JPH0321108A - Crystal oscillator circuit - Google Patents

Crystal oscillator circuit

Info

Publication number
JPH0321108A
JPH0321108A JP15611189A JP15611189A JPH0321108A JP H0321108 A JPH0321108 A JP H0321108A JP 15611189 A JP15611189 A JP 15611189A JP 15611189 A JP15611189 A JP 15611189A JP H0321108 A JPH0321108 A JP H0321108A
Authority
JP
Japan
Prior art keywords
inverter
crystal oscillator
circuit
temperature
oscillation
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP15611189A
Other languages
Japanese (ja)
Inventor
Akira Kikuchi
顕 菊池
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Fujitsu Ltd
Original Assignee
Fujitsu Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fujitsu Ltd filed Critical Fujitsu Ltd
Priority to JP15611189A priority Critical patent/JPH0321108A/en
Publication of JPH0321108A publication Critical patent/JPH0321108A/en
Pending legal-status Critical Current

Links

Landscapes

  • Oscillators With Electromechanical Resonators (AREA)

Abstract

PURPOSE:To obtain an inverter type crystal oscillator circuit in which the oscillation frequency to temperature change is a smooth n-th order curve by providing the circuit with a crystal oscillator, 1st and 2nd inverters, 1st and 2nd fixed resistors and 1st and 2nd capacity elements. CONSTITUTION:The crystal oscillator circuit is constituted of the crystal oscillator 1, the inverters I1, I2, the capacitor elements C1, C2, and the fixed resistors R1, R01. In said constitution, the inverter I1 acts as an inversion amplifier and the fixed resistor R1 forms a feedback circuit. The oscillation frequency of the circuit is determined by the crystal oscillator 1, the variable capacity element Cv and the capacity elements C1, C2. When the fixed resistor R01 is inserted between the variable capacity element Cv connected to the oscillator and the inverter I1, the oscillation level of the oscillator 1 is dropped and the n-th order curve of which frequencytemperature characteristic is smooth can be obtained.

Description

【発明の詳細な説明】 [概 要] ディジタル制御温度補償水晶発振器に使用するインハー
ク型水晶発振回路に関し、 温度の変化に対する、発振周波数の変化が滑らかなn次
曲線となるインバータ型水晶発振回路を提供することを
目的とし、 発振用の第1のインハー夕と、第1のインハタの入出力
端に並列に接続される第1の固定抵抗器と、一端は第l
のインバータの入力端に接続され、他端は発振周波数の
微調整を行う可変容量素子の一端に接続された水晶振動
子と、第1のインハークの入力端と大地間を接続する第
1の容量素子と、可変容量素子の他端と大地間を接続す
る第2の容量素子と、第1のインハー夕の出力端に接続
される出力用の第2のインバータと、第1のインバータ
の出力端と前記可変容量素子の他端との間を接続する第
2の固定抵抗器を備え構威する。
[Detailed Description of the Invention] [Summary] Regarding the inverter type crystal oscillator circuit used in a digitally controlled temperature compensated crystal oscillator, the present invention provides an inverter type crystal oscillator circuit in which the change in oscillation frequency with respect to temperature change is a smooth n-th order curve. A first inhertor for oscillation, a first fixed resistor connected in parallel to the input and output terminals of the first inherter, and one end of which is connected to the lth inherter.
a crystal resonator connected to the input end of the inverter, the other end of which is connected to one end of a variable capacitance element that finely adjusts the oscillation frequency, and a first capacitor connected between the input end of the first inverter and the ground. a second capacitive element that connects the other end of the variable capacitive element and ground, a second inverter for output that is connected to the output end of the first inverter, and an output end of the first inverter. and the other end of the variable capacitance element.

〔産業上の利用分野〕[Industrial application field]

本発明は、ディジタル制御温度補償水晶発振器に使用す
るインバータ型水晶発振回路に関する。
The present invention relates to an inverter type crystal oscillation circuit used in a digitally controlled temperature compensated crystal oscillator.

例えば、移動無線機器等の周波数源に使用される発振器
は、特に高い精度を要求されているため、温度特性の補
償をディジタル的に行う、デイジタル制御温度補償水晶
発振器(以下DTCX○と称する)が、広く使用される
ようになってきつつある。
For example, oscillators used in frequency sources such as mobile radio equipment are required to have particularly high accuracy, so digitally controlled temperature-compensated crystal oscillators (hereinafter referred to as DTCX○), which digitally compensate for temperature characteristics, are required. , is becoming widely used.

