JPH03211790A - Ceramic multilayer wiring board - Google Patents

Ceramic multilayer wiring board

Info

Publication number
JPH03211790A
JPH03211790A JP736990A JP736990A JPH03211790A JP H03211790 A JPH03211790 A JP H03211790A JP 736990 A JP736990 A JP 736990A JP 736990 A JP736990 A JP 736990A JP H03211790 A JPH03211790 A JP H03211790A
Authority
JP
Japan
Prior art keywords
powder
raw material
thermal expansion
ceramic
conductor
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP736990A
Other languages
Japanese (ja)
Other versions
JP2838300B2 (en
Inventor
Noriyasu Sugimoto
典康 杉本
Yukihiro Kimura
幸広 木村
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Niterra Co Ltd
Original Assignee
NGK Spark Plug Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NGK Spark Plug Co Ltd filed Critical NGK Spark Plug Co Ltd
Priority to JP736990A priority Critical patent/JP2838300B2/en
Publication of JPH03211790A publication Critical patent/JPH03211790A/en
Application granted granted Critical
Publication of JP2838300B2 publication Critical patent/JP2838300B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Production Of Multi-Layered Print Wiring Board (AREA)

Abstract

PURPOSE:To maintain the matching capacity of thermal expansion coefficients between a ceramic board and a conductor and inhibit their conduction resistance to a minimum value by allowing conductor raw material powder to contain Mo at least and specifying their grain sizes and amount of added powder. CONSTITUTION:Ceramic raw material powder and conductive raw material powder are laid out in a through hole of a ceramic board and fired and formed into a conductor therein. The conductive raw material is specified to contain at least Mo, and their minimum grain sizes are defined not to exceed 1.5mum while their amount of added powder is arranged to exceed 15wt.%. The ceramic raw material powder comprises Al2O3 powder while the conductive raw material comprises Mo powder and W powder (which may not be included.). The weight composition percentage of each raw material powder for the three components of Mo and W and Al2O3 is composed of Al2O3 powder (0.05 to 0.3) and Mo powder (0.3 to 0.95). However, the composition excludes the aforesaid Al2O3 powder, which ranges from 0.23 to 0.3 and the Mo powder which ranges from 0.3 to 0.55. Their resistance value is defined to be 4.0X10<-5>OMEGA.cm or below while their thermal expansion coefficient is defined to exceed 6.25X10<-6>/ deg.C.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明は、セラミック基板と導体との熱膨張率の整合性
を確保しつつ導体抵抗を低く抑えたセラミック多層配線
基板に関し、各種電子部品等に広く利用される。
[Detailed Description of the Invention] [Field of Industrial Application] The present invention relates to a ceramic multilayer wiring board that maintains consistency in thermal expansion coefficient between a ceramic substrate and a conductor while keeping conductor resistance low, and is suitable for use in various electronic components, etc. widely used.

〔従来の技術〕[Conventional technology]

従来からのセラミック多層基板としては、複数のグリー
ンシートを積層し焼成してなるセラミック基板と、この
スルーホール内に形成された導体とを有するものが知ら
れている。そして、この導体を構成する材料としては、
セラミック基板の熱膨張率との整合性を図ることを目的
に、Mo、W等の導電材料にAl2O3等のセラミック
スを添加したものが用いられている。
2. Description of the Related Art Conventional ceramic multilayer substrates are known to include a ceramic substrate formed by laminating and firing a plurality of green sheets, and conductors formed in the through holes. The material that makes up this conductor is
For the purpose of matching the coefficient of thermal expansion of the ceramic substrate, a conductive material such as Mo or W with ceramics such as Al2O3 added thereto is used.

〔発明が解決しようとする課題〕[Problem to be solved by the invention]

近年のパブケージ等の高速化、高集積化に伴い、セラミ
ック多層配線基板の配線抵抗の低下及び導体密度の増大
が必要となって来ている。
2. Description of the Related Art With the recent increase in speed and integration of circuit boards, etc., it has become necessary to lower the wiring resistance and increase the conductor density of ceramic multilayer wiring boards.

