JPH03211506A - Optical device - Google Patents

Optical device

Info

Publication number
JPH03211506A
JPH03211506A JP2007620A JP762090A JPH03211506A JP H03211506 A JPH03211506 A JP H03211506A JP 2007620 A JP2007620 A JP 2007620A JP 762090 A JP762090 A JP 762090A JP H03211506 A JPH03211506 A JP H03211506A
Authority
JP
Japan
Prior art keywords
light
light source
condenser lens
reflecting mirror
fiber bundle
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2007620A
Other languages
Japanese (ja)
Inventor
Hiroshi Nakanishi
浩 中西
Hiroshi Hamada
浩 浜田
Fumiaki Funada
船田 文明
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sharp Corp
Original Assignee
Sharp Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sharp Corp filed Critical Sharp Corp
Priority to JP2007620A priority Critical patent/JPH03211506A/en
Publication of JPH03211506A publication Critical patent/JPH03211506A/en
Pending legal-status Critical Current

Links

Classifications

    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B6/00Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings
    • G02B6/24Coupling light guides
    • G02B6/42Coupling light guides with opto-electronic elements
    • G02B6/4201Packages, e.g. shape, construction, internal or external details
    • G02B6/4204Packages, e.g. shape, construction, internal or external details the coupling comprising intermediate optical elements, e.g. lenses, holograms
    • G02B6/4214Packages, e.g. shape, construction, internal or external details the coupling comprising intermediate optical elements, e.g. lenses, holograms the intermediate optical element having redirecting reflective means, e.g. mirrors, prisms for deflecting the radiation from horizontal to down- or upward direction toward a device

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Optical Fibers, Optical Fiber Cores, And Optical Fiber Bundles (AREA)
  • Light Guides In General And Applications Therefor (AREA)

Abstract

PURPOSE:To obtain collimated beams of light with high accuracy by making the exit light from tapered fibers on a condenser lens after the exit light is converted to a spot light source. CONSTITUTION:This device has a light source 101 positioned at the 1st focus of an elliptical reflecting mirror 102, the elliptical reflecting mirror 102 which condenses the light from the light source 101 at a 2nd focus and a tapered fiber bundle 103 which is positioned behind this mirror and condenses the reflected light from the elliptical reflecting mirror 102. Further, the device is constituted of the condenser lens 104 which is disposed by aligning its focus to the end face on the small aperture diameter side of the fiber bundle or the inner side thereof or the position on the outer side where the condensing area is smallest. The condenser lens 104 collimates the light emitted from the tapered fiber bundle 103 to the collimated beams of light. The light source spreading at a relatively wide angle is converted to the spot light source in such a manner and the light from the spot light source is made incident on the condenser lens, by which the collimated beams of light of the high accuracy are obtd.

Description

【発明の詳細な説明】 〈産業上の利用分野〉 本発明は、比較的広角に広がる光源を点光源化すること
ができる光学装置に関するものである。
DETAILED DESCRIPTION OF THE INVENTION <Industrial Application Field> The present invention relates to an optical device that can convert a light source that spreads over a relatively wide angle into a point light source.

〈従来の技術〉 ■C等の半導体デバイス製作において微細加工や局所処
理を行うだめの光源や投影型画像表示装置の光源に利用
される光学装置は、平行度が高く均一な光線が必要とさ
れるため、種々の光学系が考案されている。
<Prior art> ■Optical devices used as light sources for microfabrication and local processing in the production of semiconductor devices such as C and as light sources for projection-type image display devices require highly parallel and uniform light rays. Various optical systems have been devised for this purpose.

第4図(a)はパラボラ反射鏡2を用い、その焦点に位
置した光源lからの光を該パラボラ反射y12で反射し
て平行光線を得るものである。
In FIG. 4(a), a parabolic reflecting mirror 2 is used to obtain parallel light rays by reflecting light from a light source l located at its focal point by the parabolic reflecting mirror y12.

