、後に硝酸で酸性化することにより有効成分20重
量%の水溶液として得た.合或した両性高分子凝集剤の
組成、カチオン当量値/アニオン当量値、固有粘度を表
−1に示した. 一方、比較として、たとえばメチルアミノエチルメタク
リレート4級化物(4−DAM)アクリルアミド(AA
m)およびアクリル酸(AA)を既知の方法で共重合さ
せることにより得た両性高分子凝集剤等も同様に示した
.ボリマーの組成及び物性を表−1に示す.ジメチルア
ミノエチルメタクリレートの4級化物ホモボリマーとボ
リエチレンイミンの物性値も示した. [両性高分子凝集剤等の合成例] 両性高分子凝集剤は、例えばアクリル酸とアクリルアミ
ドを過硫酸アンモニウムと亜Vi酸水素ナトリウムを用
いて水溶液重合し、得られたビニル表 1 El.エチレンイミン,  AAm;  アクリルアミ
ド, M;アクリノH浚,4−DAM;  ジメチルア
ミノエチルメタクリレート4級化物組戒は各々モノマー
の重量%,カチオン当量値は−17での値,固有粘度は
30’C.  1N−NaN03での値,R−1 −R
−3 (f)酸中和は硝酸テtlN03/E1=0. 
7モル/モ/kボリエチレンイミンはエボミン■p−i
ooo c日#W騨M]を用いた.[実施例l〜6、比
較例1〜6J 実施例および比較例において、両性有機高分子凝集剤は
第1表に示すものを使用し、無機凝集剤は10重量%水
溶液として、両性有機高分子凝集剤は0.21!量%水
溶液として使用した.またこれらの凝集剤の添加量はい
ずれも汚泥中のSSに対するアルミニウムまたは鉄の重
量%として表示した. 某下水処理場の混合生汚泥( Ell+6.5,SS 
2.2賀t%,VSS/SS 70.4%> 1 5 
0 mlに表−2に記載した所定量の無機凝集剤を添加
し、3 0 0 rtll1で約2分間撹拌後、ついで
高分子凝集剤を所定量添加し、2o o rpmで30
秒rffl#j!拌し、W集させた.凝集汚泥100m
lを100メッシュナイロン枦布を敷いたブフナーロー
ト上に注ぎ、10秒後の枦水量を測定した.次に5分間
デ過した後の汚泥をP酊の間にはさんで0.5kg/一
で2分間圧搾脱水し、脱水後の汚泥(ケーキ)の含水率
を測定した.いずれの場合も生成したフロックは十分な
大きさと強度を有しており、脱水ケーキはフレーク状で
粘着性が少なくケーキ含水率等に良好な結果が得られた
. それらの結果を表−2に示した.なお比較のため同一条
件で従来方法の薬剤(両性〉との組み合せで凝集させた
場合(比較例1および比較例4)、カチオン系DAMと
の組み合せ(比較例2および比較例5)、ボリエチレン
イミンとの組み合せ(比較例3》、両性高分子凝集剤を
単独で用いた場合(比較例6)も併せて表−2に示した
.表−2から、本発明によれば極めて良好な粒状凝集物
が得られ、その脱水性も極めて良好であることがわかる
. また、同じ条件としても、従来法による薬剤の組み合せ
や高分子凝集剤単独では、十分に良好な粒状凝集物が得
られず、いずれの場合も脱水性も十分良好でなかった. [効 果] 本発明の凝集方法は、有機汚泥に金属塩と特定の高分子
電解質とを組み合わせて添加して造粒ずることにより有
機性汚泥でも極めて良好な性状の粒状凝集物が得られる
.またその粒状凝集物は極めて脱水性に富み従来法に比
較して含水率が大幅に改善することができる. なお、表−1に示したカチオン当量値、アニオン当X値
および固有粘度は、つぎの方法によって求めたものであ
る. (1) カチオン当量値 ビー力に蒸溜水95mlをとり、試料10001)El
m溶液5mlを加え、1%11C1または、1%Na0
11でpH7.0に調整し約1分間撹拌し、ついでトル
イジンブルー指示薬溶液を2〜3滴加えN/400PV
SK(ポリビニル硫酸カリウム溶液)で滴定した.滴定
速度は2 ml毎分とし、検水が青から赤紫に変色し1
0秒間以上保持する時点を終点とした.カチオン当量値
(Cv)  [Ileq/g]= (サンプル滴定量[
ml]一ブランク滴定量[ml])xF/2x(試料中
の有効成分量[g]) なお、有効成分は試料の固形分から中和酸を除いた成分
である. (2)アニオン当Jl[ ビーカに蒸溜水50m1をとり、試料約0.3gを精秤
し加えた.撹拌しつつN/ 1 0 NaOH溶液で滴
定し電導度を読みとる.いくつかある変曲点のうち最後
の変曲点く全ての酸が中和された点)に相当する滴定量
を読む. アニオン当量値(^v)  [neq/a]=O.t 
xFx( N/ 1 0 NaOtlの適量[.nl]
)−(m秤試料中の仕込中和酸のミリモル数[l′le
ql)/(試料中の有効成分量[g]) (1) 固有粘度 l00容積部の水に0,2重量部の試料ボリマーを溶解
し、p114になるように塩酸にて調整する。
1-4. 0 +1eQ/Q, CV/^V ratio 1.0~
The composition amount of the monomer can be controlled to be within the range of 25.0. In addition, the intrinsic viscosity [η] value is [η] = 1.0 to 25.0 d
It is desirable to control the polymerization conditions, amount of polymerization catalyst, etc. so that the amount is J/g. In the present invention, an amphoteric organic polymer flocculant is added to form a floc, which is then dehydrated by a known method.
Examples of dehydrators include screw press type dehydrators,
Filter press type dehydrators, belt press type dehydrators, screw decanters, etc. can be used. [Examples] The present invention will be explained in more detail with reference to Examples below, but the present invention is not limited thereto in any way. The carboxylic acid polymer (III) was aminoethylated using ethyleneimine while taking into account the balance of cation equivalent/anion equivalent, and then acidified with nitric acid to obtain an aqueous solution containing 20% by weight of the active ingredient. The composition, cation equivalent value/anion equivalent value, and intrinsic viscosity of the combined amphoteric polymer flocculant are shown in Table 1. On the other hand, for comparison, for example, quaternized methylaminoethyl methacrylate (4-DAM) acrylamide (AA
Amphoteric polymer flocculants obtained by copolymerizing acrylic acid (AA) and acrylic acid (AA) using known methods are also shown in the same manner. Table 1 shows the composition and physical properties of the polymer. The physical properties of the quaternized homopolymer of dimethylaminoethyl methacrylate and polyethyleneimine are also shown. [Synthesis Example of Amphoteric Polymer Flocculant, etc.] Amphoteric polymer flocculant, etc., can be produced by, for example, aqueous solution polymerization of acrylic acid and acrylamide using ammonium persulfate and sodium bisulfite. Ethyleneimine, AAm; Acrylamide, M; Acrylic acid, 4-DAM; Dimethylaminoethyl methacrylate quaternized compound composition is the weight % of the monomer, the cation equivalent value is the value at -17, and the intrinsic viscosity is 30'C. Value at 1N-NaN03, R-1 -R