しかし、この低抵抗化のためには導電材料の含有率を上
げる必要があるが、この場合は熱膨張率の整合を図るこ
とができず、ひいてはその差の増大に伴う熱応力が増大
するので導体密度の増大を図ることができない。一方、
熱膨張率の整合を図るためにA 1203等のセラミッ
ク材料の含有率を上げる必要があるが、この場合は導体
抵抗、即ち配線抵抗が上昇してしまう。
However, in order to lower this resistance, it is necessary to increase the content of the conductive material, but in this case it is not possible to match the coefficients of thermal expansion, and as a result, thermal stress increases as the difference increases. It is not possible to increase the conductor density. on the other hand,
In order to match the coefficient of thermal expansion, it is necessary to increase the content of the ceramic material such as A 1203, but in this case, the conductor resistance, that is, the wiring resistance increases.

従来の前記セラミック多層配線基板においては、前記「
熱膨張率の整合性」及び「導体抵抗の低下」という相反
する要求を同時に満たすことができなかった。
In the conventional ceramic multilayer wiring board, the above-mentioned "
It was not possible to simultaneously satisfy the contradictory demands of "consistency in thermal expansion coefficient" and "reduction in conductor resistance."

本発明は、上記観点に鑑みなされたものであり、導体と
セラミック基板の熱膨張率の整合性を確保しつつ導体抵
抗を低(抑えたセラミック多層配線基板(以下、単に配
線基板という)を提供することを目的とする。
The present invention has been made in view of the above points, and provides a ceramic multilayer wiring board (hereinafter simply referred to as a wiring board) that has low conductor resistance while ensuring consistency in the coefficient of thermal expansion between the conductor and the ceramic board. The purpose is to

〔課題を解決するための手段〕[Means to solve the problem]

本第1発明に係わる配線基板は、スルーホールをもつセ
ラミック基板と、該スルーホール内にセラミック原料粉
末及び導電原料粉末を配置し焼成して形成された導体と
、を具備し、前記導電原料粉末は少なくともMo粉末を
含み、該Mo粉末の平均粒径は1.5μm以下であり、
かつこれらの原料粉末全部を100重量部とする場合、
前記Mo粉末の添加量は15重量5lll(以下、この
場合の値を重量%という)以上であることを特徴とする
A wiring board according to a first aspect of the present invention includes a ceramic substrate having a through hole, and a conductor formed by disposing ceramic raw material powder and conductive raw material powder in the through hole and firing the conductive raw material powder. contains at least Mo powder, the average particle size of the Mo powder is 1.5 μm or less,
And when all these raw material powders are 100 parts by weight,
The amount of the Mo powder added is 15% by weight or more (hereinafter, the value in this case will be referred to as weight %) or more.

このMo粉末の平均粒径を1.5μm以下とするのは、
これを用いて焼成した焼結体の抵抗を低下させることが
でき、かつ熱膨張率も向上させることができ、低抵抗化
と熱膨張率の整合性とを具備することができるからであ
る。また、このM。
The reason why the average particle size of this Mo powder is 1.5 μm or less is because
This is because the resistance of a sintered body fired using this material can be lowered, and the coefficient of thermal expansion can also be improved, thereby achieving low resistance and consistency in the coefficient of thermal expansion. Also, this M.

粉末の添加量を15重量%以上とするのは、これ未満で
は低抵抗を十分に具現できないからである一方、W粉末
、A l a 03粉末の粒径、添加量を限定しないの
は、これらは導体の抵抗又は熱膨張率にそれほど影響を
及ぼさないからである。
The reason why the amount of powder added is set to 15% by weight or more is because if it is less than this, it is not possible to sufficiently realize low resistance. On the other hand, the reason why the particle size and amount of addition of W powder and Al a 03 powder are not limited is because these This is because it does not have much influence on the resistance or thermal expansion coefficient of the conductor.

