JPH03210533A - Electro-optical device - Google Patents

Electro-optical device

Info

Publication number
JPH03210533A
JPH03210533A JP2006547A JP654790A JPH03210533A JP H03210533 A JPH03210533 A JP H03210533A JP 2006547 A JP2006547 A JP 2006547A JP 654790 A JP654790 A JP 654790A JP H03210533 A JPH03210533 A JP H03210533A
Authority
JP
Japan
Prior art keywords
electrode
substrate
thin film
nonlinear resistance
resistance element
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2006547A
Other languages
Japanese (ja)
Inventor
Tomoyoshi Fukuda
知喜 福田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Seiko Instruments Inc
Original Assignee
Seiko Instruments Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Seiko Instruments Inc filed Critical Seiko Instruments Inc
Priority to JP2006547A priority Critical patent/JPH03210533A/en
Publication of JPH03210533A publication Critical patent/JPH03210533A/en
Pending legal-status Critical Current

Links

Landscapes

  • Liquid Crystal (AREA)

Abstract

PURPOSE:To reduce the electrostatic breakdown of a non-linear resistance element and to obtain an electro-optical device having high yield by forming a wiring electrode on a non-linear resistance thin film so that one side of the electrode comes into contact with a substrate. CONSTITUTION:The electro-optical device having many picture element so as to be used for a television or the like is constituted of the wiring electrode 14, a transparent picture element electrode 12 and the non-linear resistance element 13 on the inside of at least one substrate 11 and the non-linear resistance element is constituted of the 1st conductor consisting of the electrode 14, the 2nd conductor consisting of the electrode 12 and the non-linear resistance thin film 13 formed between the 1st and 2nd conductors 14, 12. In this case, at least one side of the electrode 14 comes into contact with the substrate 11 along the thin film 13. Consequently, static electricity accumulated on the substrate 11 can be discharged without passing it through the non-linear resistance element, the occurrence of a picture element defect due to electrostatic breakdown can be reduced and high yield can be attained.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明は、パーソナルコンピュータ用デイスプレィ、ハ
ンドベルトコンピュータ用デイスプレィ各種計測機のデ
イイスプレイ、テレビなどに使用される多数の画素数を
有する電気光学装置に関する。
Detailed Description of the Invention [Field of Industrial Application] The present invention relates to an electro-optical device having a large number of pixels used in displays for personal computers, displays for hand belt computers, day displays for various measuring instruments, televisions, etc. Regarding.

〔発明の概要〕[Summary of the invention]

本発明は、少なくとも一方の基板の内面が配線電極と画
素電極および非線形抵抗素子とからなり前記非線形抵抗
素子は前記配線電極からなる第1の導体、および前記画
素電極からなる第2の導体、さらに第1の導体と第2の
導体との間に形成した非線形抵抗薄膜からなり、前記配
線電極の一辺が前記非線形抵抗薄膜に沿って、前記基板
に接触している電気光学装置にすることにより、基板に
蓄積した静電気を非線形抵抗素子を通さずに放電するこ
とができるようにしたものである。
In the present invention, an inner surface of at least one substrate includes a wiring electrode, a pixel electrode, and a nonlinear resistance element, and the nonlinear resistance element includes a first conductor consisting of the wiring electrode, and a second conductor consisting of the pixel electrode, and By providing an electro-optical device consisting of a nonlinear resistance thin film formed between a first conductor and a second conductor, one side of the wiring electrode is in contact with the substrate along the nonlinear resistance thin film, This allows static electricity accumulated on the substrate to be discharged without passing through the nonlinear resistance element.

〔従来の技術] 従来から非線形抵抗薄膜としてシリコン窒化膜、シリコ
ン酸化膜、またはシリコン窒化酸化膜を用いた非線形抵
抗素子が知られている。従来では、第2図に示されるよ
うに、基板21上に画素電極22を形成し、前記画素電
極上に非線形抵抗薄膜23を形成し、前記非線形抵抗薄
膜上に配線電極24を形成して、前記画素電極、前記非
線形抵抗素子、及び、前記配線電極によって非線形抵抗
素子を得るようにしている。
[Prior Art] Nonlinear resistance elements using a silicon nitride film, a silicon oxide film, or a silicon nitride oxide film as a nonlinear resistance thin film are conventionally known. Conventionally, as shown in FIG. 2, a pixel electrode 22 is formed on a substrate 21, a nonlinear resistance thin film 23 is formed on the pixel electrode, and a wiring electrode 24 is formed on the nonlinear resistance thin film. A nonlinear resistance element is obtained by the pixel electrode, the nonlinear resistance element, and the wiring electrode.

