JPH03213963A - Absorptive type freezer - Google Patents

Absorptive type freezer

Info

Publication number
JPH03213963A
JPH03213963A JP893590A JP893590A JPH03213963A JP H03213963 A JPH03213963 A JP H03213963A JP 893590 A JP893590 A JP 893590A JP 893590 A JP893590 A JP 893590A JP H03213963 A JPH03213963 A JP H03213963A
Authority
JP
Japan
Prior art keywords
evaporator
absorber
shell
condenser
absorption
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP893590A
Other languages
Japanese (ja)
Other versions
JP2517421B2 (en
Inventor
Masahiro Furukawa
雅裕 古川
Kazutaka Irakai
伊良皆 数恭
Hidetoshi Arima
秀俊 有馬
Masashi Izumi
泉 雅士
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sanyo Electric Co Ltd
Original Assignee
Sanyo Electric Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sanyo Electric Co Ltd filed Critical Sanyo Electric Co Ltd
Priority to JP2008935A priority Critical patent/JP2517421B2/en
Publication of JPH03213963A publication Critical patent/JPH03213963A/en
Application granted granted Critical
Publication of JP2517421B2 publication Critical patent/JP2517421B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Landscapes

  • Sorption Type Refrigeration Machines (AREA)

Abstract

PURPOSE:To restrict an increasing of pressure loss in an evaporation absorbing barrel or an increasing of volume in an absorptive type freezer and further to enable a large-sized absorptive type freezer to be attained easily by a method wherein one generating condensing barrel and a plurality of evaporation absorber barrels are provided, these evaporator absorptive barrels are connected in parallel by pipings. CONSTITUTION:Refrigerant liquid pipes 23, 53 and refrigerant circulation pipes 24, 54 are connected between the evaporators 2, 34 of a plurality of evaporation absorptive barrels 1 and 33 and the condenser 11 of the generating condenser barrel 9. Further, rich liquid pipes 18, 20, 50 and 51 are connected between the absorbing devices 3, 4, 35, 36 and a low temperature generator 10. In this way, one generating condenser barrel 9 is connected by a pipe in correspondence with each of the evaporator barrels 1, 33 and thus a pressure loss in the evaporation absorptive barrels 1 and 33 is not increased and a freezing capability of the absorptive freezer can be substantially increased.

Description

【発明の詳細な説明】 (イ)産業上の利用分野 本発明は蒸発吸収器胴、及び発生凝縮器胴を備えた吸収
冷凍機に関する。
DETAILED DESCRIPTION OF THE INVENTION (a) Field of Industrial Application The present invention relates to an absorption refrigerator equipped with an evaporator-absorber shell and a generator-condenser shell.

(ロ)従来の技術 例えば実公昭58−44297号公報には、下胴(蒸発
吸収器胴)に蒸発器と複数の吸収器とを内蔵し、上胴(
発生凝縮器胴)に発生器と凝縮器とを内蔵し、下胴と上
胴とを配管接続した吸収冷凍機が開示されている。
(b) Conventional technology For example, in Japanese Utility Model Publication No. 58-44297, an evaporator and a plurality of absorbers are built in a lower shell (evaporator absorber shell), and an upper shell (
An absorption refrigerator is disclosed in which a generator and a condenser are built into a generation condenser shell, and a lower shell and an upper shell are connected by piping.

(ハ〉発明が解決しようとする課題 上記従来の技術に示した吸収冷凍機において、ビル等の
設置箇所の冷凍負荷が大きい場合には、一般に上胴と下
胴とから成る吸収冷凍機を冷凍負荷の大きさに応じて複
数配管接続し冷凍負荷の大きさに対応していたが、上記
のように上胴と下胴とからそれぞれ構成された吸収冷凍
機を複数配管接続した場合には、吸収冷凍機全体の容積
が大きくなり、吸収冷凍機を設置するビルの地下室等の
容積を大きくしなければならないという問題が発生する
。又、吸収冷凍機の運搬も設置される各吸収冷凍機ごと
にそれぞれの上胴、下胴を運搬する必要があり、運搬作
業が煩雑になるという問題が発生する。
(c) Problems to be Solved by the Invention In the absorption chiller shown in the above-mentioned prior art, when the refrigeration load at the installation location such as a building is large, the absorption chiller consisting of an upper shell and a lower shell is generally used to cool the absorption chiller. Depending on the size of the load, multiple piping connections were made to cope with the size of the refrigeration load, but when multiple absorption chillers each consisting of an upper shell and a lower shell are connected via piping as described above, The overall volume of the absorption chiller increases, creating the problem that the volume of the basement of the building where the absorption chiller is installed must be increased.Also, the transportation of the absorption chiller must be carried out for each absorption chiller installed. It is necessary to transport the upper and lower trunks, respectively, which creates a problem that the transportation work becomes complicated.

又、下胴1台で、冷凍負荷の大きい場合に対応しようと
した場合、それに合わせて蒸発器、及び吸収器の伝熱面
積、即ち伝熱管の数を増加する必要があり、そのため、
管群を大きくしなければならない。しかしながら、管群
を大きくした場合には、管群での冷媒蒸気の圧力損失が
大きくなるという問題が発生する。
Additionally, if one lower shell is used to handle a large refrigeration load, it is necessary to increase the heat transfer area of the evaporator and absorber, that is, the number of heat transfer tubes, accordingly.
The tube group must be enlarged. However, when the tube group is made larger, a problem arises in that the pressure loss of the refrigerant vapor in the tube group increases.

本発明は、吸収冷凍機の容積を低減すると共に運搬を容
易にし、さらに、下胴での冷媒蒸気の圧力損失を減少す
ることを目的とする。
The present invention aims to reduce the volume of an absorption refrigerator, facilitate transportation, and further reduce the pressure loss of refrigerant vapor in the lower shell.