本第2発明に係わる配線基板において、前記セラミック
原料粉末は1,1.0.粉末、前記導電原料粉末はMo
粉末及びW粉末(尚、W粉末を含まない場合がある)か
らなり、M o −W  A l 20、の3成分(2
成分の場合も含めて、このようにいう)の各原料粉末の
重量組成割合は、第7図の太線枠内の組成、即ち、前記
Ai、O,粉末が0.05〜0.3かつMo粉末が0.
3〜0.95の範囲(尚、前記Al1zO3粉末が0.
23〜0.3かつ前記Mo粉末が0.3〜0.55の範
囲を除く)の組成であり、抵抗値が4.0XIO5Ω・
cm以下かつ熱膨張率が6.25X10/℃以上である
ことを特徴とする。
In the wiring board according to the second aspect of the present invention, the ceramic raw material powder is 1,1.0. powder, the conductive raw material powder is Mo
It consists of powder and W powder (in some cases, it does not contain W powder), and the three components (2
The weight composition ratio of each raw material powder (referred to as above, including the components) is the composition within the bold line frame in FIG. Powder is 0.
3 to 0.95 (in addition, if the Al1zO3 powder is 0.
23 to 0.3 and excluding the range in which the Mo powder is 0.3 to 0.55), and the resistance value is 4.0XIO5Ω.
cm or less and a coefficient of thermal expansion of 6.25×10/°C or more.

この組成範囲内の場合は、この範囲外の組成と比べると
、低抵抗と高熱膨張率を有する。即ち、以下の実施例及
び第7図に示すように、この範囲内の場合は、十分に優
れた低抵抗(4,0X10−5Ω’ 0m以下)と高熱
膨張率(6,25XlO/℃以上)の特性を確保できる
。この範囲内のうち、特に同図の点線枠内は、更に望ま
しい特性(抵抗;3.0X10−’Ω’ am以下、高
熱膨張率;6.80X10−5/℃以上)を示す。
A composition within this range has a lower resistance and a higher coefficient of thermal expansion than a composition outside this range. That is, as shown in the following examples and FIG. 7, within this range, sufficiently low resistance (4,0X10-5Ω' 0m or less) and high coefficient of thermal expansion (6,25XlO/°C or more) are achieved. characteristics can be ensured. Within this range, particularly within the dotted line frame in the figure, more desirable characteristics (resistance: 3.0X10-'Ω' am or less, high coefficient of thermal expansion: 6.80X10-5/°C or more) are exhibited.

〔作用〕[Effect]

導体を構成する材料としては、アルミナ等のセラミック
スとこれと熱膨張率の異なる金属材料(例えばアルミナ
よりもそれが小さいMOlW等)とを用いる。従って、
セラミック含有率が高くなると導体の熱膨張率が大きく
なりセラミック基板の熱膨張率に近くなる。一方、抵抗
値は、セラミック含有率が高くなるに従い加速度的に増
加していく。従って、セラミック含有量を増加してゆく
と、セラミック基板と導体の熱膨張率の差による熱応力
の発生を防止することはできるが、抵抗値が上昇し、著
しくセラミック基板としての性能の低下を招く。
As the material constituting the conductor, ceramics such as alumina and a metal material having a different coefficient of thermal expansion (for example, MOLW or the like having a coefficient of thermal expansion smaller than that of alumina) are used. Therefore,
As the ceramic content increases, the coefficient of thermal expansion of the conductor increases and approaches the coefficient of thermal expansion of the ceramic substrate. On the other hand, the resistance value increases at an accelerating rate as the ceramic content increases. Therefore, if the ceramic content is increased, it is possible to prevent the occurrence of thermal stress due to the difference in thermal expansion coefficient between the ceramic substrate and the conductor, but the resistance value increases and the performance as a ceramic substrate is significantly reduced. invite

本第1発明における導体中には、まず、セラミツクを含
むので、導体とセラミック基板の熱膨張率との整合性を
図ることができる。
First, since the conductor in the first invention includes ceramic, it is possible to match the thermal expansion coefficients of the conductor and the ceramic substrate.

一方、第1図に示すようにMo粉末の粒径を小さくする
と抵抗が大変小さくなる。また、第3図及び第5図に示
すように、W粉末(第3図)及びAl2O,粉末(第5
図)の粒径を変えてもあまり抵抗の変化がなく、即ち、
粒径を小さくしても抵抗はほとんど低下しない。以上よ
り、粒径の小さなMo粉末を使用することにより、焼成
後の導体の抵抗を著しく低下させることができる。
On the other hand, as shown in FIG. 1, if the particle size of the Mo powder is made small, the resistance becomes very small. In addition, as shown in Fig. 3 and Fig. 5, W powder (Fig. 3) and Al2O, powder (Fig.
Even if the particle size in Fig.) is changed, the resistance does not change much, that is,
Even if the particle size is reduced, the resistance hardly decreases. From the above, by using Mo powder with a small particle size, the resistance of the conductor after firing can be significantly reduced.