〔発明が解決しようとする課題1 しかしながら、非線形抵抗薄膜上に配線電極を形成した
場合、基板と配線電極とが接する箇所がないため、基板
に蓄積された電荷は放電されにくくなり、非線形抵抗素
子が静電破壊を起こし易(なっていた。
[Problem to be Solved by the Invention 1] However, when wiring electrodes are formed on a nonlinear resistance thin film, since there is no contact point between the substrate and the wiring electrodes, the charges accumulated on the substrate are difficult to discharge, and the nonlinear resistance element was prone to electrostatic damage.

本発明では、非線形抵抗素子の静電破壊を減少させ、歩
留まりの高い電気光学装置を提供するものである。
The present invention provides an electro-optical device that reduces electrostatic damage to nonlinear resistance elements and has a high yield.

C課題を解決するための手段〕 本発明の電気光学装置は、上記問題点を解決するもので
あり、画素電極と配線電極および非線形抵抗薄膜からな
る非線形抵抗素子において、配線電極を一辺が基板に接
するように非線形抵抗薄膜上に形成することによって、
静電破壊が起こりにくい非線形抵抗素子が得られること
を特徴とす机 [作用] 上記のように、基板と配線電極の一辺とが接することに
より、画素欠陥が少ない電気光学装置が得られ、高歩留
まりのものとなる。
Means for Solving Problem C] The electro-optical device of the present invention solves the above problems, and in a nonlinear resistance element consisting of a pixel electrode, a wiring electrode, and a nonlinear resistance thin film, one side of the wiring electrode is attached to the substrate. By forming it on a nonlinear resistive thin film so that it is in contact with
[Function] As described above, by contacting the substrate with one side of the wiring electrode, an electro-optical device with fewer pixel defects can be obtained, and a high-performance electro-optical device can be obtained. It depends on the yield.

〔実施例J 以下に、この発明の実施例を図面に基づいて説明する。[Example J Embodiments of the present invention will be described below based on the drawings.

第3(A)図は、本発明による液晶表示装置の非線形抵
抗素子を形成した基板の一画素を明示したものであり、
液晶層、液晶を封入するための対向基板、偏光板等は説
明を簡単にするために省略した。
FIG. 3(A) clearly shows one pixel of a substrate on which a nonlinear resistance element of a liquid crystal display device according to the present invention is formed,
The liquid crystal layer, the counter substrate for enclosing the liquid crystal, the polarizing plate, etc. are omitted for the sake of simplicity.

第3(B)図は、本発明による液晶表示装置の縦断面構
造の一画素について明示した図である。
FIG. 3(B) is a diagram clearly showing one pixel in the vertical cross-sectional structure of the liquid crystal display device according to the present invention.