(ニ)課題を解決するための手段 本発明は上記課題を解決するために、発生凝縮器網(9
)と、蒸発吸収器胴(1) 、 (33)とを備え、各
蒸発吸収器胴(1) 、 (33)を並列に配管接続し
た吸収冷凍機を提供するものである。
(d) Means for solving the problems In order to solve the above problems, the present invention provides a generation condenser network (9
) and evaporator-absorber shells (1) and (33), and the evaporator-absorber shells (1) and (33) are connected in parallel with piping.

又、複数の蒸発吸収器胴(1) 、 (33)と、これ
らの蒸発吸収器胴(1) 、 (33)の蒸発器(2)
 、 (34)と発生凝縮器網(9)の凝縮器(11)
との間に接続された冷媒液管(23) 、 (53)及
び冷媒循環管(24> 、 (54)と、吸収器(3)
 、 (4) 、 (35) 、 (36)と低温発生
器(10)との間に接続された濃液管(18) 、 (
20) 、 (50) 。
Also, a plurality of evaporator-absorber shells (1), (33) and evaporators (2) of these evaporator-absorber shells (1), (33).
, (34) and the condenser (11) of the generating condenser network (9)
refrigerant liquid pipes (23), (53) and refrigerant circulation pipes (24>, (54) connected between the absorber (3)
, (4), (35), (36) and the low temperature generator (10) are connected to the concentrated liquid pipe (18), (
20), (50).

(51)とを備えた吸収冷凍機を提供するものである。(51) An absorption refrigerator comprising the following is provided.

さらに、発生凝縮器網〈9〉に配管接続された複数の蒸
発吸収器胴(1) 、 (33)を備え、冷媒液を凝縮
器(11)から各蒸発器(2) 、 (34)へ並列に
流し、かつ、濃吸収液を各吸収器(3) 、 (4) 
、 (35) 、 (36>へ並列に流すようにした吸
収冷凍機を提供するものである。
Furthermore, it is equipped with a plurality of evaporator-absorber shells (1) and (33) pipe-connected to the generation condenser network <9>, and the refrigerant liquid is transferred from the condenser (11) to each evaporator (2) and (34). Flow the concentrated absorption liquid in parallel to each absorber (3), (4)
, (35), (36>) in parallel.

(*)作用 各蒸発吸収器胴(1) 、 (33)に対応して1台の
発生凝縮器網(9)を配管接続したので、蒸発吸収器胴
(1) 、 (33)内の圧力損失を増加させることな
く、吸収冷凍機の冷凍能力を大幅に増大することが可能
になり、又、発生凝縮器網(9)は1台なため、吸収冷
凍機の容積の増大を抑え冷凍能力の増大を図ることが可
能になり、さらに、吸収冷凍機の運搬の際には、各蒸発
吸収器胴(1) 、 (33)と、これらの蒸発吸収器
胴とほぼ容積が等しい発生凝縮器網(9)とを運搬すれ
ば良く、運搬作業の簡略化を図ることが可能になる。
(*) Effect Since one generation condenser network (9) is connected via piping to each evaporator-absorber shell (1), (33), the pressure inside the evaporator-absorber shell (1), (33) is It is now possible to significantly increase the refrigeration capacity of the absorption chiller without increasing loss, and since there is only one generating condenser network (9), the capacity of the absorption chiller can be suppressed from increasing and the refrigeration capacity can be increased. Furthermore, when transporting the absorption refrigerating machine, each evaporator shell (1), (33) and a generation condenser with approximately the same volume as these evaporator shells can be installed. It is only necessary to transport the net (9), and the transport work can be simplified.

又、吸収冷凍機の運転時、冷媒液が発生凝縮器網(9)
から冷媒液管(23) 、 (53)、冷媒循環管(2
4)。
Also, when the absorption chiller operates, refrigerant liquid is generated in the condenser network (9)
From refrigerant liquid pipe (23), (53), refrigerant circulation pipe (2
4).

(54)を介して各蒸発吸収器胴(1) 、 (33)
の蒸発器(2) 、 <34)へ流れて散布され、濃液
が発生凝縮器網(9)から濃液管(1B) 、 (20
) 、 (50) 、 (51)を介して各吸収器(3
) 、 (4) 、 (35) 、 (36)へ流れて
散布され、各蒸発器(2> 、 (34)から同じよう
に冷水が流出し、冷凍負荷が大きい場合に容易に対応す
ることが可能になり、又、発生凝縮器網(9)は蒸発吸
収器胴(1) 、 (33)に対して1台配管接続され
ているので、各蒸発吸収器胴(1) 、 (33)ごと
に発生凝縮器網を接続する場合より発生凝縮器網の保温
面積を縮小することが可能になり、又、熱損失を低減す
ることが可能になる。
(54) through each evaporator-absorber shell (1), (33)
The concentrated liquid is generated from the condenser network (9) to the concentrated liquid pipe (1B), (20
), (50), (51) to each absorber (3
), (4), (35), and (36), and the cold water flows out from each evaporator (2>, (34) in the same way, making it easy to handle large refrigeration loads. In addition, since one generating condenser network (9) is connected to each evaporator-absorber shell (1), (33) by piping, each evaporator-absorber shell (1), (33) Compared to the case where the generation condenser network is connected to the generation condenser network, it is possible to reduce the heat retention area of the generation condenser network, and it is also possible to reduce heat loss.

さらに、発生凝縮器(9)から蒸発吸収器胴(1)。Further, from the generation condenser (9) to the evaporator absorber shell (1).