一方、第2図に示すように、粒径の小さなM。On the other hand, as shown in FIG. 2, M has a small particle size.

粉末を使用すると余り大きな増大ではないが、熱膨張率
は増大する。また、第4図及び第6図に示すように、W
粉末及びAj!−03粉末の粒径を変えても、はとんど
熱膨張率の変化はない。
The use of powder increases the coefficient of thermal expansion, although the increase is not very large. In addition, as shown in FIGS. 4 and 6, W
Powder and Aj! Even if the particle size of the -03 powder is changed, there is almost no change in the coefficient of thermal expansion.

以上より、セラミックを導体中に含むとともにMo粉末
の粒径を1.5μm以下と小さくすると、導体の熱膨張
率をセラミック基板のものに、より一層整合させること
ができるとともに、より一層の低抵抗を確保できる。
From the above, by including ceramic in the conductor and reducing the particle size of the Mo powder to 1.5 μm or less, the conductor's coefficient of thermal expansion can be more closely matched to that of the ceramic substrate, and the resistance can be further lowered. can be secured.

また、本第2発明においても、導体の組成をMo−W−
Altosの3成分系とする場合、その各原料粉末の重
量組成割合を種々検討した所、各原料粉末の重量組成割
合が、第7図の太線枠内の組成の場合は、大変骨れた低
抵抗(4,0X105Ω・C11以下)と高熱膨張率(
6,25XIO/℃以上)の特性を確保でき、実用上大
変有用である。更に、この範囲内のうち、特に同図の点
線枠内は、更に好ましい低抵抗及び高熱膨張率を示す。
Also, in the second invention, the composition of the conductor is Mo-W-
In the case of Altos' three-component system, we investigated various weight composition ratios of each raw material powder, and found that if the weight composition ratio of each raw material powder was within the thick line frame in Figure 7, it would be extremely low. Resistance (4.0x105Ω・C11 or less) and high coefficient of thermal expansion (
6.25XIO/°C or higher), which is very useful in practice. Further, within this range, particularly within the dotted line frame in the figure, a more preferable low resistance and high coefficient of thermal expansion are exhibited.

〔実施例〕〔Example〕

以下実施例により本発明を具体的に説明する。 The present invention will be specifically explained below using Examples.

実施例! 本実施例は、導体の構成に使用する原料粉末であるMo
粉末、W粉末及びAJ!ao3粉末の粒径が、導体の抵
抗及び熱膨張率に与える影響を検討したものである。
Example! In this example, the raw material powder used for constructing the conductor, Mo
powder, W powder and AJ! The effect of the particle size of ao3 powder on the resistance and coefficient of thermal expansion of a conductor was investigated.

(1)試験片の作製 平均粒径が0.56μm (W+ ) 、1.3μm(
W2) 、2 、 8 am (Wa )の各W粉末、
同06 7、um  (Mo+  )  、 1. 4
am  (Mow  )  、2.8am (MO3)
のMo粉末、更に、同0゜3 μm  (Aj!+  
)  、 0. 5am  (Al1 )  2. 9
μm (A 1 s )の各Al2O5粉末をそれぞれ
準備した。尚、この平均粒径は、空気通過法により測定
した。
(1) The average particle diameter of the test piece was 0.56 μm (W+), 1.3 μm (
Each W powder of W2), 2, 8 am (Wa),
06 7, um (Mo+), 1. 4
am (Mow), 2.8am (MO3)
Mo powder of 0°3 μm (Aj!+
), 0. 5am (Al1) 2. 9
Each Al2O5 powder of μm (A 1 s ) was prepared. Note that this average particle size was measured by an air passage method.