-3 (f) Acid neutralization is nitric acid tlN03/E1=0.
7 mol/mo/k polyethyleneimine is evomin ■p-i
ooo cday#W騨M] was used. [Examples 1 to 6, Comparative Examples 1 to 6J In the Examples and Comparative Examples, the amphoteric organic polymer flocculants shown in Table 1 were used, and the inorganic flocculants were used as a 10% by weight aqueous solution. The flocculant is 0.21! It was used as a % aqueous solution. In addition, the amounts of these flocculants added were expressed as the weight percent of aluminum or iron relative to the SS in the sludge. Mixed raw sludge from a certain sewage treatment plant (Ell+6.5, SS
2.2 t%, VSS/SS 70.4%> 1 5
Add a predetermined amount of inorganic flocculant listed in Table 2 to 0 ml, stir at 300 rtll1 for about 2 minutes, then add a predetermined amount of polymer flocculant, and stir at 200 rpm for 30 min.
Secondrffl#j! Stir to collect W. Coagulated sludge 100m
1 was poured onto a Buchner funnel lined with 100 mesh nylon cloth, and the amount of water poured after 10 seconds was measured. Next, the sludge that had been defiltered for 5 minutes was placed between P plates and dehydrated by pressing at 0.5 kg/1 for 2 minutes, and the water content of the sludge (cake) after dewatering was measured. In all cases, the flocs produced had sufficient size and strength, and the dehydrated cakes were flaky and less sticky, giving good results in terms of cake moisture content, etc. The results are shown in Table 2. For comparison, when agglomeration was performed under the same conditions in combination with a conventional drug (ampholyte) (Comparative Examples 1 and 4), in combination with cationic DAM (Comparative Examples 2 and 5), and in combination with polyethylene Table 2 also shows the combination with imine (Comparative Example 3) and the case where the amphoteric polymer flocculant was used alone (Comparative Example 6). It can be seen that aggregates were obtained, and the dehydration properties were also very good.Also, even under the same conditions, sufficiently good granular aggregates could not be obtained using a combination of chemicals or a polymer flocculant alone according to the conventional method. However, in both cases, the dehydration properties were not sufficiently good. [Effects] The flocculation method of the present invention adds a combination of a metal salt and a specific polymer electrolyte to organic sludge and granulates it. Even with sludge, granular aggregates with extremely good properties can be obtained.The granular aggregates also have excellent dewatering properties, and their water content can be greatly improved compared to conventional methods. The cation equivalent value, anion equivalent
Add 5 ml of 1% 11C1 or 1% Na0
11 to adjust the pH to 7.0 and stir for about 1 minute, then add 2 to 3 drops of toluidine blue indicator solution at N/400PV.
Titrated with SK (polyvinyl potassium sulfate solution). The titration rate was 2 ml per minute, and the color of the sample water changed from blue to reddish-purple.
The end point was when the hold was held for 0 seconds or more. Cation equivalent value (Cv) [Ileq/g] = (sample titer [
ml] 1 blank titer [ml]) x F/2x (Amount of active ingredient in sample [g]) Note that the active ingredient is the solid content of the sample excluding the neutralizing acid. (2) Anion per Jl [50ml of distilled water was placed in a beaker, and approximately 0.3g of the sample was accurately weighed and added. While stirring, titrate with N/10 NaOH solution and read the conductivity. Read the titer corresponding to the last of several inflection points (the point at which all the acid has been neutralized). Anion equivalent value (^v) [neq/a]=O. t
xFx (N/10 Appropriate amount of NaOtl [.nl]
) - (mNumber of millimoles of neutralized acid charged in the weighed sample [l'le
ql)/(Amount of active ingredient in sample [g]) (1) Dissolve 0.2 parts by weight of the sample polymer in 100 parts by volume of water and adjust to p114 with hydrochloric acid.