(33)へ冷媒液、及び濃液が並列に流れ、冷媒液、及
び濃液を各蒸発吸収器胴(1) 、 (33)へ分配し
て流すためのダンパなどを設ける必要がなく、吸収冷凍
機の構成の簡略化を図ることが可能になる。
(33), the refrigerant liquid and concentrated liquid flow in parallel, and there is no need to install a damper or the like to distribute and flow the refrigerant liquid and concentrated liquid to each evaporator and absorber shell (1) and (33). It becomes possible to simplify the configuration of the refrigerator.

(へ)実施例 以下、本発明の一実施例について図面に基づいて詳細に
説明する。
(F) Example Hereinafter, an example of the present invention will be described in detail based on the drawings.

図面において、(1)は一方の蒸発吸収器胴であり、こ
の蒸発吸収器胴(1)の中央には蒸発器(2)が内蔵さ
れ、この蒸発器(2)の両側にそれぞれ吸収器(3) 
、 (4)が内蔵されている。又、(5)は吸収液ポン
プ、(6)は低温熱交換器、(7)は高温熱交換器、(
8)は蒸気熱源の高温発生器、(9〉は発生凝縮器胴、
(10)は低温発生器、(11)は凝縮器であり、それ
ぞれは稀吸収液管(12) 、 (13) 、 (14
) 、 (15)、中間濃液管(16) 、 (17)
、濃液管(18) 、 (20)、冷媒管(21) 、
 (22)、冷媒液管(23)、及び冷媒循環管(24
)により接続されている。そして、冷媒配管(23)の
途中に開閉弁(23A)が設けられている。又、濃液管
(18)の途中に濃液ポンプ(18P)が設けられ、濃
液管(20)が各吸収器(3) 、 (4)の上部の濃
液散布器(3A) 、 (4A)に接続されている。又
、(14A) 、 (18A)はそれぞれ稀吸収液管(
14〉、濃液管(18)の途中に設けられた開閉弁であ
る。又、稀吸収液管(12)は蒸発吸収器胴(1)の下
部に形成された吸収液溜め(IA)に配管接続されてい
る。さらに、(26)、及び(27)はそれぞれ蒸発器
(2)の上部、及び1部に設けられた冷媒散布器、及び
冷媒液溜めであり、冷媒散布器(26)と冷媒液溜め(
27)との間に冷媒循環管(24)が接続されている。
In the drawing, (1) is one evaporator-absorber shell, and an evaporator (2) is built in the center of the evaporator-absorber shell (1), and absorbers (2) are installed on both sides of the evaporator (2). 3)
, (4) are built-in. In addition, (5) is an absorption liquid pump, (6) is a low temperature heat exchanger, (7) is a high temperature heat exchanger, (
8) is a high-temperature generator with a steam heat source, (9> is a generation condenser shell,
(10) is a low temperature generator, (11) is a condenser, and these are dilute absorption liquid pipes (12), (13), (14), respectively.
), (15), intermediate concentrated liquid tube (16), (17)
, concentrated liquid pipe (18), (20), refrigerant pipe (21),
(22), refrigerant liquid pipe (23), and refrigerant circulation pipe (24)
) are connected by. An on-off valve (23A) is provided in the middle of the refrigerant pipe (23). In addition, a concentrated liquid pump (18P) is provided in the middle of the concentrated liquid pipe (18), and the concentrated liquid pipe (20) is connected to the concentrated liquid sprayer (3A), ( 4A). Also, (14A) and (18A) are dilute absorption liquid tubes (
14>, an on-off valve provided in the middle of the concentrated liquid pipe (18). Further, the dilute absorption liquid pipe (12) is connected to an absorption liquid reservoir (IA) formed at the lower part of the evaporative absorber body (1). Furthermore, (26) and (27) are a refrigerant sprayer and a refrigerant reservoir provided in the upper part and a part of the evaporator (2), respectively.
A refrigerant circulation pipe (24) is connected between the refrigerant circulation pipe (27) and the refrigerant circulation pipe (24).

そして、この冷媒循環管(24)の途中に冷媒液ポンプ
(28)が設けられている。
A refrigerant liquid pump (28) is provided in the middle of this refrigerant circulation pipe (24).

又、(IIA) 、 (30) 、 (31)はそれぞ
れ冷却水管であり、これら冷却水管(30) 、 (3
1)の途中に冷却水ポンプ(IIP>、冷却水熱交換器
(lla) 、 (30a) 、 (31a)が接続さ
れている。さらに、(32)は冷水管であり、この冷水
管(32)の途中に冷水熱交換器(32a)、及び冷水
ポンプ(32P)が設けられている。
Also, (IIA), (30), and (31) are cooling water pipes, respectively, and these cooling water pipes (30), (3
A cooling water pump (IIP>, cooling water heat exchangers (lla), (30a), (31a) are connected in the middle of 1).Furthermore, (32) is a cold water pipe, and this cold water pipe (32 ) A cold water heat exchanger (32a) and a cold water pump (32P) are provided in the middle.

(33)は他方の蒸発吸収器胴であり、(33A)は吸
収液溜め、(34)は蒸発器、(35) 、 (36)
は吸収器、(37)は冷媒散布器、(38)は冷媒液溜
め、(41)、及び(42)は濃液散布器、(43)は
吸収液ポンプである。ここで、蒸発吸収器胴(1) 、
 (33)を合わせた能力に応じて発生凝縮器胴(9)
は構成きれ、その容積は各蒸発吸収器胴(1) 、 (
33)とほぼ等しい。
(33) is the other evaporator-absorber shell, (33A) is the absorption liquid reservoir, (34) is the evaporator, (35), (36)
is an absorber, (37) is a refrigerant spreader, (38) is a refrigerant reservoir, (41) and (42) are concentrated liquid spreaders, and (43) is an absorption liquid pump. Here, the evaporator absorber shell (1),
(33) depending on the combined capacity of the generation condenser shell (9)
is composed of 1, and its volume is each evaporator-absorber shell (1), (
33).