まず、以下のようにして試験片Nα1を作製した。即ち
、W1粉末(密度; 19.3g/cm’)を120g
、Mo+粉末(密度;1O13g / c m’)を1
20g%A1.粉末(密度:3.99g/cm’)を6
0g1更に焼結助剤(SiOz:CaO:Mg0=70
:15:15重量比)を12gと、アセトン200ml
を加えて湿式ボールミルにて24時間混合した。尚、こ
のW1粉末、M。
First, a test piece Nα1 was prepared as follows. That is, 120 g of W1 powder (density: 19.3 g/cm')
, Mo + powder (density: 1O13g/cm') at 1
20g% A1. Powder (density: 3.99g/cm')
0g1 and sintering aid (SiOz:CaO:Mg0=70
:15:15 weight ratio) and 200ml of acetone.
was added and mixed in a wet ball mill for 24 hours. In addition, this W1 powder, M.

、粉末及び/1.粉末の体積%は、各々、19.36.
45%であり、その重量%は各々40.40120%で
ある。
, powder and /1. The volume percent of the powder is 19.36.
45%, and their weight percentages are 40.40120%, respectively.

その後、成形用にを機バインダーを加え、混合し、次い
で湯浴でアセトンを除去して、所定の粉末を得た。この
粉末を60メツシユふるいに通し、この通過した粉末を
金型に入れプレス成形(1t/cm’)し、次いで水素
炉を用いて焼成(1500℃、2時間)し、試験片胆1
  (40X5X5mm)を作製した。
Thereafter, a machine binder for molding was added and mixed, and then acetone was removed in a hot water bath to obtain a predetermined powder. This powder was passed through a 60-mesh sieve, and the passed powder was put into a mold and press-molded (1 t/cm'), and then fired using a hydrogen furnace (1500°C, 2 hours).
(40X5X5mm) was produced.

更に、前記と同様にして、表に示す粒径の各原料粉末の
各組合せを用いて、各試験片社2〜16を作製した。
Furthermore, in the same manner as above, test pieces 2 to 16 were prepared using each combination of raw material powders having the particle sizes shown in the table.

(2)性能試験 前記各試験片の比抵抗及び熱膨張率を測定し、その性能
評価を行い、その結果を表及び第1図〜第6図に示す。
(2) Performance test The specific resistance and coefficient of thermal expansion of each test piece were measured and the performance was evaluated. The results are shown in the table and FIGS. 1 to 6.

特に、第1〜6図は、表の結果をまとめたものである。In particular, Figures 1 to 6 summarize the results in tables.

尚、比抵抗は、前記試験片より1.5X1.5X20m
mに切り出した試料を用い、4端子法により測定した。
In addition, the specific resistance is 1.5X1.5X20m from the above test piece.
Measurement was performed using a four-terminal method using a sample cut out to a size of m.

熱膨張率は35X3.5X15mmに切り出した試料ニ
テ、石英を標準試料として室温から1000℃までの測
定を行った。
The coefficient of thermal expansion was measured from room temperature to 1000° C. using a sample of knitted quartz cut into a size of 35×3.5×15 mm as a standard sample.

(3)性能評価 第1図に示すように、Mo粉末の粒径を小さくした場合
には、焼結体の比抵抗が小さな値となる。この場合、第
2図に示すように、同時に焼結体の熱膨張率が大きくな
るが、その変化量は小さい。また、第3図〜第6図に示
すように、W粉末及びA l 20 ff粉末の粒径が
、焼結体の比抵抗、熱膨張率に与える影響は少ない。従
って、Mo粉末の粒径を小さくすることで、セラミック
基板の熱膨張率との整合を図ることができるとともに、
導体が本来具備すべき導電性という性質を、更に一層発
揮することができる。
(3) Performance Evaluation As shown in FIG. 1, when the particle size of the Mo powder is made small, the specific resistance of the sintered body becomes a small value. In this case, as shown in FIG. 2, the coefficient of thermal expansion of the sintered body increases at the same time, but the amount of change is small. Moreover, as shown in FIGS. 3 to 6, the particle sizes of the W powder and the Al 20 ff powder have little influence on the resistivity and coefficient of thermal expansion of the sintered body. Therefore, by reducing the particle size of Mo powder, it is possible to match the coefficient of thermal expansion of the ceramic substrate, and
The property of electrical conductivity that a conductor should originally have can be further exhibited.

実施例2 本実施例は、W粉末、M0粉末及びA l 20 s粉
末の組成が、導体抵抗及び熱I偏重に与える影響を検討
したものである。
Example 2 In this example, the influence of the compositions of W powder, M0 powder, and Al 20 s powder on conductor resistance and thermal I bias was investigated.