この溶液50m1を2 0 0 ml共栓付三角フラス
コに採取し、2N−NaNO35 0 mlを加え、ゆ
るやかに撹拌し均一に溶解する.次いでこの溶液から、
0.02%, 0.04%, 0.06%, 0.08
%の溶液を調整する.希釈にはIN−NaN03を用い
、pHを4に調整する.30℃±0.1℃に調整した恒
温捲にキヤノンフェンスケ型粘度計をセットし、試料1
0m1を粘度計に入れ、自然流下させて測定球の上下標
線間を通過する為に要する時間を測定する.この操作を
3回以上11返し平均値を出す.is−NaN03溶液
を用いブランクとする. この同様な操作を0.02〜0.08%溶液について行
なう. 次の計算により還元粘度を算出する. 相対粘度 ηrel=t/to 比粘度  ηSp= (t −to) /to =ηr
el −1還元粘度 ηsp/c グラフの横軸に各試料濃度をとり、縦軸に還元粘度をと
り、各測定値をプロットし各点を通る直線を引き、試料
濃度がOにおける縦軸の値をもって固有粘度とする. to= IN − NaN03の流下時間t=試料溶液
の流下時間 ηrel=相対粘度 ηsp =比粘度 C=試料溶液の濃度
Collect 50 ml of this solution into a 200 ml Erlenmeyer flask with a stopper, add 50 ml of 2N-NaNO3, and stir gently to dissolve uniformly. Then from this solution,
0.02%, 0.04%, 0.06%, 0.08
% solution. Use IN-NaN03 for dilution and adjust the pH to 4. A Canon Fenske viscometer was set on a constant temperature coil adjusted to 30°C ± 0.1°C, and sample 1 was measured.
Put 0ml into the viscometer, let it flow down naturally, and measure the time required for it to pass between the upper and lower marked lines of the measuring ball. Repeat this operation 11 times at least 3 times and calculate the average value. Use is-NaN03 solution as a blank. This same operation is performed for 0.02-0.08% solutions. Calculate the reduced viscosity using the following calculation. Relative viscosity ηrel=t/to Specific viscosity ηSp= (t −to) /to = ηr
el -1 reduced viscosity ηsp/c Take each sample concentration on the horizontal axis of the graph, take the reduced viscosity on the vertical axis, plot each measured value, draw a straight line passing through each point, and calculate the value on the vertical axis when the sample concentration is O. Let be the intrinsic viscosity. to=IN − NaN03 flow time t=sample solution flow time ηrel=relative viscosity ηsp=specific viscosity C=concentration of sample solution