また第4図(b)は楕円反射鏡3を用い、その第1焦点
に光源1を配置することによって光tA1からの反射光
を第2焦点の後方に位置し、かつ、その焦点を該楕円反
射鏡3の第2焦点に一致させて配ffiしたコンデンサ
ーレンズによって平行光線を得るものである。
In addition, FIG. 4(b) uses an elliptical reflecting mirror 3, and by placing the light source 1 at its first focal point, the reflected light from the light tA1 is positioned behind the second focal point, and the focal point is set at the ellipse. Parallel light rays are obtained by a condenser lens arranged to coincide with the second focal point of the reflecting mirror 3.

いずれの場合においても、光源1の電極の陰により光線
の中抜けが生じるので、光路中に光を均一にするインテ
グレータを挿入し、光線の中抜けを防止するという方法
がとられている。
In either case, the light rays are hollow due to the shadow of the electrode of the light source 1, so a method is used in which an integrator that makes the light uniform is inserted in the optical path to prevent the light rays from falling through.

〈発明が解決しようとする課題〉 これらの方法は、光源1として用いられるランプのアー
ク長や反射鏡2又は3の精度により実際に得られる光線
の平行度には限界がある。
<Problems to be Solved by the Invention> In these methods, there is a limit to the parallelism of the light beam that can actually be obtained due to the arc length of the lamp used as the light source 1 and the accuracy of the reflecting mirror 2 or 3.

第4図(a)に示したような、パラボラ反射鏡2を用い
た光学装置では光源1のアーク長が長くなると図中の角
度αが大きくなり平行度が低下する。 また第4図(b
)に示したような楕円反射鏡3を用いた光学装置では、
第2焦点に集光した光線は光源lが完全な点光源であれ
ば一点に集光するはずであるが、実際には楕円反射鏡3
の精度や光源lのアーク長により第2焦点に完全には集
光せず、楕円反射鏡3の精度が高い場合でも光源1のア
ーク長に比例した大きさをもったものとなり、これが大
きくなるほどコンデンサーレンズを通過後の光線の平行
度は低下する。
In an optical device using a parabolic reflecting mirror 2 as shown in FIG. 4(a), as the arc length of the light source 1 increases, the angle α in the figure increases and the parallelism decreases. Also, Figure 4 (b
) In an optical device using an elliptical reflector 3 as shown in
The light beam condensed at the second focal point should be condensed at one point if the light source l is a complete point light source, but in reality, the light beam condensed at the elliptical reflector 3
Due to the accuracy of the light source 1 and the arc length of the light source 1, the light will not be completely focused on the second focal point, and even if the elliptical reflector 3 has high precision, the size will be proportional to the arc length of the light source 1, and the larger this becomes, the more The parallelism of the light rays decreases after passing through the condenser lens.

例えば、このような平行度の低い光線をICパターンの
露光に用いると、ウェハー上での像のぼけが生じ、精密
な露光をすることが困難となる。
For example, if such a light beam with low parallelism is used to expose an IC pattern, the image on the wafer will become blurred, making it difficult to perform precise exposure.

また投影型表示装置の場合はスクリーン上でピンボケを
生じる。
In addition, in the case of a projection type display device, out-of-focus occurs on the screen.

〈課題を解決するための手段〉 本発明者らは、上述の課題を解決するために鋭意検討を
重ねた結果、両端面でコアの面積の違うテーパー状先フ
ァイバ(以下テーパーファイバ例えば共立出版株式会社
発行「光学ファイバー」18頁及び190頁参照)を複
数本束ねたテーパーファイバ束を、光源とコンデンサー
レンズの焦点との間に設け、反射鏡で反射させた光源か
らの光を、該テーパーファイバ束の大口径側に入射させ
、コンデンサーレンズの焦点距離に位置させた該テーパ
ーファイバ束の小口径側の端面から点光源化して出射さ
せる。そして、その出射光を該コンデンサーレンズに入
射させれば、精度の高い平行光線が得られるとの着想に
基ずき、本発明を完成させるに至った。
<Means for Solving the Problems> As a result of intensive studies to solve the above-mentioned problems, the present inventors have developed a tapered end fiber (hereinafter referred to as a tapered fiber, for example, Kyoritsu Shuppan Co., Ltd.), which has a core area different on both end faces. A tapered fiber bundle made by bundling multiple fibers (see pages 18 and 190 of "Optical Fiber" published by the company) is installed between the light source and the focal point of the condenser lens, and the light from the light source reflected by the reflecting mirror is transferred to the tapered fiber. The light is made to enter the large-diameter side of the bundle, and is output as a point light source from the end face on the small-diameter side of the tapered fiber bundle, which is positioned at the focal length of the condenser lens. Based on the idea that if the emitted light is made incident on the condenser lens, highly accurate parallel light rays can be obtained, the present invention was completed.