実施例1で最適とされたW粉末(前32W、)、Mo粉
末(前記Mo、)及びA l 20 、粉末(前記へ!
2)の組合せ(試験片N[110)を用い、その組成を
適宜変化させ、実施例1と同様の方法により各試験片を
作製し、その比抵抗及び熱膨張率を測定した。その結果
を、Mo  W  Al2O3の3成分系図として、第
7図(重量組成比)、第8図(体積組成比、抵抗)及び
第9図(体積組成比、熱膨張率)に示す。
The W powder (32W, above), Mo powder (Mo, ), and Al 20 powder (see above!), which were optimized in Example 1, were optimized.
Using the combination of 2) (test piece N[110) and changing the composition appropriately, each test piece was prepared in the same manner as in Example 1, and its specific resistance and coefficient of thermal expansion were measured. The results are shown in FIG. 7 (weight composition ratio), FIG. 8 (volume composition ratio, resistance), and FIG. 9 (volume composition ratio, coefficient of thermal expansion) as a three-component family tree of Mo W Al2O3.

この結果によれば、抵抗値が低く (4,0XIO−S
Ω−cIl以下)かつ熱膨張率の大きい(6,25X1
0−’/℃以上)を示す組成は、第7図中の太線枠内の
組成である。更に、その内、特に望ましい組成は、第7
図中の点線枠内の組成である。
According to this result, the resistance value is low (4,0XIO-S
Ω-cIl or less) and has a large coefficient of thermal expansion (6,25X1
0-'/°C or higher) is the composition within the bold line frame in FIG. Furthermore, among them, a particularly desirable composition is the seventh one.
The composition is within the dotted line frame in the figure.

これらの枠内の組成では、大変優れた低抵抗と高熱膨張
率の双方を確保できるので、最近の電子回路基板に要求
される高度な特性にも応えることができる。
With a composition within these limits, it is possible to ensure both extremely low resistance and high coefficient of thermal expansion, and therefore it is possible to meet the advanced characteristics required of recent electronic circuit boards.

尚、本発明においては、前記具体的実施例に示すものに
限られず、目的、用途に応じて本発明の範囲内で種々変
更した実施例とすることができる。即ち、第1発明にお
いて、セラミック原料粉末の材質は、A1□O1に限ら
ずムライト、窒化珪素等地のものを用いることができる
。また、セラミック基板の材質も特に限定されないが、
導体に用いられるセラミック材料と同−又は同種のもの
が好ましい。
It should be noted that the present invention is not limited to those shown in the above-mentioned specific embodiments, and may be modified in various ways within the scope of the present invention depending on the purpose and use. That is, in the first invention, the material of the ceramic raw material powder is not limited to A1□O1, but other materials such as mullite and silicon nitride can be used. Furthermore, the material of the ceramic substrate is not particularly limited, but
Preferably, the ceramic material is the same or of the same type as the ceramic material used for the conductor.

〔発明の効果〕〔Effect of the invention〕

本第1発明の配線基板は、前記作用を有するので、Mo
粉末の粒径を小さくするだけで、導体の低抵抗化とセラ
ミック基板との熱膨張率の整合の双方を達成でき、電子
回路基板として大変有用であり、近年の要求に十分に応
えることができる。
Since the wiring board of the first invention has the above-mentioned effect, Mo
By simply reducing the particle size of the powder, it is possible to achieve both low resistance of the conductor and matching of the coefficient of thermal expansion with the ceramic substrate, making it extremely useful as an electronic circuit board and fully meeting the demands of recent years. .