第3図において、31は透明基板であり、ソーダガラス
、パイレックスガラス等で、厚さ0.5〜1.1mmの
ものを使用した。32は透明画素電極であり、インジウ
ムスズ酸化膜(ITO)をマグネトロンスパッタリング
によって100〜500人デポジションし、フォトエツ
チングによって所定の形状にパターニングした。33は
シリコンを主成分とするアモルファス材料であり、32
透明画素電極をパターニング後マグネトロンスパッタリ
ング装置によって窒化シリコンターゲットに、アルゴン
ガスな用いてのスパッタリング法、もしくは、シリコン
ターゲットにアルゴンガスと窒素ガスとを用いた反応性
スパッタリング法により約750〜1500人のシリコ
ン窒化膜をデポジションし、フォトエツチングによって
所定の形状にパターニングした。34は配線電極で行列
電極の一方であり、本実施例においてはアルミニウムも
しくはクロム金属を33非線形抵抗薄膜のパターニング
後マグネトロンスパッタリング法によって約1000〜
8000人デポジションし、フォトエツチングにより一
辺が31透明基板に接する形状にパターニングした。ま
た、本実施例では32透明画素電極を所定の形状に形成
後、プラズマCVD装置により、シランガスと窒素ガス
を反応させシリコン窒化膜をデポジションし、所定の形
状に形成した。その後、マグネトロンスパッタ(去によ
って、アルミニウムもしくはクロムをデポジションし、
フォトエツチングにより、34配線電極の一辺が31透
明画素電極に接している形状にパターニングすることも
行なった。上記工程により形成された非線形抵抗素子が
第1図であり、第2図には比較として従来の非線形抵抗
素子を示した。第2図のように配線電極が非線形抵抗薄
膜上に形成され、透明基板と配線電極が接していない場
合、透明基板に蓄積された電荷が放電されにくく、非線
形抵抗素子が静電破壊することがあった。そのため画素
欠陥が発生し易かったが、本発明では、透明基板と配線
電極とが接しているため、透明基板に蓄積した静電気を
非線形薄膜に通さずに配線電極に流し放電もしくはアー
スが行なえるようになり、静電破壊による画素欠陥の発
生を減少させることができ、高歩留まりとなった。
In FIG. 3, 31 is a transparent substrate, which is made of soda glass, pyrex glass, etc. and has a thickness of 0.5 to 1.1 mm. 32 is a transparent pixel electrode, and 100 to 500 indium tin oxide (ITO) films are deposited by magnetron sputtering and patterned into a predetermined shape by photoetching. 33 is an amorphous material whose main component is silicon;
After patterning the transparent pixel electrode, about 750 to 1,500 silicon particles are sputtered onto a silicon nitride target using a magnetron sputtering device using a sputtering method using argon gas or a reactive sputtering method using argon gas and nitrogen gas for a silicon target. A nitride film was deposited and patterned into a predetermined shape by photoetching. 34 is a wiring electrode, which is one of the matrix electrodes, and in this example, aluminum or chromium metal is formed by magnetron sputtering after patterning the nonlinear resistance thin film 33 to a thickness of about 1000 to 1000.
8,000 people were deposited and patterned by photoetching into a shape in which one side was in contact with 31 transparent substrates. Further, in this example, after forming 32 transparent pixel electrodes into a predetermined shape, a silicon nitride film was deposited by reacting silane gas and nitrogen gas using a plasma CVD apparatus, and the electrodes were formed into a predetermined shape. Then, deposit aluminum or chromium by magnetron sputtering.
Photo-etching was also used to pattern the wiring electrode 34 into a shape in which one side was in contact with the transparent pixel electrode 31. FIG. 1 shows a nonlinear resistance element formed by the above process, and FIG. 2 shows a conventional nonlinear resistance element for comparison. As shown in Figure 2, when the wiring electrode is formed on a nonlinear resistance thin film and the transparent substrate and the wiring electrode are not in contact, the charges accumulated in the transparent substrate are difficult to discharge, and the nonlinear resistance element may be damaged by electrostatic discharge. there were. Therefore, pixel defects were likely to occur, but in the present invention, since the transparent substrate and the wiring electrode are in contact with each other, static electricity accumulated on the transparent substrate can be discharged or grounded by flowing to the wiring electrode without passing through the nonlinear thin film. As a result, the occurrence of pixel defects due to electrostatic discharge damage can be reduced, resulting in a high yield.

また、第4図に示すように、本実施例では、全配#!電
極の一端を接続する形状に形成したことにより、外部か
らアースを行い易くなり一層静電破壊による画素欠陥の
発生を減少させることができた。
Moreover, as shown in FIG. 4, in this embodiment, all dividends #! By forming the electrode in a shape that connects one end of the electrode, it becomes easier to perform grounding from the outside, thereby further reducing the occurrence of pixel defects due to electrostatic discharge damage.