即ち、本発明は、上述のテーパーファイバを2500本
から250000本、好ましくは40000本束ねたテ
ーパーファイバ束の大口径側の端面の直径が5mm〜5
0mm好ましくは30mm、小口径側の端面の直径が1
mm〜10mm好ましくは3mm、全体の長さが10m
m−100mm好ましくは50mm、該テーパーファイ
バからの出射光を点光源化してコンデンサーレンズに入
射させることにより高精度の平行光線を得た。
That is, the present invention provides a tapered fiber bundle in which 2,500 to 250,000 tapered fibers, preferably 40,000 tapered fibers are bundled, and the diameter of the end face on the large diameter side is 5 mm to 5 mm.
0 mm, preferably 30 mm, and the diameter of the end face on the small diameter side is 1
mm to 10mm preferably 3mm, total length 10m
m-100 mm, preferably 50 mm, and a highly accurate parallel light beam was obtained by converting the emitted light from the tapered fiber into a point light source and making it incident on a condenser lens.

尚、テーパーファイバは円錐状のものでも角錐状のもの
でもよい。
Note that the tapered fiber may be conical or pyramid-shaped.

〈作用〉 テーパーファイバの大口径側の端面から光を入射し、他
端の小口径側から出射させると、その入射端面と出射端
面の面積比に応じた光の集光ができる。
<Operation> When light enters the tapered fiber from the large-diameter end face and exits from the other end, the small-diameter end face, light can be focused in accordance with the area ratio of the input end face and the output end face.

一方、テーパーファイバとして一端の直径がa、他端が
b (a>b)の−様な円錐形のものを考えると第5図
のように直径がaの端面に対してθ1の角度をもった光
線が入射したときの直径がbの端面からの出射角をθ、
とすると n+XaX5!nθ、=n、xb、Xs i nθ。
On the other hand, if we consider a tapered fiber with a conical shape such that one end has a diameter a and the other end has a diameter b (a>b), it has an angle θ1 with respect to the end face with a diameter a as shown in Figure 5. When the incident light ray enters, the exit angle from the end face with diameter b is θ,
Then n+XaX5! nθ, = n, xb, Xs i nθ.

・・・ (1) なる関係がある。ここでn I、n tはテーパーファ
イバの入射端、出射端での外部物質の屈折率である。(
1)式において仮にn、=n、とするとaとbの比が大
きいほどθ、が大きくなる。
... (1) There is a relationship. Here, n I and n t are the refractive indices of the external substance at the input end and output end of the tapered fiber. (
In equation 1), if n=n, the larger the ratio of a and b, the larger θ becomes.

そこでテーパーファイバを集光する目的で用いる際、出
射光の角度が90°を超えると、入射光は小さいほうの
端面で全反射して出射せずに逆に戻ってしまうか、また
は、側面との臨界角以下になり、側壁に屈折して抜けて
しまうので本発明でl+ sinθ+ < (n 2 X b ) / (n +
 X a )(2) なる条件を満たすことが必要である。
Therefore, when using a tapered fiber for the purpose of condensing light, if the angle of the emitted light exceeds 90°, the incident light will be totally reflected at the smaller end face and will return in the opposite direction without being emitted. The critical angle of l+ sin θ+ < (n 2 X b ) / (n +
X a )(2) It is necessary to satisfy the following condition.

また、従来問題となっていた、光源の電極の陰による光
線の中抜けはテーノく一ファイ/ s−’自体がインテ
グレータの働きをするため、均一な光線を得られるよう
になる。
Furthermore, since the TENO KUICHI FI/S-' itself functions as an integrator, it becomes possible to obtain a uniform light beam, which has been a problem in the past due to the shadow of the light source's electrode.

〈実施例1〉 以下に、本発明の実施例について図面を参照しながら説
明する。
<Example 1> Examples of the present invention will be described below with reference to the drawings.