また、本第2発明の配線基板は、A l a O3粉末
、Mo粉末及びW粉末の所定組成を有することにより、
導体の低抵抗化(抵抗値;4.0XIO5Ω・0m以下
)とセラミック基板の熱膨張率との整合(熱膨張率;6
.25X10−5/℃以上)の双方を達成でき、前記と
同様に有用な効果をもつ。この場合、特に、Mo粉末の
粒径を1.5μm以下の小さなものにすれば、更に優れ
た効果を有する。
Further, the wiring board of the second invention has a predetermined composition of Al a O3 powder, Mo powder, and W powder, so that
Low resistance of the conductor (resistance value: 4.0XIO5Ω・0m or less) and matching with the thermal expansion coefficient of the ceramic substrate (thermal expansion coefficient: 6
.. 25×10 −5 /° C. or higher), and has the same useful effects as mentioned above. In this case, particularly if the particle size of the Mo powder is reduced to 1.5 μm or less, even better effects can be obtained.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は実施例1においてMo粉末の平均粒径と比抵抗
の関係を示すグラフ、第2図はMo粉末の平均粒径と熱
膨張率の関係を示すグラフ、第3図はW粉末の平均粒径
と比抵抗の関係を示すグラフ、第4図はW粉末の平均粒
径と熱膨張率の関係を示すグラフ、第5図はAl1ao
s粉末の平均粒径と比抵抗の関係を示すグラフ、第6図
はAl2O、粉末の平均粒径と熱膨張率の関係を示すグ
ラフ、第7図は実施例2に係わるM o −W  A 
l a○3の3成分の各原料粉末の重量組成割合に右い
て第2発明の範囲を示すグラフ、第8図は実施例2に係
わるMo  W  A120zの3成分の各原料粉末の
体積組成割合と比抵抗の関係を示すグラフ、第9図は実
施例2に係わるMo  W  Al2O、の3成分の各
原料粉末の体積組成割合と熱膨張率の関係を示すグラフ
である。
Fig. 1 is a graph showing the relationship between the average particle size and specific resistance of Mo powder in Example 1, Fig. 2 is a graph showing the relationship between the average particle size and thermal expansion coefficient of Mo powder, and Fig. 3 is a graph showing the relationship between the average particle size and thermal expansion coefficient of Mo powder. A graph showing the relationship between average particle size and specific resistance, Figure 4 is a graph showing the relationship between average particle size and thermal expansion coefficient of W powder, and Figure 5 is a graph showing the relationship between average particle size and thermal expansion coefficient of W powder.
A graph showing the relationship between the average particle size and specific resistance of the s powder, Figure 6 is a graph showing the relationship between the average particle size of the Al2O powder and the coefficient of thermal expansion, and Figure 7 is a graph showing the relationship between the average particle size of the Al2O powder and the coefficient of thermal expansion.
A graph showing the range of the second invention based on the weight composition ratio of each raw material powder of the three components of l a○3, and FIG. 8 shows the volume composition ratio of each raw material powder of the three components of Mo W A120z according to Example 2. FIG. 9 is a graph showing the relationship between the volume composition ratio and the coefficient of thermal expansion of each of the three component raw material powders of Mo W Al 2 O according to Example 2.

Claims (2)

【特許請求の範囲】[Claims] (1)スルーホールをもつセラミック基板と、該スルー
ホール内にセラミック原料粉末及び導電原料粉末を配置
し焼成して形成された導体と、を具備するセラミック多
層配線基板において、 前記導電原料粉末は少なくともMo粉末を含み、該Mo
粉末の平均粒径は1.5μm以下であり、かつこれらの
原料粉末全部を100重量部とする場合、前記Mo粉末
の添加量は15重量部以上であることを特徴とするセラ
ミック多層配線基板。
(1) A ceramic multilayer wiring board comprising a ceramic substrate having a through hole and a conductor formed by arranging and firing ceramic raw material powder and conductive raw material powder in the through hole, wherein the conductive raw material powder is at least Contains Mo powder, the Mo
A ceramic multilayer wiring board characterized in that the average particle size of the powder is 1.5 μm or less, and when the total amount of these raw powders is 100 parts by weight, the amount of the Mo powder added is 15 parts by weight or more.
(2)スルーホールをもつセラミック基板と、該スルー
ホール内にセラミック原料粉末及び導電原料粉末を配置
し焼成して形成された導体と、を具備するセラミック多
層配線基板において、 前記セラミック原料粉末は、Al_2O_3粉末からな
り、前記導電原料粉末は、Mo粉末及びW粉末のうちの
少なくともMo粉末を含み、 前記各原料粉末の3成分重量組成割合は、前記Al_2
O_3粉末が0.05〜0.3かつMo粉末が0.3〜
0.95の範囲(尚、前記Al_2O_3粉末が0.2
3〜0.3かつ前記Mo粉末が0.3〜0.55の範囲
を除く)であり、 抵抗値が4.0×10^−^5Ω・cm以下かつ熱膨張
率が6.25×10^−^5/℃以上であることを特徴
とするセラミック多層配線基板。
(2) A ceramic multilayer wiring board comprising a ceramic substrate having a through hole and a conductor formed by arranging and firing ceramic raw material powder and conductive raw material powder in the through hole, wherein the ceramic raw material powder is The conductive raw material powder is made of Al_2O_3 powder, and the conductive raw material powder includes at least Mo powder of Mo powder and W powder, and the weight composition ratio of the three components of each of the raw material powders is
O_3 powder is 0.05~0.3 and Mo powder is 0.3~
0.95 range (note that the Al_2O_3 powder is 0.2
3 to 0.3 and the Mo powder is in the range of 0.3 to 0.55), the resistance value is 4.0 x 10^-^5 Ω cm or less, and the coefficient of thermal expansion is 6.25 x 10 A ceramic multilayer wiring board characterized by a temperature of ^-^5/℃ or higher.
JP736990A 1990-01-16 1990-01-16 Ceramic multilayer wiring board Expired - Fee Related JP2838300B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP736990A JP2838300B2 (en) 1990-01-16 1990-01-16 Ceramic multilayer wiring board

