JPS6244569Y2 - - Google Patents

Info

Publication number
JPS6244569Y2
JPS6244569Y2 JP10929981U JP10929981U JPS6244569Y2 JP S6244569 Y2 JPS6244569 Y2 JP S6244569Y2 JP 10929981 U JP10929981 U JP 10929981U JP 10929981 U JP10929981 U JP 10929981U JP S6244569 Y2 JPS6244569 Y2 JP S6244569Y2
Authority
JP
Japan
Prior art keywords
capacitance
piezoelectric oscillator
capacitor
load
temperature coefficient
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP10929981U
Other languages
Japanese (ja)
Other versions
JPS5816914U (en
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed filed Critical
Priority to JP10929981U priority Critical patent/JPS5816914U/en
Publication of JPS5816914U publication Critical patent/JPS5816914U/en
Application granted granted Critical
Publication of JPS6244569Y2 publication Critical patent/JPS6244569Y2/ja
Granted legal-status Critical Current

Links

Landscapes

  • Oscillators With Electromechanical Resonators (AREA)
  • Inductance-Capacitance Distribution Constants And Capacitance-Resistance Oscillators (AREA)

Description

【考案の詳細な説明】 本考案は、圧電発振子、増巾部および基準電圧
発生部を含む圧電発振器に関するものである。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a piezoelectric oscillator including a piezoelectric oscillator, an amplifying section, and a reference voltage generating section.

上記のような圧電発振器において、圧電発振子
の経時変化や発振器構成部品である蓄電器や抵抗
器の経時変化の影響により、圧電発振器の発振周
波数が経時的に変化することはよく知られてい
る。したがつて通信機器に使用されている圧電発
振器は、定期的にその発振周波数を点検し、圧電
発振子の負荷容量の一部を構成する可変容量ダイ
オードに印加する電圧を調整するのがふつうであ
る。
In the piezoelectric oscillator as described above, it is well known that the oscillation frequency of the piezoelectric oscillator changes over time due to the influence of the aging of the piezoelectric oscillator and the aging of the capacitor and resistor that are the oscillator components. Therefore, it is common practice to regularly check the oscillation frequency of piezoelectric oscillators used in communication equipment and to adjust the voltage applied to the variable capacitance diode that forms part of the piezoelectric oscillator's load capacitance. be.

一般的に周波数経時変化等を可変容量ダイオー
ド等に印加する電圧で調整した場合、その周波数
温度特性が影響をうける。
Generally, when a change in frequency over time is adjusted by a voltage applied to a variable capacitance diode or the like, the frequency temperature characteristics are affected.

第1図は上記の従来回路の周波数温度特性を3
つの負荷容量A,B,Cについてあらわした図で
ある。これは圧電発振子の負荷容量の一部を構成
している可変容量ダイオードの容量値が変化し、
発振器回路の温度特性が変化することによる。こ
の第1図の関係を温度を一定、たとえば室温、に
して圧電発振器の発振周波数変化率(Δ/)
と負荷容量CLとの関係を数式的に求めると、 Δ/=1/2γ(1+C/C) …(1) であらわされる。ここにC0は圧電発振子の並列
容量、γはこの並列容量と同直列容量の比を示
す。
Figure 1 shows the frequency-temperature characteristics of the above conventional circuit.
3 is a diagram showing three load capacities A, B, and C. FIG. This is because the capacitance value of the variable capacitance diode, which forms part of the piezoelectric resonator's load capacitance, changes.
This is due to changes in the temperature characteristics of the oscillator circuit. The oscillation frequency change rate (Δ/) of the piezoelectric oscillator when the temperature is constant, for example, room temperature, is the relationship shown in Figure 1.
The relationship between Δ/=1/2γ (1+C L /C 0 ) (1) is expressed mathematically when the relationship between C L and load capacitance C L is calculated. Here, C 0 is the parallel capacitance of the piezoelectric oscillator, and γ is the ratio of this parallel capacitance to the same series capacitance.