吸収液溜め(33A)は稀吸収液管(44) 、 (4
5) 、 (46)、吸収液ポンプ(43)、低温熱交
換器(47)を介して稀吸収液管(14)に接続されて
いる。又、低温発生器(10)は濃液管(50) 、 
(51)、及び低温熱交換器(47)を介して濃液散布
器(41) 、 (42)に接続されている。(50P
)は濃液管(50)の途中に設けられた濃液ポンプであ
り、この濃液ポンプ(50P)は蒸発吸収器胴(33)
の停止時に停止する。さらに、凝縮器(11)は冷媒液
管(53)、及び冷媒循環管(54)を介して冷媒散布
器(37)、及び冷媒液溜め(38)に接続され、冷媒
循環管(54)の途中には冷媒液ポンプ(55)が設け
られている。又、冷媒管(53)の途中には開閉弁(5
3A)が設けられ、この開閉弁(53A )は開閉弁(
23A)と同様に蒸発吸収器胴(33)の停止時に閉じ
る。又、稀吸収液管(46)及び濃液管(50)の途中
にはそれぞれ開閉弁(46A) 、 (50A)が設け
られている。
The absorption liquid reservoir (33A) is connected to the dilute absorption liquid pipe (44), (4
5), (46) are connected to the dilute absorption liquid pipe (14) via an absorption liquid pump (43) and a low temperature heat exchanger (47). In addition, the low temperature generator (10) is a concentrated liquid pipe (50),
(51), and is connected to concentrated liquid spargeers (41) and (42) via a low-temperature heat exchanger (47). (50P
) is a concentrated liquid pump installed in the middle of the concentrated liquid pipe (50), and this concentrated liquid pump (50P) is connected to the evaporator absorber body (33).
Stops when . Further, the condenser (11) is connected to a refrigerant distribution device (37) and a refrigerant reservoir (38) via a refrigerant liquid pipe (53) and a refrigerant circulation pipe (54). A refrigerant liquid pump (55) is provided in the middle. In addition, an on-off valve (5) is installed in the middle of the refrigerant pipe (53).
3A) is provided, and this on-off valve (53A) is provided with an on-off valve (53A).
23A), it closes when the evaporator-absorber shell (33) stops. Further, on-off valves (46A) and (50A) are provided in the middle of the dilute absorption liquid pipe (46) and the concentrated liquid pipe (50), respectively.

又、(56) 、 (57)はそれぞれ冷却水管であり
、これらの冷却水管(56) 、 (57)の途中に冷
却水熱交換器(56a) 、 (57a)が設けられて
いる。又、(58)は冷水管であり、この冷水管(58
)の途中に冷水熱交換器(58a)、及び冷水ポンプ(
58F)が設けられている。
Further, (56) and (57) are cooling water pipes, respectively, and cooling water heat exchangers (56a) and (57a) are provided in the middle of these cooling water pipes (56) and (57). Also, (58) is a cold water pipe, and this cold water pipe (58)
), a cold water heat exchanger (58a) and a cold water pump (
58F) is provided.

そして、冷却水管(30) 、 (31)及び、(56
) 、 (57)はそれぞれ冷却水管(61) 、 (
62)、及び(63) 、 (64)によってクーリン
グタワー(図示せず)に接続され、冷却水管(61)、
及び(63)の途中には、それぞれ冷却水ポンプ(65
)、及び(66)が設けられている。上記吸収冷凍機の
運転時、各開閉弁(14A) 。
And cooling water pipes (30), (31) and (56
) and (57) are the cooling water pipes (61) and (
62), and (63) and (64) to a cooling tower (not shown), cooling water pipes (61),
and (63), there are cooling water pumps (65), respectively.
), and (66) are provided. Each on-off valve (14A) when operating the above absorption refrigerator.