このような、DTCXOの温度補償を精度よく行うため
には、温度補償前の水晶発振回路の周波数一温度特性が
滑らかな、n次曲線であることが必要である。
In order to accurately perform temperature compensation of the DTCXO, it is necessary that the frequency-temperature characteristic of the crystal oscillation circuit before temperature compensation be a smooth n-th order curve.

〔従来の技術〕[Conventional technology]

第5図は従来例を説明する図、第6図は従来例の周波数
一温度特1生を説明する図を示す。
FIG. 5 is a diagram for explaining the conventional example, and FIG. 6 is a diagram for explaining the frequency-temperature characteristic of the conventional example.

第5図に示す従来例は、発振用の第1のインバータ■1
と、 第1のインバータの人出力端に並列に接続される第lの
固定抵抗器RLと、 同しく、第1のインハー夕の人出力端に並列に接続され
る、水晶振動子1と可変容量素子Cvの直列回路と、 第1インバータI1の入力端と大地間を接続する第1の
容量素子CIと、 第1インバークI1の出力端と大地間を接続する第2の
容量素子C2と、 第1のインバータX1の出力端に接続される出力用の第
2のインバータI2とを具備している。
In the conventional example shown in FIG. 5, the first inverter for oscillation ■1
, a first fixed resistor RL connected in parallel to the human output terminal of the first inverter, and a variable crystal oscillator 1 connected in parallel to the human output terminal of the first inverter. a series circuit of capacitive elements Cv; a first capacitive element CI connecting between the input end of the first inverter I1 and the ground; a second capacitive element C2 connecting the output end of the first inverter I1 and the ground; The second inverter I2 for output is connected to the output end of the first inverter X1.

この回路においてインバークIIは反転増幅器として動
作し、第1の固定抵抗器R1は帰還用の抵抗として作用
しており、水晶振動子1、可変容量素子Cv、第1の容
量素子CIおよび第2の容量素子C2より発振周波数が
決定される。
In this circuit, the inverter II operates as an inverting amplifier, the first fixed resistor R1 acts as a feedback resistor, and the crystal oscillator 1, variable capacitor Cv, first capacitor CI, and second capacitor The oscillation frequency is determined by the capacitive element C2.

笛6図は第5図の構成のインバータ型水晶発振3 4 回路の周波数一温度特性である。Figure 6 shows the inverter type crystal oscillator 3 with the configuration shown in Figure 5. 4 This is the frequency-temperature characteristic of the circuit.

水晶振動子の温度特性は木来、滑らかな曲線をもってい
るが、従来例のインバータ型水晶発振回路の温度特性は
第6図に示すように滑らかな曲線とはなっていない。
The temperature characteristics of a crystal resonator generally have a smooth curve, but the temperature characteristics of a conventional inverter type crystal oscillation circuit do not have a smooth curve as shown in FIG.

〔発明が解決しようとする課題〕[Problem to be solved by the invention]

上述の従来例は、水晶振動子lの励振レベルが高いこと
から、インバータ型水晶発振回路の周波数一温度特性が
第6図に示すように、凹凸が激しい。
In the conventional example described above, since the excitation level of the crystal resonator l is high, the frequency-temperature characteristic of the inverter type crystal oscillation circuit has severe irregularities as shown in FIG.

DTCXOは、温度特性を補償するために、その水晶発
振回路の置かれている温度を測定し、温度に応じたディ
ジタル制御信号を与え制御することにより、高い同波数
安定度を保っているが、第6図に示すような周波数一温
度特性の場合には、温度補償データの作成を、細かい温
度ステップで行うことが必要である。
In order to compensate for temperature characteristics, the DTCXO maintains high frequency stability by measuring the temperature at which the crystal oscillation circuit is placed and controlling it by applying a digital control signal according to the temperature. In the case of frequency-temperature characteristics as shown in FIG. 6, it is necessary to create temperature compensation data in fine temperature steps.

本発明は、温度の変化に対する、発振周波数の変化が滑
らかなn次+th線となるインバータ型水品発振回路を
提供することを目的とする。
SUMMARY OF THE INVENTION An object of the present invention is to provide an inverter type oscillation circuit in which the oscillation frequency changes smoothly to the n-th +th line with respect to temperature changes.

〔課題を解決するための手段〕[Means to solve the problem]

第1図は本発明の実施例を説明する図である。 FIG. 1 is a diagram illustrating an embodiment of the present invention.