Claims (4)

【特許請求の範囲】[Claims] (1)有機性汚泥に金属塩を添加して撹拌した後、さら
に一般式(1) ▲数式、化学式、表等があります▼・・・(1) (式中、n=1〜5の整数で、しかもnの平均値は2以
上である。式中のa、b、cの比率はa+b+c=1で
ある。R_1、R_2、R_3、R_4はそれぞれ水素
原子またはアルキル基である。R_5は水素原子、アル
キル基またはω−ヒドロキシ基で置換されたアルキル基
である。HYは一塩基酸である。Zは一般式(2) −CONR_6R_7・・・(2) (式中、R_6およびR_7はそれぞれ水素原子または
アルキル基を示す。) で示されるアミド基、または、 一般式(3) ▲数式、化学式、表等があります▼・・・(3) (式中、R_8およびR_9はそれぞれ水素原子または
アルキル基を示す。) で示されるヒドロキシアルキル基、または、一般式(4
) −CN・・・(4) で示されるニトリル基を示す。] で示される両性高分子電解質からなる両性高分子凝集剤
を添加し、ついで脱水することを特徴とする有機性汚泥
の凝集方法。
(1) After adding metal salts to organic sludge and stirring, the general formula (1) ▲There are mathematical formulas, chemical formulas, tables, etc.▼...(1) (In the formula, n = an integer from 1 to 5) Moreover, the average value of n is 2 or more.The ratio of a, b, and c in the formula is a+b+c=1.R_1, R_2, R_3, and R_4 are each a hydrogen atom or an alkyl group.R_5 is hydrogen It is an alkyl group substituted with an atom, an alkyl group, or an ω-hydroxy group. HY is a monobasic acid. Indicates a hydrogen atom or an alkyl group), or an amide group represented by the general formula (3) ▲Mathematical formula, chemical formula, table, etc.▼...(3) (In the formula, R_8 and R_9 each represent a hydrogen atom or represents an alkyl group) or a hydroxyalkyl group represented by the general formula (4
) -CN...(4) represents a nitrile group. ] A method for flocculating organic sludge, which comprises adding an amphoteric polymer flocculant consisting of an amphoteric polymer electrolyte represented by the formula below, and then dewatering.
(2)両性高分子凝集剤のカチオン当量値(Cv)が0
.8〜7.0meq/g、アニオン当量値(Av)が0
.1〜4.0meq/g、Cv/Avの比が1.0〜2
5.0の範囲の両性高分子電解質である請求項1記載の
方法。
(2) The cation equivalent value (Cv) of the amphoteric polymer flocculant is 0
.. 8 to 7.0 meq/g, anion equivalent value (Av) is 0
.. 1 to 4.0 meq/g, Cv/Av ratio 1.0 to 2
5. The method of claim 1, wherein the polyampholyte is in the range of 5.0.
(3)両性高分子凝集剤が、アクリル酸、メタクリル酸
から選ばれる一種以上のアニオン性単量体( I )を水
中にて重合し、又はノニオン性単量体(II)と共重合し
、該ビニル系カルボン酸重合体(III)に、アニオン性
単量体( I )とのモル比が1.2mol/mol以上
になるようにアルキレンイミンを反応させ、アミノアル
キル化し、後に一塩基酸で酸性化して製造されるアミノ
アルキル基及びカルボン酸基を有する両性高分子電解質
である請求項1又は請求項2記載の方法。
(3) the amphoteric polymer flocculant polymerizes one or more anionic monomers (I) selected from acrylic acid and methacrylic acid in water, or copolymerizes with a nonionic monomer (II), The vinyl carboxylic acid polymer (III) is reacted with an alkylene imine such that the molar ratio with the anionic monomer (I) is 1.2 mol/mol or more, aminoalkylated, and then treated with a monobasic acid. The method according to claim 1 or 2, wherein the amphoteric polymer electrolyte has an aminoalkyl group and a carboxylic acid group and is produced by acidification.
(4)金属塩がアルミニウムまたは鉄の塩である請求項
1記載の方法。
(4) The method according to claim 1, wherein the metal salt is an aluminum or iron salt.
JP1154491A 1989-06-19 1989-06-19 Flocculation method of organic sludge Granted JPH0321399A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP1154491A JPH0321399A (en) 1989-06-19 1989-06-19 Flocculation method of organic sludge