(18A) 、 (23A) 、 (46A) 、 (
50A)、及び(53A)は開いており、各吸収液ポン
プ(5) 、 (43)、冷媒液ポンプ(28) 、 
(55)、冷水ポンプ(32F> 、 (58P)、冷
却水ポンプ(65) 、 (66)、及び冷却水ポンプ
(IIP>が運転される。そして、吸収液ポンプ(5)
 、 (43)から吐出された稀吸収液は低温熱交換器
(6) 、 (47)、及び高温熱交換器(7)にて温
度上昇して高温発生器(8)へ流れる。高温発生器(8
)にて釉液は加熱器(8A)にて加熱され、稀吸収液か
ら冷媒蒸気が分離する。ここで、加熱器(8A)には加
熱源となる例えば高温高圧蒸気が流れる。冷媒蒸気は冷
媒管(21〉を通り低温発生器(10)へ流れ、高温発
生器(8)から流れて来た中間吸収液を加熱する。そし
て、低温発生器(10)にて凝縮した冷媒液が凝縮器(
11)へ流れる。又、低温発生器(10)にて中間吸収
液から分離した冷媒蒸気が凝縮器(11)へ流れ、冷却
水熱交換器(lla)によって冷却され凝縮する。そし
て、凝縮器(11)の冷媒液溜め(IIB)に溜った冷
媒液は冷媒管(23) 、 (53)を経て冷媒液循環
管(24) 、 (54)へ流れ、冷媒液ポンプ(28
) 、 (55)から吐出された冷媒液と一緒に各散布
器(26) 、 (37)から各冷水熱交換器(32a
) 、 (58a)に散布される。そして、冷媒液は各
冷水熱交換器(32a) 、 (58a)にて蒸発し、
各冷水熱交換器(32a) 、 (5sa)を流れる冷
水が冷却され、温度低下した冷水が各蒸発器(2) 、
 (33)から流出する。
(18A), (23A), (46A), (
50A) and (53A) are open, and each absorption liquid pump (5), (43), refrigerant liquid pump (28),
(55), cold water pump (32F>, (58P), cooling water pump (65), (66), and cooling water pump (IIP>) are operated.Then, the absorption liquid pump (5)
, (43) is heated in the low-temperature heat exchangers (6), (47), and high-temperature heat exchanger (7), and flows to the high-temperature generator (8). High temperature generator (8
), the glaze liquid is heated with a heater (8A), and refrigerant vapor is separated from the dilute absorption liquid. Here, for example, high-temperature, high-pressure steam, which serves as a heating source, flows through the heater (8A). The refrigerant vapor flows through the refrigerant pipe (21) to the low temperature generator (10) and heats the intermediate absorption liquid flowing from the high temperature generator (8).Then, the refrigerant condensed in the low temperature generator (10) The liquid flows through the condenser (
11). Further, the refrigerant vapor separated from the intermediate absorption liquid in the low temperature generator (10) flows to the condenser (11), where it is cooled and condensed by the cooling water heat exchanger (lla). Then, the refrigerant liquid accumulated in the refrigerant liquid reservoir (IIB) of the condenser (11) flows to the refrigerant liquid circulation pipes (24), (54) via the refrigerant pipes (23), (53), and the refrigerant liquid pump (28).
), (55) together with each chilled water heat exchanger (32a) from each sprayer (26), (37).
), (58a). Then, the refrigerant liquid is evaporated in each cold water heat exchanger (32a) and (58a),
The chilled water flowing through each chilled water heat exchanger (32a), (5sa) is cooled, and the chilled water whose temperature has decreased is transferred to each evaporator (2),
It flows out from (33).

又、低温発生器(10〉にて冷媒が分離して濃度が高く
なった濃吸収液(以下濃液という)が濃液管(1s) 
、 (20) 、 (50) 、 (51)を介して各
蒸発吸収器胴(1) 、 (33)の吸収器(3) 、
 (4) 、 (35)、及び(36)へ流れる。そし
て、濃液が濃液散布器(3A) 、 (4A> 。
In addition, in the low temperature generator (10), the refrigerant is separated and the concentrated absorption liquid (hereinafter referred to as concentrated liquid) is transferred to the concentrated liquid pipe (1s).
, (20), (50), (51) to each evaporator-absorber shell (1), (33) absorber (3),
(4), (35), and (36). Then, the concentrated liquid is sent to the concentrated liquid sprayer (3A) and (4A>).

(41)、及び(42)から散布され、蒸発器(2) 
、 (34)で蒸発した冷媒蒸気を吸収し、濃液が薄く
なった稀吸収液が、各蒸発吸収器胴(1) 、 (33
)の吸収液溜め(IA) 、 (33A)に溜る。そし
て、吸収液ポンプ(5) 、 (43)から吐出した稀
吸収液が高温発生器(8)へ流れる。
Sprayed from (41) and (42), evaporator (2)
, (34), the concentrated liquid becomes diluted, and the dilute absorption liquid is transferred to each evaporator absorber shell (1), (33).
) is stored in the absorption liquid reservoir (IA) and (33A). Then, the diluted absorption liquid discharged from the absorption liquid pumps (5) and (43) flows to the high temperature generator (8).

上記のように運転されている吸収冷凍機において、冷凍
負荷が減少して例えば蒸発吸収器胴(1)。
In an absorption refrigerating machine operated as described above, the refrigerating load is reduced, for example, in the evaporator-absorber shell (1).

(33)の運転時の例えばに以下になった場合には、開
閉弁(14A) 、 (18A) 、 (23A)又は
開閉弁(46A) 、 (50A) 、 <53A)が
閉じ、さらに各ポンプ(5) 、 (18P) 。
For example, if the following conditions occur during operation of (33), the on-off valves (14A), (18A), (23A) or on-off valves (46A, (50A), <53A) will close, and each pump will close. (5), (18P).

(28) 、 (32P) 、 (65)又は各ポンプ
(43) 、 (50P) 、 (55) 、 (58
P) 、 (66)が停止する。モして、何れかの蒸発
吸収器胴への冷媒、及び吸収液の循環が停止すると共に
、冷水、及び冷却水の循環が停止する。そして、何れか
の蒸発吸収器胴の運転が停止し、吸収冷凍機の冷凍能力
は低下する。
(28), (32P), (65) or each pump (43), (50P), (55), (58
P), (66) stops. Then, the circulation of the refrigerant and absorption liquid to any of the evaporator-absorber shells is stopped, and the circulation of chilled water and cooling water is also stopped. Then, the operation of one of the evaporator-absorber shells is stopped, and the refrigerating capacity of the absorption refrigerator is reduced.