第1図の実施例中のI1は発振用の第1のインバータで
あり、 RlはI1の入出力端に並列に接続される第1の固定抵
抗器であり、 1は一端を、第1のインバータ11の入力端に接続され
、他端は可変容量素子Cvの一端に接続された、発振周
波数をCvとともに決定する水晶振動子であり、 Clは第1インバークI1の入力端と大地間を接続する
第1の容量素子であり、 C2は可変容量素子Cvの他端と大地間を接続する第2
の尋容量素子であり、 I2は第1のインパータI1の出力端に接続される出力
用の第2のインバータであり、ROIは第1のインパー
クI1の出力端と可変容量素子Cvの他端との間を接続
する第2の固定5 6 1氏抗器てあり、 かかる手段を具備することにより本課題を解決するため
の手段とする。
In the embodiment of FIG. 1, I1 is the first inverter for oscillation, Rl is the first fixed resistor connected in parallel to the input and output terminals of I1, and 1 is the first fixed resistor. A crystal oscillator that determines the oscillation frequency together with Cv is connected to the input end of the inverter 11, and the other end is connected to one end of the variable capacitance element Cv, and Cl is connected between the input end of the first inverter I1 and the ground. C2 is the first capacitive element that connects the other end of the variable capacitive element Cv and the ground.
I2 is a second inverter for output connected to the output end of the first inverter I1, and ROI is the output end of the first inverter I1 and the other end of the variable capacitance element Cv. There is a second fixed 5 6 1 resistor that connects between the two, and providing such a means is a means for solving this problem.

(作 用] 上述の回路において、第1のインハークI1は発振用の
反転増幅器として動作しており、R1は帰還用の固定抵
抗器である。
(Function) In the above-described circuit, the first inverter I1 operates as an inverting amplifier for oscillation, and R1 is a fixed resistor for feedback.

この回路の発振周波数は、水晶振動子1、可変容量素子
Cv、第1の容量素子C1および第2の容量素子C2で
決定される。
The oscillation frequency of this circuit is determined by the crystal resonator 1, the variable capacitive element Cv, the first capacitive element C1, and the second capacitive element C2.

このときの、水晶振動子1に接続されている可変容量素
子Cvと第1のインバータI1の間に、固定抵抗器RO
Iを挿入ずることにより、水晶振動了lの励振レヘルを
下げ、周波数一温度特性が滑らかなn次曲線を得ること
が可能となる。
At this time, a fixed resistor RO is connected between the variable capacitance element Cv connected to the crystal resonator 1 and the first inverter I1.
By inserting I, it is possible to lower the excitation level of the crystal oscillation and obtain an n-th order curve with smooth frequency-temperature characteristics.

〔実施例] 以下本発明の要旨を第1図〜第4図に示す実施例により
具体的に説明ずろ。
[Examples] The gist of the present invention will be explained in detail below with reference to Examples shown in FIGS. 1 to 4.

第1図は本発明の実施例を説明する図、第2図本発明そ
の他の実施例を説明する図、第3図は本発明の丈施例の
周波数−温度特性を説明する図、第4図はディシタル制
御温度補償水晶発振器を説明する図をそれぞれ示す。な
お、全図を通して同一符号は同一対象物を示す。
FIG. 1 is a diagram for explaining an embodiment of the present invention, FIG. 2 is a diagram for explaining other embodiments of the present invention, FIG. 3 is a diagram for explaining frequency-temperature characteristics of a length embodiment of the present invention, and FIG. The figures each show a diagram illustrating a digitally controlled temperature compensated crystal oscillator. Note that the same reference numerals indicate the same objects throughout the figures.

第1図に示す木発明の実施例は、発振用の第1のインバ
ータI1の出力端と可変容量素子Cvとの間に、固定抵
抗器ROIを挿入ずることにより、水晶振動子1の励振
レヘルを下げ、周波数一温度特性が滑らかなn次曲線を
もつインバータ型水晶発振回路を得ることが可能となる
In the embodiment of the invention shown in FIG. 1, the excitation level of the crystal resonator 1 is adjusted by inserting a fixed resistor ROI between the output terminal of the first inverter I1 for oscillation and the variable capacitance element Cv. It becomes possible to obtain an inverter-type crystal oscillation circuit with a smooth nth-order curve in frequency-temperature characteristics.

第2図に示すその他の実施例においては、インバータ型
水晶発振回路の基木構威は第1図の実施例と同等である
が、水晶振動子1の励振レベルを下げるための固定祇抗
器RO2を水晶振動子1と可変容量素子Cvとの間に押
入したものである。
In another embodiment shown in FIG. 2, the basic structure of the inverter-type crystal oscillator circuit is the same as that in the embodiment shown in FIG. RO2 is inserted between the crystal resonator 1 and the variable capacitance element Cv.