第1図は本発明の一実施例による光学装置を示す。FIG. 1 shows an optical device according to one embodiment of the invention.

第1図に示すように、この実施例による光学装置は、楕
円反射鏡102の第1焦点に位置する光源101と、該
光源101からの光を第2焦点に集光させる楕円反射鏡
102と、該楕円反射鏡102の後方に位置し、該楕円
反射鏡102からの反射光を集光させるためのチー/<
−7フイノイ束103と、テーパーファイノs1束10
3の小口径側の端面または、小口径側の端面の内側若し
くは外側の最も集光面積の小さい位置に、焦点を一致さ
せて配設したコンデンサーレンズ104とにより構成さ
れている。コンデンサーレンズ104はテーパーファイ
バ束103から出射された光を平行光線にする。
As shown in FIG. 1, the optical device according to this embodiment includes a light source 101 located at a first focus of an elliptical reflector 102, and an ellipse reflector 102 that focuses light from the light source 101 on a second focus. , located behind the elliptical reflector 102 and for condensing the reflected light from the ellipse reflector 102.
-7 Finoy bundle 103 and Taper Finoy s1 bundle 10
3, or a condenser lens 104 disposed with its focal point aligned at a position with the smallest condensing area on the inside or outside of the end surface on the small diameter side. The condenser lens 104 converts the light emitted from the tapered fiber bundle 103 into parallel light beams.

この実施例においては、光源101としてアークg 7
 m mのメタルハライドランプを使用し、テーパーフ
ァイバ束はテーパーファイバを40000本束ねたもの
で大口径側の端面aの直径が30mm、小口径側の端面
すの直径が3mm、長さが50mmのものを用いた。コ
ンデンサーレンズ104には焦点距離が200mmのも
のを用いた。
In this embodiment, the light source 101 is arc g 7
A tapered fiber bundle is made by bundling 40,000 tapered fibers, using a metal halide lamp of mm, and the diameter of the large-diameter end face a is 30 mm, the diameter of the small-diameter end face a is 3 mm, and the length is 50 mm. was used. The condenser lens 104 used had a focal length of 200 mm.

上記、光学装置において、テーパーファイバ束103の
各テーパーファイバの大口径側の端面への最大入射角θ
1=3°とすると、(1)式より出射光は最大出IにI
角θ、=31.5°、直径3mmと極めて点光源に近い
光源ができ、該点光源の出射光を後方のコンデンサーレ
ンズ104に入RIした結果、極めて平行光線に近い光
線が得られた。
In the optical device described above, the maximum incident angle θ to the large-diameter end face of each tapered fiber of the tapered fiber bundle 103
If 1=3°, then from equation (1), the output light will reach the maximum output I.
A light source with an angle θ=31.5° and a diameter of 3 mm, which is very close to a point light source, was created, and as a result of RIing the emitted light from the point light source into the rear condenser lens 104, a light ray that was very close to parallel rays was obtained.

本実施例では光4101としてメタルハライドランプの
他にキセノンランプ、ハロゲンランプが用いられ、反射
鏡+02は楕円反射鏡の他にパラボラ反射鏡か用いられ
る。
In this embodiment, a xenon lamp or a halogen lamp is used in addition to a metal halide lamp as the light 4101, and a parabolic reflector in addition to an elliptical reflector is used as the reflector +02.

〈実施例2〉 第2図に本光学装置を用いた実施例を示す。<Example 2> FIG. 2 shows an example using this optical device.

第2図は本発明を用いた投影型画像表示装置の模式図で
ある。
FIG. 2 is a schematic diagram of a projection type image display device using the present invention.

図中201は液晶パネルであり、絵素ピッチは縦190
μmX横161μm、開口部は縦88μm X 横10
4μm、開口率は、30%のアクティブマトリックス駆
動方式のものである。202は実施例1と同様の光学装
置であり、同一符号を付して説明を省略する。203は
フィールドレンズ、204は投影レンズで、いずれも焦
点距離が20Qmmのらのである。205は投影スクリ
ーンである。
In the figure, 201 is a liquid crystal panel, and the pixel pitch is 190 vertically.
μm x width 161μm, opening is length 88μm x width 10
It is of an active matrix drive type with a diameter of 4 μm and an aperture ratio of 30%. Reference numeral 202 denotes an optical device similar to that in Example 1, and is given the same reference numeral and description thereof will be omitted. 203 is a field lens, and 204 is a projection lens, both of which have a focal length of 20 Qmm. 205 is a projection screen.