上記実施例によれば、蒸発吸収器胴(1) 、 (33
)と1台の発生凝縮器側(9)とを配管接続し、発生凝
縮器側(9)から各蒸発吸収器胴(1) 、 (33)
へ冷媒液、及び濃液が並列に流れるようにしたので、1
台の蒸発吸収器胴の大型化を図り冷凍能力を向上させた
場合のように各蒸発器(2) 、 (34)、及び各吸
収器<3) 、 (4) 、 (35) 、 (36)
の伝熱面積を増やす必要がなく、この結果、各蒸発吸収
器胴(1) 、 (33)内の圧力損失を増加させるこ
となく吸収冷凍機の冷凍能力を大幅に増大することがで
きる。又、2台の蒸発吸収器胴(1) 、 (33>に
それぞれ別の発生凝縮器側を配管接続する必要がなく、
吸収冷凍機の容積を低減することができ、又、配管接続
作業を簡略化することができる。
According to the above embodiment, the evaporator absorber shells (1), (33
) and one generation condenser side (9) are connected by piping, and each evaporator absorber shell (1), (33) is connected from the generation condenser side (9) to the generation condenser side (9).
Since the refrigerant liquid and concentrated liquid were made to flow in parallel, 1
Each evaporator (2), (34), and each absorber <3), (4), (35), (36 )
There is no need to increase the heat transfer area of the evaporator, and as a result, the refrigerating capacity of the absorption refrigerator can be significantly increased without increasing the pressure loss within each evaporator-absorber shell (1), (33). In addition, there is no need to connect separate generation condenser sides to the two evaporator absorber shells (1) and (33>),
The volume of the absorption refrigerator can be reduced, and the piping connection work can be simplified.

又、各蒸発吸収器胴(1) 、 (33)の大きさ(容
積)を抑えることができるので、各蒸発吸収器胴(1)
 、 (33)の耐圧強度に余裕ができ、板厚を薄くす
ることができる。
In addition, since the size (volume) of each evaporator-absorber shell (1) and (33) can be suppressed, each evaporator-absorber shell (1)
, (33) has a margin in pressure resistance, and the plate thickness can be made thinner.

又、吸収冷凍機を工場から設置場所まで運搬するときに
は、蒸発吸収器胴(1) 、 (33)をそれぞれ別に
運搬すると共に、1台の発生凝縮器側(9)を運搬すれ
ば良く、運搬作業の簡略化を図ることができる。又、蒸
発吸収器胴(1) 、 (33)に合わせて発生凝縮器
側(9)の能力、及び大きさが決まり、蒸発吸収器胴(
1)、(33)と発生凝縮器側(9)との容積比は従来
の1:2ないし1:5からほぼ1:1になるので、蒸発
吸収器胴(1) 、 (33)、及び発生凝縮器側(9
)を運搬手段、或いは運搬経路の広さなどの限界まで大
きくし、吸収冷凍機の大型化を図ることができる。
Furthermore, when transporting the absorption chiller from the factory to the installation site, it is sufficient to transport the evaporator-absorber shells (1) and (33) separately, and one generation condenser side (9). Work can be simplified. In addition, the capacity and size of the generation condenser side (9) are determined according to the evaporator-absorber shells (1) and (33), and the evaporator-absorber shell (
Since the volume ratio between 1), (33) and the generation condenser side (9) becomes approximately 1:1 from the conventional 1:2 to 1:5, the evaporator absorber shell (1), (33), and Generation condenser side (9
) can be increased to the limit of the transportation means or the width of the transportation route, etc., thereby making it possible to increase the size of the absorption refrigerator.

さらに、各蒸発吸収器胴(1) 、 (33)ごとに発
生凝縮器側を配管接続する場合と比較して、発生凝縮器
側(9)を1台にすることによって低温発生器の保温面
積を小さくすることができる。又、発生凝縮器側の表面
積を小さくでき、放熱量を小さくして発生凝縮器側での
熱損失を低減することができる。又、発生凝縮器側(9
)から各蒸発吸収器胴(1) 、 (33)へ冷媒液、
及び濃液が分配されて並列に流れるため、各濃液管、或
いは各冷媒液管などにダンパ等を設ける必要がなく、吸
収冷凍機の構成の簡略化を図ることができる。
Furthermore, compared to the case where the generation condenser side is connected to each evaporator-absorber shell (1) and (33) by piping, the heat retention area of the low-temperature generator is reduced by reducing the generation condenser side (9) to one unit. can be made smaller. Furthermore, the surface area on the generation condenser side can be reduced, the amount of heat radiation can be reduced, and heat loss on the generation condenser side can be reduced. Also, on the generation condenser side (9
) to each evaporator-absorber shell (1), (33), refrigerant liquid,
Since the concentrated liquid is distributed and flows in parallel, there is no need to provide a damper or the like in each concentrated liquid pipe or each refrigerant liquid pipe, and the structure of the absorption refrigerator can be simplified.

尚、本発明は上記実施例に限定されるものではなく、2
台以上の複数の蒸発吸収器胴と1台の発生凝縮器側とを
配管接続した場合にも、上記実施例と同様の作用効果を
得ることができる。
Note that the present invention is not limited to the above embodiments, but
Even when a plurality of evaporator-absorber shells and one generation condenser are connected by piping, the same effects as in the above embodiment can be obtained.

(ト)発明の効果 本発明は以上のように構成された吸収冷凍機であり、複
数の蒸発吸収器胴と、発生凝縮器側とを備え、複数の蒸
発吸収器胴を並列に配管接続したので、吸収冷凍機を例
えば地域冷房に使用して冷凍負荷が大きい場合等に、蒸
発吸収器劇的の圧力損失の増加や吸収冷凍機の容積の増
大を抑えて、容易に吸収冷凍機の大型化を図ることがで
き、冷凍負荷の大幅な増加に対応することができる。
(G) Effects of the Invention The present invention is an absorption refrigerator configured as described above, which includes a plurality of evaporator-absorber shells and a generation condenser side, and connects the plurality of evaporator-absorber shells in parallel with piping. Therefore, when an absorption chiller is used for district cooling and the refrigeration load is large, it is possible to suppress the dramatic increase in pressure loss of the evaporative absorber and the increase in the volume of the absorption chiller, and easily increase the size of the absorption chiller. This makes it possible to cope with a significant increase in refrigeration load.