上記の(1)式において、負荷容量CLはふつう20
〜100pF(そのうち可変容量ダイオードの容量は
10pF程度、その温度係数はまちまちであるが数
百PPm或いはそれ以上の場合があり)、並列容量
C0はふつう3〜5pF程度であつて温度係数は4〜
5ppmと小さい。又並直列容量比γはふつう200
〜2000程度(直列容量は10-2pF以下)であり、
その温度係数は並列容量C0の場合とほぼ同じく
小さい。従つて周波数温度変化率Δ/の値は
主として負荷容量の特性によつてきまる。
In the above equation (1), the load capacity C L is usually 20
~100pF (of which the capacitance of the variable capacitance diode is
(about 10pF, its temperature coefficient varies but can be several hundred ppm or more), parallel capacitance
C 0 is usually around 3 to 5 pF and the temperature coefficient is 4 to 5 pF.
As small as 5ppm. Also, the parallel-series capacitance ratio γ is usually 200.
~2000 (series capacitance is 10 -2 pF or less),
Its temperature coefficient is almost as small as that of the parallel capacitance C 0 . Therefore, the value of the frequency temperature change rate Δ/ is mainly determined by the characteristics of the load capacity.

第2図は上記の(1)式の関係をグラフ化した図で
ある。この第2図からも明らかなように、負荷容
量CLの値によつて負荷容量の変化に対する発振
周波数変化率Δ/が異なつている。従つて、
周囲温度の変動にともなつて負荷容量が変化すれ
ば発振周波数が変化し、初期の周波数温度特性と
異なつた特性となる。すなわち第2図において、
負荷容量がB点の場合の周波数温度特性を第1図
の特性Bとし、負荷容量の温度係数を正と仮定す
れば、第2図において負荷容量がA点の場合(言
いかえれば発振周波数が経時的に低くなり、可変
容量ダイオードの制御電圧を制御して発振波数を
高く補正した場合)には、周波数温度特性は第1
図の特性Cのようになる。他方第2図において、
負荷容量がC点の場合(言いかえれば発振周波数
が経時的に高くなり、可変容量ダイオードの制御
電圧を制御して発振周波数を低く補正した場合)
には、周波数温度特性は第1図の特性Aのように
なる。
FIG. 2 is a graph showing the relationship of equation (1) above. As is clear from FIG. 2, the oscillation frequency change rate Δ/ with respect to a change in load capacitance varies depending on the value of load capacitance C L . Therefore,
If the load capacitance changes as the ambient temperature fluctuates, the oscillation frequency will change, resulting in characteristics different from the initial frequency-temperature characteristics. That is, in Figure 2,
If we assume that the frequency-temperature characteristic when the load capacity is at point B is characteristic B in Figure 1 and the temperature coefficient of the load capacity is positive, then when the load capacity is at point A in Figure 2 (in other words, the oscillation frequency is (when the control voltage of the variable capacitance diode is controlled to correct the oscillation wave number to a higher value), the frequency temperature characteristic becomes
The result will be as shown in characteristic C in the figure. On the other hand, in Figure 2,
When the load capacitance is at point C (in other words, when the oscillation frequency increases over time and the oscillation frequency is corrected lower by controlling the control voltage of the variable capacitance diode)
In this case, the frequency-temperature characteristic is as shown in characteristic A in FIG.

したがつて本考案の目的は上記のような変化を
補正する回路を提供するにある。
SUMMARY OF THE INVENTION It is therefore an object of the present invention to provide a circuit for correcting such changes.

本考案によれば、圧電発振子および増幅部を含
む圧電発振部と、可変容量ダイオードおよびコン
デンサの直列回路から成り前記圧電発振部の負荷
を形成している負荷容量と、前記可変容量ダイオ
ードに制御電圧を提供する基準電圧発生部とを含
す圧電発振器において、前記コンデンサとして、
その容量の温度係数が前記可変容量ダイオードの
容量の温度係数に対し符号が相反し大きさがほぼ
容量に比例するようなコンデンサを用いたことを
特徴とする圧電発振器が得られる。
According to the present invention, a piezoelectric oscillator including a piezoelectric oscillator and an amplifier, a load capacitance formed of a series circuit of a variable capacitance diode and a capacitor and forming a load of the piezoelectric oscillator, and a load capacitor that is controlled by the variable capacitor diode. In a piezoelectric oscillator including a reference voltage generating section that provides a voltage, as the capacitor,
There is obtained a piezoelectric oscillator characterized in that a capacitor whose temperature coefficient of capacitance has a sign opposite to that of the variable capacitance diode and whose size is approximately proportional to the capacitance is obtained.