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP736990A JP2838300B2 (en) 1990-01-16 1990-01-16 Ceramic multilayer wiring board

Publications (2)

Publication Number Publication Date
JPH03211790A true JPH03211790A (en) 1991-09-17
JP2838300B2 JP2838300B2 (en) 1998-12-16

Family

ID=11664056

Family Applications (1)

Application Number Title Priority Date Filing Date
JP736990A Expired - Fee Related JP2838300B2 (en) 1990-01-16 1990-01-16 Ceramic multilayer wiring board

Country Status (1)

Country Link
JP (1) JP2838300B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5545598A (en) * 1993-02-12 1996-08-13 Ngk Spark Plug Co., Ltd. High heat conductive body and wiring base substrate fitted with the same

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5545598A (en) * 1993-02-12 1996-08-13 Ngk Spark Plug Co., Ltd. High heat conductive body and wiring base substrate fitted with the same

Also Published As

Publication number Publication date
JP2838300B2 (en) 1998-12-16

Similar Documents

Publication Publication Date Title
US5071793A (en) Low dielectric inorganic composition for multilayer ceramic package
JPH0240013B2 (en)
JP3943341B2 (en) Glass ceramic composition
US5498580A (en) Ceramic substrate and a method for producing the same
JP2900711B2 (en) Method of manufacturing low-temperature sintering porcelain for mounting semiconductor devices
US5260119A (en) Low dielectric inorganic composition for multilayer ceramic package
JPH03211790A (en) Ceramic multilayer wiring board
JPS62278145A (en) Sintered material of glass ceramic
US3832192A (en) Ceramic dielectric porcelains
JPS6350345A (en) Glass ceramic sintered body
JPH10194846A (en) Production of substrate fired at low temperature
JPH0232587A (en) Composite for circuit substrate and electronic parts using composite therefor
JPS5922398A (en) Multilayer ceramic substrate
JP3140475B2 (en) Ceramic substrate and method of manufacturing the same
JPS63166765A (en) Aluminum nitride base sintered body and manufacture
JP3341782B2 (en) Ceramic substrate and method of manufacturing the same
JP3097426B2 (en) Ceramic substrate and method of manufacturing the same
JPS60254638A (en) Glass-ceramic substrate for mounting semiconductor device
JP5006490B2 (en) Low thermal expansion ceramics and method for producing the same
JP2580439B2 (en) High dielectric constant alumina sintered body and method for producing the same
JPS63265858A (en) Low-temperature sintered ceramics composition for multi-layered substrate
JPS62209895A (en) Insulating paste for ceramic multilayer interconnection board
JPS61151063A (en) Circuit substrate material
JP3628146B2 (en) Low temperature fired ceramic composition and low temperature fired ceramic
KR100293831B1 (en) Manufacturing Method of Low Temperature Sintered Packed Substrate Using Glass-Ceramics

Legal Events

Date Code Title Description
LAPS Cancellation because of no payment of annual fees