上記、投影型画像表示装置において、光学装置202か
ら得られた平行光線が複眼レンズに入射した場合、その
集光スポットの大きさは、入射光の甲行度を±θとする
と第6図に示すように2fXtanθの大きさもつこと
になり、これが絵素。
In the above-mentioned projection type image display device, when the parallel light beam obtained from the optical device 202 is incident on the compound eye lens, the size of the condensed spot is as shown in Fig. 6, assuming that the degree of inclination of the incident light is ±θ. As shown, it has a size of 2fXtanθ, and this is a picture element.

開口部より大きくなると複眼レンズ110の効果を充分
に発揮することができないが、本発明を適用し、精度の
高い平行光線を複眼レンズ110に入射することにより
、その効果を充分に発揮でき、スクリーン上で通常40
インチで200  xであるのか400  x以上と2
倍以上明るい画像を得ることができた。
If it is larger than the aperture, the effect of the compound eye lens 110 cannot be fully exhibited, but by applying the present invention and making parallel light beams with high accuracy enter the compound eye lens 110, the effect can be fully exhibited, and the screen Usually 40 on
Is it 200x in inches or 400x or more?
I was able to obtain an image that was more than twice as bright.

本実施例では、マイクロレンズとして複眼レンズを用い
たが、レンチキュラーレンズを用いても本発明を適用す
ることができる。
In this embodiment, a compound lens was used as the microlens, but the present invention can also be applied to a lenticular lens.

〈実施例3〉 第3図(a)、(b)に実施例1における光照射装置2
02を使用した実施例としてプロキシミティ型露光装置
と縮小投影型露光装置の模式図を示す。
<Example 3> FIGS. 3(a) and 3(b) show the light irradiation device 2 in Example 1.
A schematic diagram of a proximity type exposure apparatus and a reduction projection type exposure apparatus is shown as an example using 02.

イスれの露光装置においても、フォトマスク301又は
303を通った光がウェハー302又はの高い平行光線
を使用することにより精密な露光をすることができた。
Even in the existing exposure apparatus, precise exposure could be performed by using a highly parallel beam of light that passed through the photomask 301 or 303 and the wafer 302.

特に縮小投影型露光装置においては、従来問題になって
いたフォトマスク303やウェハー304の光軸方向の
位置ずれに対するウェハー304上での投影倍率の変化
は見られなかった。
In particular, in the reduction projection type exposure apparatus, there was no change in the projection magnification on the wafer 304 due to positional deviation of the photomask 303 or the wafer 304 in the optical axis direction, which has been a problem in the past.

また、本実施例における縮小投影型露光では、フォトマ
スク側とウェハー側の両側でテレセントリックな光学系
を用いたが、フォトマスク側又はウェハー側のどちらか
でテレセントリック系を用いることで、フォトマスクあ
るいはウェハーを意図的に光軸方向に移動させて倍率誤
差を修正することもできる。
In addition, in the reduction projection exposure in this example, telecentric optical systems were used on both the photomask side and the wafer side, but by using a telecentric system on either the photomask side or the wafer side, The magnification error can also be corrected by intentionally moving the wafer in the optical axis direction.

〈発明の効果〉 以上のように、本発明を適用すれば比較的広角に広がる
光源を点光源化することができる。
<Effects of the Invention> As described above, by applying the present invention, a light source that spreads over a relatively wide angle can be converted into a point light source.

また本発明で得られた点光源からの光をコンデンサーレ
ンズに入射させることにより高精度の平行光線が得られ
る。
Further, by making the light from the point light source obtained in the present invention incident on a condenser lens, highly accurate parallel light rays can be obtained.

第1図は本発明の実施例の装置の概略的構成図である。FIG. 1 is a schematic diagram of an apparatus according to an embodiment of the present invention.