第3図は本考案の一実施例の構成を示した図で
ある。第3図において、1は圧電発振部であつて
圧電発振子XLおよび増幅部−Rを含んでおり、
2は負荷容量の一部であるセラミツクコンデンサ
であつてその容量C2が負の温度係数αを有して
おり、3は可変容量ダイオードであつてその容量
C3は正の温度係数βを有しており、4は基準電
圧発生部、5は基準電圧を分割する可変抵抗器、
6は交流的にアイソレーシヨンする高抵抗器、7
は交流的に接地する蓄電器、8は出力端子、Vc
は制御電圧である。なおC2,C3,α,βなどに
ついてはあとに実際の数値を示すとして、ここで
は一般的な形のままで示しておく。
FIG. 3 is a diagram showing the configuration of an embodiment of the present invention. In FIG. 3, 1 is a piezoelectric oscillator, which includes a piezoelectric oscillator XL and an amplifier -R,
2 is a ceramic capacitor that is part of the load capacitance, and its capacitance C 2 has a negative temperature coefficient α, and 3 is a variable capacitance diode whose capacitance is
C3 has a positive temperature coefficient β, 4 is a reference voltage generator, 5 is a variable resistor that divides the reference voltage,
6 is a high resistor for AC isolation, 7
is an AC grounded capacitor, 8 is an output terminal, and V c
is the control voltage. Note that actual values for C 2 , C 3 , α, β, etc. will be shown later, but they will be shown here in their general form.

はじめに上記第3図の回路の動作特性を定性的
に説明すると、このような回路においては可変容
量ダイオードの容量値によつて負荷容量の温度係
数が異なつてくる。すなわち制御電圧Vcが高く
可変容量ダイオードの容量C3が小さい場合に
は、負荷容量CLの温度係数は主に可変容量ダイ
オードの温度係数βに依存し、他方制御電圧Vc
が低く可変容量ダイオードの容量値が大きい場合
には、負荷容量CLの温度係数は主に付加したセ
ラミツク蓄電器2の温度係数αに支配される。従
つて付加したセラミツクコンデンサ2の容量値と
温度係数を適当に選べばよいことが分る。
First, to qualitatively explain the operating characteristics of the circuit shown in FIG. 3, in such a circuit, the temperature coefficient of the load capacitance differs depending on the capacitance value of the variable capacitance diode. That is, when the control voltage V c is high and the capacitance C 3 of the variable capacitance diode is small, the temperature coefficient of the load capacitance C L mainly depends on the temperature coefficient β of the variable capacitance diode, and on the other hand, the control voltage V c
When the capacitance value of the variable capacitance diode is low and the capacitance value of the variable capacitance diode is large, the temperature coefficient of the load capacitance C L is mainly controlled by the temperature coefficient α of the added ceramic capacitor 2. Therefore, it can be seen that the capacitance value and temperature coefficient of the added ceramic capacitor 2 should be appropriately selected.