第3図は第1図、第2図のように構戒して、水晶振動?
−1の励振レヘルを下げたインバータ型水晶発振回路の
周波数−温度特性を説明する図であ7 8 り、滑らかなn次曲線をIHgることかできる。
Figure 3 is composed of crystal oscillations as shown in Figures 1 and 2.
FIG. 78 is a diagram illustrating the frequency-temperature characteristics of an inverter-type crystal oscillation circuit with a lower excitation level of -1, and a smooth nth-order curve can be drawn.

第4図は、ディジタル制御温度補償水晶発振器を説明す
る図であり、温度セン・り四〇により温度を測定し、そ
の結果をA/D変換回路20でA/D変換し、制御回路
30へ入力する。
FIG. 4 is a diagram illustrating a digitally controlled temperature compensated crystal oscillator, in which temperature is measured by a temperature sensor, the result is A/D converted by an A/D conversion circuit 20, and sent to a control circuit 30. input.

制御回路30では、受け取った温度情報から定まる補償
値を、補償テーブルより読め出し、D/A変換回路40
に出ノJし、D/A変換回路40では、受け取った補償
値をD/A変換してアナログの制御電圧として、水晶発
振回路50に人力することにより、温度補償を行ってい
る。
The control circuit 30 reads out the compensation value determined from the received temperature information from the compensation table, and reads the compensation value determined from the received temperature information,
The D/A conversion circuit 40 performs temperature compensation by D/A converting the received compensation value and inputting it as an analog control voltage to the crystal oscillation circuit 50.

制御回路30の中には、各温度に対する補償値をテーブ
ルとしてもっており、このような補償テーブルは、発振
器個々に事前に周波数一温度特性のデータをとり作成す
る。
The control circuit 30 has a table containing compensation values for each temperature, and such a compensation table is created by taking frequency-temperature characteristic data for each oscillator in advance.

本発明のように、周波数−温度特性が滑らかなn次の曲
線をもつ、水晶発振回路を用いることにより、温度補償
テーブルの作或が容易となり、且つ補償精度を上げるこ
とが可能となる。
By using a crystal oscillator circuit whose frequency-temperature characteristic has a smooth nth-order curve as in the present invention, it becomes easy to create a temperature compensation table and it is possible to improve the compensation accuracy.

〔発明の効果〕〔Effect of the invention〕

以上のような本発明によれば、水晶振動子の励振レヘル
を下げることにより、周波数−温度特性が滑らかなn次
曲線をもつ、インバータ型水晶発振回路を提供できると
いう効果がある。
According to the present invention as described above, by lowering the excitation level of the crystal resonator, it is possible to provide an inverter-type crystal oscillation circuit whose frequency-temperature characteristics have a smooth nth-order curve.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明の実施例を説明する図、第2図は本発明
のその他の実施例を説明する図、第3図は本発明の実施
例の周波数一温度特性を説明する図、 第4図はディジタル制御温度補償水晶発振器を説明する
図、 第5図は従来例を説明する図、 第6図は従来例の周波数一温度特1生を説明する図、を
それぞれ示す。 図において、 ■は水晶振動子、 I1、I2はインハー夕、 C1、C2は容量素子、 9 10 Cvは可変容量素子、 R1、ROI、RO2は固定抵抗器、 10は温度センサ、 20はA/D変換回路、 30は制御回路、 40はD/A変換回路、 50は水晶発振回路、 をそれぞれ示す。 −11 本発明のその他の実施例を説明する図 第2図 本発明の実施例を説明する図 第1図 TEHP [ ’C ’1 ディシタル制御塩度補償水晶発振器を説明する図第4図 従来例を説明する図 第5図
FIG. 1 is a diagram for explaining an embodiment of the present invention, FIG. 2 is a diagram for explaining another embodiment of the present invention, FIG. 3 is a diagram for explaining frequency-temperature characteristics of an embodiment of the present invention, FIG. 4 is a diagram for explaining a digitally controlled temperature compensated crystal oscillator, FIG. 5 is a diagram for explaining a conventional example, and FIG. 6 is a diagram for explaining the frequency-temperature characteristic of the conventional example. In the figure, ■ is a crystal oscillator, I1 and I2 are interconnectors, C1 and C2 are capacitive elements, 9 10 Cv is a variable capacitive element, R1, ROI, and RO2 are fixed resistors, 10 is a temperature sensor, and 20 is an A/ 30 is a control circuit; 40 is a D/A conversion circuit; and 50 is a crystal oscillation circuit. -11 Figure 2 for explaining other embodiments of the present invention Figure 1 for explaining embodiments of the present invention Figure 4 for explaining a digitally controlled salinity compensated crystal oscillator Figure 5 to explain