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP1154491A JPH0321399A (en) 1989-06-19 1989-06-19 Flocculation method of organic sludge

Publications (2)

Publication Number Publication Date
JPH0321399A true JPH0321399A (en) 1991-01-30
JPH0556200B2 JPH0556200B2 (en) 1993-08-18

Family

ID=15585408

Family Applications (1)

Application Number Title Priority Date Filing Date
JP1154491A Granted JPH0321399A (en) 1989-06-19 1989-06-19 Flocculation method of organic sludge

Country Status (1)

Country Link
JP (1) JPH0321399A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005131572A (en) * 2003-10-31 2005-05-26 Daiyanitorikkusu Kk Method for dehydrating sludge

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS63158200A (en) * 1986-12-22 1988-07-01 Dia Furotsuku Kk Dehydration of sludge

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS63158200A (en) * 1986-12-22 1988-07-01 Dia Furotsuku Kk Dehydration of sludge

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005131572A (en) * 2003-10-31 2005-05-26 Daiyanitorikkusu Kk Method for dehydrating sludge
JP4689156B2 (en) * 2003-10-31 2011-05-25 ダイヤニトリックス株式会社 Sludge dewatering method

Also Published As

Publication number Publication date
JPH0556200B2 (en) 1993-08-18

Similar Documents

Publication Publication Date Title
JP2007016086A (en) Water-soluble polymer dispersion and papermaking method using the same
JP2991611B2 (en) Sludge dewatering method using inorganic coagulant and amphoteric polymer coagulant together
JP3247795B2 (en) Amphoteric polymer sludge dewatering agent and sludge dewatering method using the same
JP3712946B2 (en) Amphoteric water-soluble polymer dispersion
JP3633726B2 (en) Sludge treatment method
JP4479095B2 (en) Polymer flocculant and sludge dewatering method
JP2976283B2 (en) Polymer flocculant
JP4846617B2 (en) Amphoteric polymer flocculant and sludge treatment method using the same
JP5038587B2 (en) Dewatering method for sewage digested sludge
JPH038498A (en) Method for dehydrating sludge
JP3709825B2 (en) Sludge dewatering method
JP4660896B2 (en) Sludge dewatering method
JP3906636B2 (en) Amphoteric polymer flocculant and sludge dewatering method
JP2014024051A (en) Sludge dehydrating agent
JPH0321399A (en) Flocculation method of organic sludge
JP4161559B2 (en) Composition, amphoteric polymer flocculant and method for dewatering sludge
JP3606119B2 (en) Sludge dewatering method
JPH0938700A (en) Treatment of organic sludge
JPH0118800B2 (en)
JP4425406B2 (en) Paper sludge dewatering method
JP4109145B2 (en) Polymer flocculant and method for producing the same
JP2002249503A (en) Dispersion of amphoteric water-solble polymer
JP4433434B2 (en) Organic sludge dewatering method
JP6931209B2 (en) Method of reforming organic waste
JP4142319B2 (en) Polymer flocculant composition