次に定量的に説明すると、(1)式から分るよう
に、周波数温度変化率Δ/が温度によらず一
定であるためには、負荷容量CLが温度によらず
一定であることが最も重要なことである。ところ
で負荷容量CLは付加したセラミツクコンデンサ
の容量C2と可変容量ダイオードの容量を直列に
接続したものであり、又、Tで温度をあらわす
と、dC/dT=αC2,dC/dT=βC3であらわ
せるところ から、 CL=C+C/C+C δC/δC dC/dT+δC/δC
/dT=0 C /(C+C・αC2+C /(C
・βC3=0 C3α+C2β=0 又は2の温度係数/3の温度係数=
α/β=−C/C …(2) となる。この(2)式はセラミツクコンデンサ2の
容量C2と可変容量ダイオードの容量C3とが温度
係数の符号が相反し大きさが容量値に比例すれ
ば、負荷容量CLは温度によらずほぼ一定である
ことを意味する。そして例えば可変容量ダイオー
ド3の容量C3として10pF、温度係数として1/150
0のものを用いた場合、容量が20pFで温度係数と
して負の1/750のセラミツクコンデンサ2を用い
ればよい。
Next, to explain quantitatively, as can be seen from equation (1), in order for the frequency temperature change rate Δ/ to be constant regardless of temperature, the load capacity C L must be constant regardless of temperature. This is the most important thing. By the way, the load capacitance C L is the capacitance C 2 of the added ceramic capacitor and the capacitance of the variable capacitance diode connected in series, and if T represents the temperature, dC 2 /dT=αC 2 , dC 3 /dT =βC 3 From the expression, C L =C 2 +C 3 /C 2 +C 3 δC L /δC 2 dC 2 /dT+δC L /δC 3 d
C 3 /dT=0 C 3 2 /(C 2 +C 3 ) 2・αC 2 +C 2 2 /(C 2 +
C 3 ) 2・βC 3 = 0 C 3 α + C 2 β = 0 or temperature coefficient of 2/temperature coefficient of 3 =
α/β=−C 2 /C 3 (2). Equation (2) shows that if the temperature coefficients of the capacitance C 2 of the ceramic capacitor 2 and the capacitance C 3 of the variable capacitance diode are opposite in sign and the size is proportional to the capacitance value, then the load capacitance C L is approximately independent of the temperature. means constant. For example, the capacitance C 3 of variable capacitance diode 3 is 10 pF, and the temperature coefficient is 1/150.
0, a ceramic capacitor 2 with a capacitance of 20 pF and a negative temperature coefficient of 1/750 may be used.

第4図は(2)式の関係を持たせた場合の周波数温
度変化率を示した図であつて、周波数シフトによ
つても周波数温度特性に殆んど影響をしない特性
を得ることができる。
Figure 4 shows the frequency temperature change rate when the relationship of equation (2) is established, and it is possible to obtain characteristics that have almost no effect on the frequency temperature characteristics even by frequency shift. .

上記の実施例において2つの容量の特性の一例
を示したがこれに限定されるものでないことはい
うまでもない。例えば可変容量ダイオード2の温
度係数は数百分の1から2千分の1またはより広
い範囲のものがあり、又付加するコンデンサとし
てはセラミツクコンデンサ以外のものでもよい。
要は2つの容量C2とC3の温度係数と大きさの関
係を(2)式をほぼ満足にするようにすればどのよう
なものを用いてもよいものである。また以上のこ
とは可変容量ダイオードとして負の温度係数を持
つものがあれば付加コンデンサとして正の温度係
数を持つものを使用すればよいことを意味してい
る。
Although an example of the characteristics of two capacitors was shown in the above embodiment, it goes without saying that the present invention is not limited to this. For example, the temperature coefficient of the variable capacitance diode 2 may range from 1/2000 to 1/2000 or a wider range, and the capacitor to be added may be other than a ceramic capacitor.
In short, any capacitance may be used as long as the relationship between the temperature coefficient and the size of the two capacitances C 2 and C 3 substantially satisfies equation (2). Furthermore, the above means that if there is a variable capacitance diode with a negative temperature coefficient, it is sufficient to use a capacitor with a positive temperature coefficient as the additional capacitor.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は従来の回路による周波数温度特性を示
す図、第2図は負荷容量と発振周波数の関係を示
す図、第3図は本考案による一実施例の構成を示
した図、第4図は本考案により得られた周波数温
度特性の一例を示した図である。 記号の説明:1は圧電発振部、2はセラミツク
コンデンサ、3は可変容量ダイオード、4は基準
電圧発生部、5は可変抵抗器、6は抵抗器、7は
蓄電器、8は出力端子、−Rは増幅部、Vcは制御
電圧、XLは圧電発振子をそれぞれあらわしてい
る。
Fig. 1 is a diagram showing the frequency temperature characteristics of a conventional circuit, Fig. 2 is a diagram showing the relationship between load capacitance and oscillation frequency, Fig. 3 is a diagram showing the configuration of an embodiment of the present invention, and Fig. 4 1 is a diagram showing an example of frequency-temperature characteristics obtained by the present invention. Explanation of symbols: 1 is a piezoelectric oscillator, 2 is a ceramic capacitor, 3 is a variable capacitance diode, 4 is a reference voltage generator, 5 is a variable resistor, 6 is a resistor, 7 is a capacitor, 8 is an output terminal, -R represents an amplifier section, Vc represents a control voltage, and XL represents a piezoelectric oscillator.