第2図は本発明を投影型画像装置に適用したときの構成
図、第3図(a)及び(b)は本発明を露光装置に適用
したときの構成図、第4図(a)及び(b)は従来技術
の代表的な例を示す図、第5図はテーパーファイバを通
過する光路を示す図、第6図は入射光の平行度により変
化する集光スポットの大きさを示す図である。
Fig. 2 is a block diagram when the present invention is applied to a projection type image device, Figs. 3 (a) and (b) are block diagrams when the present invention is applied to an exposure apparatus, and Figs. 4 (a) and (b) is a diagram showing a typical example of the prior art, Figure 5 is a diagram showing the optical path passing through the tapered fiber, and Figure 6 is a diagram showing the size of the condensed spot that changes depending on the parallelism of the incident light. It is.

lOl・・・光源、102・・・楕円反射鏡、103・
・・テーパーファイバL104・・・コンデンサーレン
ズ。
lOl...Light source, 102...Elliptical reflector, 103.
...Tapered fiber L104...Condenser lens.

Claims (1)

【特許請求の範囲】[Claims] 1、複数本のテーパー状光ファイバからなるテーパー状
光ファイバ束の大口径側を入射端、小口径側を出射端と
する光学装置であって、出射端からの出射光を点光源化
してなる光学装置。
1. An optical device in which the large-diameter side of a tapered optical fiber bundle consisting of a plurality of tapered optical fibers is an input end and the small-diameter side is an output end, and the light emitted from the output end is converted into a point light source. optical equipment.
JP2007620A 1990-01-16 1990-01-16 Optical device Pending JPH03211506A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2007620A JPH03211506A (en) 1990-01-16 1990-01-16 Optical device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2007620A JPH03211506A (en) 1990-01-16 1990-01-16 Optical device

Publications (1)

Publication Number Publication Date
JPH03211506A true JPH03211506A (en) 1991-09-17

Family

ID=11670864

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2007620A Pending JPH03211506A (en) 1990-01-16 1990-01-16 Optical device

Country Status (1)

Country Link
JP (1) JPH03211506A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH08136746A (en) * 1994-10-31 1996-05-31 Demetoron Res Corp Fiber-optic lightguide and optical hardening device
JP2003075658A (en) * 2001-09-03 2003-03-12 Nissei Electric Co Ltd Light guide with tapered part

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH08136746A (en) * 1994-10-31 1996-05-31 Demetoron Res Corp Fiber-optic lightguide and optical hardening device
JP2003075658A (en) * 2001-09-03 2003-03-12 Nissei Electric Co Ltd Light guide with tapered part

Similar Documents

Publication Publication Date Title
JP3278896B2 (en) Illumination apparatus and projection exposure apparatus using the same
JPS597359A (en) Lighting equipment
JPH07201730A (en) Illuminating means of optical system having reticle masking system
JP3608580B2 (en) Illumination optical apparatus, exposure apparatus, exposure method, and fly-eye lens
JP3640391B1 (en) Illumination optics
CN109031899A (en) A kind of high-resolution high efficiency projecting etching imaging system and exposure method
JP3278277B2 (en) Projection exposure apparatus and device manufacturing method using the same
US7289276B2 (en) Illumination optical system, exposure device using the illumination optical system, and exposure method
JPWO2019146448A1 (en) Exposure device and exposure method
JP2002116379A (en) Illumination system for microlithography
KR20020033059A (en) Illumination system with reduced heat load
KR100219823B1 (en) Illumination system
US20090213355A1 (en) Illumination optical system, exposure apparatus using the same and device manufacturing method
JPS5949514A (en) Annular illumination device
JP4094218B2 (en) Condensing optical system and image display device
JPH03211506A (en) Optical device
JPS622539A (en) Illumination optical system
JP6896183B2 (en) Lighting system for floodlight
JP3348721B2 (en) Lighting device and method
CN208752391U (en) A kind of high-resolution high efficiency projecting etching imaging system
JP2005018013A (en) Illumination optical system, and aligner and exposure method using it
JPH05121290A (en) Fine pattern projection alighner
JP3367569B2 (en) Illumination optical device, exposure device, and transfer method using the exposure device
US6885434B2 (en) Diaphragm for an integrator unit
JPS61251858A (en) Optical lighting system