Claims (1)

【特許請求の範囲】  ディジタル制御温度補償水晶発振器に使用するインバ
ータ型水晶発振回路であって、 発振用の第1のインバータ(I1)と、 前記第1のインバータ(I1)の入出力端に並列に接続
される第1の固定抵抗器(R1)と、一端は前記第1の
インバータ(I1)の入力端に接続され、他端は発振周
波数の微調整を行う可変容量素子(Cv)の一端に接続
された水晶振動子(1)と、 前記第1のインバータ(I1)の入力端と大地間を接続
する第1の容量素子(C1)と、 前記可変容量素子(Cv)の他端と大地間を接続する第
2の容量素子(C2)と、 前記第1のインバータ(I1)の出力端に接続される出
力用の第2のインバータ(I2)と、前記第1のインバ
ータ(I1)の出力端と前記可変容量素子(Cv)の他
端との間を接続する第2の固定抵抗器(R01)を備え
たことを特徴とする水晶発振回路。
[Claims] An inverter-type crystal oscillation circuit used in a digitally controlled temperature-compensated crystal oscillator, comprising a first inverter (I1) for oscillation and an input/output terminal of the first inverter (I1) in parallel. one end is connected to the input end of the first inverter (I1), and the other end is one end of a variable capacitance element (Cv) that finely adjusts the oscillation frequency. a crystal resonator (1) connected to the first inverter (I1), a first capacitive element (C1) connecting the input end of the first inverter (I1) to the ground, and the other end of the variable capacitive element (Cv). a second capacitive element (C2) connected to the ground; a second output inverter (I2) connected to the output end of the first inverter (I1); and the first inverter (I1). A crystal oscillation circuit comprising a second fixed resistor (R01) connecting between the output end of the variable capacitance element (Cv) and the other end of the variable capacitance element (Cv).
JP15611189A 1989-06-19 1989-06-19 Crystal oscillator circuit Pending JPH0321108A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP15611189A JPH0321108A (en) 1989-06-19 1989-06-19 Crystal oscillator circuit

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP15611189A JPH0321108A (en) 1989-06-19 1989-06-19 Crystal oscillator circuit

Publications (1)

Publication Number Publication Date
JPH0321108A true JPH0321108A (en) 1991-01-29

Family

ID=15620553

Family Applications (1)

Application Number Title Priority Date Filing Date
JP15611189A Pending JPH0321108A (en) 1989-06-19 1989-06-19 Crystal oscillator circuit

Country Status (1)

Country Link
JP (1) JPH0321108A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5188488A (en) * 1990-05-11 1993-02-23 Mitsubishi Materials Corporation End mill

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5188488A (en) * 1990-05-11 1993-02-23 Mitsubishi Materials Corporation End mill

Similar Documents

Publication Publication Date Title
EP0455298A1 (en) Electrically controllable oscillator circuit and electrically controllable filter arrangement comprising said circuit
JPH11220327A (en) Temperature compensation circuit for oscillator
JP2000509219A (en) Frequency synthesizer having temperature compensation and frequency multiplication functions and method of manufacturing the same
US4484157A (en) Voltage controlled crystal oscillator having wide frequency range
EP0466388A2 (en) Voltage controlled balanced crystal oscillator circuit
JPS6126726B2 (en)
JPH08116214A (en) Function generator and oscillation circuit with temperature compensation
US4072912A (en) Network for temperature compensation of an AT cut quartz crystal oscillator
US3641461A (en) Temperature compensated crystal oscillator
US3525055A (en) Temperature compensated crystal oscillator
US5959505A (en) Crystal oscillator for measuring crystal impedance of a crystal unit
CN110855242A (en) Voltage variation-based crystal oscillator vibration-resistant compensation device and method
JPH0321108A (en) Crystal oscillator circuit
JP2713214B2 (en) Temperature compensation device for crystal oscillation circuit
JPH06276020A (en) Temperature compensated crystal oscillator
CN110868211A (en) Crystal oscillator vibration-proof compensation device and method based on binary coding
JPH0846427A (en) Voltage controlled crystal oscillator
SE9102605D0 (en) OSCILLATOR CONSTRUCTED AROUND ECL LINER RECEIVER
JPS6230410A (en) Voltage controlled oscillation circuit
JPH056363B2 (en)
JPS62268Y2 (en)
JP2917154B2 (en) Temperature compensated crystal oscillator
JPS6244569Y2 (en)
JPS6218829A (en) Digital control type oscillator
KR930004762Y1 (en) Stabilizing circuit of oscillator