Claims (1)

【実用新案登録請求の範囲】[Scope of utility model registration request] 圧電発振子および増幅部を含む圧電発振部と、
可変容量ダイオードおよびコンデンサの直列回路
から成り前記圧電発振部の負荷を形成している負
荷容量と、前記可変容量ダイオードに制御電圧を
提供する基準電圧発生部とを含む圧電発振器にお
いて、前記コンデンサとして、その容量の温度係
数が前記可変容量ダイオードの容量の温度係数に
対し符号が相反し大きさがほぼ容量に比例するよ
うなコンデンサを用いたことを特徴とする圧電発
振器。
a piezoelectric oscillator including a piezoelectric oscillator and an amplifier;
In a piezoelectric oscillator including a load capacitor formed of a series circuit of a variable capacitance diode and a capacitor and forming a load of the piezoelectric oscillator, and a reference voltage generator that provides a control voltage to the variable capacitor diode, as the capacitor, A piezoelectric oscillator characterized in that a capacitor is used whose temperature coefficient of capacitance is opposite in sign to the temperature coefficient of capacitance of the variable capacitance diode and whose size is approximately proportional to the capacitance.
JP10929981U 1981-07-24 1981-07-24 piezoelectric oscillator Granted JPS5816914U (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP10929981U JPS5816914U (en) 1981-07-24 1981-07-24 piezoelectric oscillator

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP10929981U JPS5816914U (en) 1981-07-24 1981-07-24 piezoelectric oscillator

Publications (2)

Publication Number Publication Date
JPS5816914U JPS5816914U (en) 1983-02-02
JPS6244569Y2 true JPS6244569Y2 (en) 1987-11-26

Family

ID=29903680

Family Applications (1)

Application Number Title Priority Date Filing Date
JP10929981U Granted JPS5816914U (en) 1981-07-24 1981-07-24 piezoelectric oscillator

Country Status (1)

Country Link
JP (1) JPS5816914U (en)

Also Published As

Publication number Publication date
JPS5816914U (en) 1983-02-02

Similar Documents

Publication Publication Date Title
JPS6126726B2 (en)
JPH01108801A (en) Temperature compensation type pizo- electric oscillator
US4072912A (en) Network for temperature compensation of an AT cut quartz crystal oscillator
JPS6244569Y2 (en)
US4001724A (en) Variable high frequency crystal oscillator
US5459438A (en) Negative feedback frequency stabilized pulse oscillator
JPS63309003A (en) Variable piezoelectric oscillator with high spectrum purity and temperature compensation
WO1998056112A2 (en) Oscillator frequency-drift compensation
JPH0846477A (en) Active band-pass filter
JPH0416490Y2 (en)
JPS5843282Y2 (en) Ondohoshiyoosuishiyoohatsushinki
GB1580335A (en) Capacitance to frequency converter
JPH0370202A (en) Piezoelectric oscillator
JP2850131B2 (en) Voltage controlled oscillator
JPS5822336Y2 (en) active filter circuit
JPS59108407A (en) Temperature compensating type elastic surface wave oscillator
JPS5832322Y2 (en) crystal oscillation circuit
JPS625362B2 (en)
JPS6021602A (en) Variable frequency crystal oscillating circuit
JPH10126153A (en) Crystal oscillation circuit
JP3243680B2 (en) Frequency correction method for digitally controlled oscillator
JPS5818014B2 (en) variable frequency oscillator
JPS62268Y2 (en)
JPS61118001A (en) Crystal oscillation circuit
JP2594119B2 (en) Transistor-base grounded crystal oscillator