又、吸収冷凍機を運搬する場合には、複数の蒸発吸収器
胴と1台の発生凝縮器胴とをそれぞれ運搬すれば良く、
冷凍能力が大きい吸収冷凍機の運搬作業の簡略化を図る
ことができる。
Furthermore, when transporting an absorption refrigerating machine, it is sufficient to transport a plurality of evaporator-absorber shells and one generation condenser shell, respectively.
It is possible to simplify the transportation work of an absorption refrigerator with a large refrigerating capacity.

又、複数の蒸発吸収器胴の各吸収器と発生凝縮器胴の発
生器とを濃吸収液管にて接続し、各蒸発吸収器胴の各蒸
発器と発生凝縮器の凝縮器とを冷媒液管にて接続したの
で、吸収冷凍機の運転時、発生凝縮器胴から各蒸発吸収
器胴へ冷媒液、及び濃液が流れ、各蒸発吸収器胴から同
じように冷水が流出し、吸収冷凍機の冷凍負荷が大きい
場合に、吸収冷凍機の容積を大幅に増大させることなく
容易に対応することができ、又、複数の蒸発吸収器胴に
合わせて発生凝縮器胴の容積が決まり、各蒸発吸収器胴
と発生凝縮器胴との容積をほぼ等しくすることができ、
運搬作業の簡略化を図ることができる。又、発生凝縮器
胴を1台にすることで、発生凝縮器を複数設ける場合と
比較して発生器の保温面積を小さくすることができ、又
、熱損失を低減することができる。
In addition, each absorber of the plurality of evaporator-absorber shells and the generator of the generator-condenser shell are connected by a concentrated absorption liquid pipe, and each evaporator of each evaporator-absorber shell and the condenser of the generator-condenser shell are connected to each other using refrigerant. Because they are connected with liquid pipes, when the absorption refrigerator is operating, refrigerant liquid and concentrated liquid flow from the generation condenser shell to each evaporator-absorber shell, and cold water flows out from each evaporator-absorber shell in the same way, causing absorption. When the refrigerating load of the refrigerating machine is large, it can be easily handled without significantly increasing the capacity of the absorption refrigerating machine, and the capacity of the generation condenser cylinder is determined according to the plurality of evaporator absorber cylinders, The volumes of each evaporator-absorber shell and generation condenser shell can be made almost equal,
Transportation work can be simplified. Further, by using only one generation condenser body, the heat retention area of the generator can be made smaller than when a plurality of generation condensers are provided, and heat loss can be reduced.

さらに、発生凝縮器胴に配管接続された複数の蒸発吸収
器胴を備え、冷媒液を凝縮器から各蒸発吸収器胴の蒸発
器へ流し、濃液を発生器から各蒸発吸収器胴の吸収器へ
並列に流すようにしたので、吸収冷凍機の冷凍負荷が大
きい場合に、吸収冷凍機の容積を大幅に増大させること
なく容易に対応することができ、又、発生凝縮器胴から
各蒸発吸収器胴へ冷媒液、及び濃液を分配して流すため
にダンパ等を設ける必要がなく、吸収冷凍機の構成簡略
化を図ることができる。
Furthermore, a plurality of evaporator-absorber shells are pipe-connected to the generation-condenser shell, refrigerant liquid flows from the condenser to the evaporator of each evaporator-absorber shell, and concentrated liquid is absorbed from the generator to each evaporator-absorber shell. Since the refrigeration load of the absorption chiller is large, it can be easily handled without significantly increasing the capacity of the absorption chiller. There is no need to provide a damper or the like to distribute and flow the refrigerant liquid and concentrated liquid to the absorber shell, and the structure of the absorption refrigerator can be simplified.

【図面の簡単な説明】[Brief explanation of drawings]

図面は本発明の一実施例を示す吸収冷凍機の回路構成図
である。 (1) 、 (33)・・・蒸発吸収器胴、 (2) 
、 (34)・・・蒸発器、 (3) 、 (4) 、
 (35) 、 (36)・・・吸収器、 (9)・・
・発生凝縮器胴、 (10)・・・低温発生器、 (1
1)・・・凝縮器、 (18) 、 (20) 、 (
50) 、 (51)・・・濃液管、 (23)。 (53)・・・冷媒液管、 (24)。 (54)・・・冷媒循環 管。
The drawing is a circuit diagram of an absorption refrigerator showing an embodiment of the present invention. (1), (33)...evaporator absorber shell, (2)
, (34)...evaporator, (3) , (4) ,
(35), (36)...absorber, (9)...
・Generation condenser shell, (10)...low temperature generator, (1
1)...Condenser, (18), (20), (
50), (51)...concentrated liquid tube, (23). (53)...Refrigerant liquid pipe, (24). (54)...Refrigerant circulation pipe.

Claims (1)

【特許請求の範囲】 1、蒸発器、及び吸収器を内蔵した蒸発吸収器胴、発生
器及び凝縮器を内蔵した発生凝縮器胴をそれぞれ配管接
続して冷凍サイクルを形成した吸収冷凍機において、1
台の発生凝縮器胴と、複数の蒸発吸収器胴とを備え、こ
れらの蒸発吸収器胴を並列に配管接続したことを特徴と
する吸収冷凍機。 2、蒸発器及び吸収器を内蔵した蒸発吸収器胴、発生器
及び凝縮器を内蔵した発生凝縮器胴をそれぞれ配管接続
して冷凍サイクルを形成した吸収冷凍機において、複数
の蒸発吸収器胴と、これらの蒸発吸収器胴の吸収器と発
生凝縮器胴の発生器との間にそれぞれ接続された濃吸収
液管と、各蒸発吸収器胴の蒸発器と発生凝縮器胴の凝縮
器との間にそれぞれ接続された冷媒液管とを備えたこと
を特徴とする吸収冷凍機。 3、蒸発器及び吸収器を内蔵した蒸発吸収器胴、発生器
及び凝縮器を内蔵した発生凝縮器胴とを備えた吸収冷凍
機において、発生凝縮器胴に配管接続された複数の蒸発
吸収器胴を備え、冷媒液を凝縮器から各蒸発吸収器胴の
蒸発器へ並列に流し、かつ濃吸収液を発生器から各蒸発
吸収器胴の吸収器へ並列に流すようにしたことを特徴と
する吸収冷凍機。
[Scope of Claims] 1. An absorption refrigerating machine in which a refrigeration cycle is formed by connecting an evaporator-absorber shell containing an evaporator and an absorber, and a generation-condenser shell containing a generator and a condenser through piping, 1
1. An absorption refrigerating machine comprising one generation condenser shell and a plurality of evaporator-absorber shells, the evaporator-absorber shells being connected in parallel with piping. 2. In an absorption refrigerator in which a refrigeration cycle is formed by connecting an evaporator-absorber shell with a built-in evaporator and an absorber, and a generator-condenser shell with a built-in generator and condenser, respectively, to form a refrigeration cycle, a plurality of evaporator-absorber shells and , concentrated absorption liquid pipes connected between the absorber of each evaporator-absorber shell and the generator of the generator-condenser shell, and the evaporator of each evaporator-absorber shell and the condenser of the generator-condenser shell. An absorption refrigerating machine characterized by comprising refrigerant liquid pipes connected between the refrigerant liquid pipes. 3. In an absorption refrigerator equipped with an evaporator-absorber shell containing an evaporator and an absorber, and a generator-condenser shell containing a generator and a condenser, a plurality of evaporator-absorbers are connected to the generator-condenser shell by piping. The refrigerant liquid is caused to flow in parallel from the condenser to the evaporator of each evaporator-absorber shell, and the concentrated absorption liquid is caused to flow from the generator to the absorber of each evaporator-absorber shell in parallel. absorption refrigerator.
JP2008935A 1990-01-18 1990-01-18 Absorption refrigerator Expired - Lifetime JP2517421B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2008935A JP2517421B2 (en) 1990-01-18 1990-01-18 Absorption refrigerator

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2008935A JP2517421B2 (en) 1990-01-18 1990-01-18 Absorption refrigerator

Publications (2)

Publication Number Publication Date
JPH03213963A true JPH03213963A (en) 1991-09-19
JP2517421B2 JP2517421B2 (en) 1996-07-24

Family

ID=11706526

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2008935A Expired - Lifetime JP2517421B2 (en) 1990-01-18 1990-01-18 Absorption refrigerator

Country Status (1)

Country Link
JP (1) JP2517421B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN117450687A (en) * 2023-12-21 2024-01-26 安徽普泛能源技术有限公司 Multi-heat source multi-stage cold absorption refrigerating unit and process for energy cascade utilization

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS582564A (en) * 1981-06-26 1983-01-08 株式会社日立製作所 Composite absorption type refrigerator
JPH0182464U (en) * 1987-11-20 1989-06-01

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS582564A (en) * 1981-06-26 1983-01-08 株式会社日立製作所 Composite absorption type refrigerator
JPH0182464U (en) * 1987-11-20 1989-06-01

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN117450687A (en) * 2023-12-21 2024-01-26 安徽普泛能源技术有限公司 Multi-heat source multi-stage cold absorption refrigerating unit and process for energy cascade utilization
CN117450687B (en) * 2023-12-21 2024-03-15 安徽普泛能源技术有限公司 Multi-heat source multi-stage cold absorption refrigerating unit and process for energy cascade utilization

Also Published As

Publication number Publication date
JP2517421B2 (en) 1996-07-24

Similar Documents

Publication Publication Date Title
CN101432581B (en) Refrigeration system
JPH0278866A (en) Refrigerator of absorption type
JPH03213963A (en) Absorptive type freezer
CN206944524U (en) Heated type cooling cycle system
JP3231441B2 (en) Absorption refrigerator, chiller / heater and heat pump with steam turbine and compressor in absorber
JP4266697B2 (en) Absorption refrigerator
JP2517420B2 (en) Absorption refrigerator
CN110940214A (en) Loop heat pipe capable of refrigerating and heating
JP7080001B2 (en) Absorption chiller
JP3762217B2 (en) refrigerator
JP2517422B2 (en) Absorption refrigerator
JP2517425B2 (en) Absorption refrigerator
JP3813348B2 (en) Absorption refrigerator
JP2009068816A (en) Absorption refrigerating machine
JP2875615B2 (en) Double effect absorption chiller / heater
JPH0410522Y2 (en)
JPS6315049A (en) Absorption heat pump type heat accumulator
JP2004011928A (en) Absorption refrigerator
JPH0350463A (en) Absorption refrigerator
JP4141176B2 (en) Lower body of absorption refrigerator and device for using the same
JP3277349B2 (en) Evaporation absorber for absorption refrigerator
JP4201403B2 (en) Absorption refrigerator
JPH03244971A (en) Absorption freezer
JPH01266476A (en) Absorption refrigerator
JPS6053757A (en) Double effect absorption type refrigerator

Legal Events

Date Code Title Description
FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090430

Year of fee payment: 13

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090430

Year of fee payment: 13

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100430

Year of fee payment: 14

EXPY Cancellation because of completion of term
FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100430

Year of fee payment: 14