[発明の効果] 以上説明したように、本発明による非線形抵抗素子を用
いることにより、静電破壊による画素欠陥の発生が少な
い電気光学装置ができ、高歩留まりとなる。
[Effects of the Invention] As described above, by using the nonlinear resistance element according to the present invention, an electro-optical device with fewer pixel defects caused by electrostatic discharge damage can be achieved, resulting in a high yield.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は本発明による非線形抵抗素子の断面図、第2図
は従来の非線形抵抗素子の断面図、第3図(A)は基板
の電極構造の斜視図、第3図(B)は液晶表示装置の縦
断面図、第4図は実施例の配線電極端子部分の平面図で
ある。 11.21 、3 12、22、3 13、23、3 14、24、3 1、38 ・透明基板 2.41.52 ・透明画素電極 3.42 ・非線形抵抗薄膜 4.43.54 ・・・・配線電極 35・・・・・・液晶 36・・・・・・配向膜 37・・・・・・透明電極 39・・・・・・偏光板
Figure 1 is a sectional view of a nonlinear resistance element according to the present invention, Figure 2 is a sectional view of a conventional nonlinear resistance element, Figure 3 (A) is a perspective view of the electrode structure of a substrate, and Figure 3 (B) is a liquid crystal display. FIG. 4 is a longitudinal sectional view of the display device and a plan view of the wiring electrode terminal portion of the embodiment. 11.21 , 3 12, 22, 3 13, 23, 3 14, 24, 3 1, 38 ・Transparent substrate 2.41.52 ・Transparent pixel electrode 3.42 ・Nonlinear resistance thin film 4.43.54 ...・Wiring electrode 35...Liquid crystal 36...Alignment film 37...Transparent electrode 39...Polarizing plate

Claims (1)

【特許請求の範囲】[Claims] 少なくとも一方の基板の内面は、配線電極と画素電極お
よび非線形抵抗素子とからなり、前記非線形抵抗素子は
前記配線電極からなる第1の導体および前記画素電極か
らなる第2の導体、さらに前記第1の導体と前記第2の
導体との間に形成した非線形抵抗薄膜とからなり、前記
配線電極の少なくとも一辺が前記非線形抵抗薄膜に沿っ
て、前記基板に接触している電気光学装置。
The inner surface of at least one substrate includes a wiring electrode, a pixel electrode, and a nonlinear resistance element, and the nonlinear resistance element includes a first conductor made of the wiring electrode, a second conductor made of the pixel electrode, and a second conductor made of the pixel electrode. and a nonlinear resistance thin film formed between the conductor and the second conductor, wherein at least one side of the wiring electrode is in contact with the substrate along the nonlinear resistance thin film.
JP2006547A 1990-01-16 1990-01-16 Electro-optical device Pending JPH03210533A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2006547A JPH03210533A (en) 1990-01-16 1990-01-16 Electro-optical device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2006547A JPH03210533A (en) 1990-01-16 1990-01-16 Electro-optical device

Publications (1)

Publication Number Publication Date
JPH03210533A true JPH03210533A (en) 1991-09-13

Family

ID=11641359

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2006547A Pending JPH03210533A (en) 1990-01-16 1990-01-16 Electro-optical device

Country Status (1)

Country Link
JP (1) JPH03210533A (en)

Similar Documents

Publication Publication Date Title
US6486934B2 (en) Method for manufacturing fringe field switching mode liquid crystal display device
US20020085134A1 (en) Liquid crystal display device and fabricating method thereof
JPH03210533A (en) Electro-optical device
KR20020054909A (en) Apparatus for fringe field switching liquid crystal display device and method for manufacturing the same
JP2704212B2 (en) Manufacturing method of electro-optical device
JP2583794B2 (en) Electro-optical device and method of manufacturing the same
JP2695424B2 (en) Liquid crystal display
JPS62296123A (en) Active-matrix type liquid-crystal display device
CN104216190A (en) Array substrate, manufacturing method thereof and display device
JPH02228631A (en) Production of electrooptic device
JPH01245226A (en) Production of active matrix substrate
JP2926340B2 (en) Electro-optical device
CN100368913C (en) Thin film diode liquid crystal display with high aperture ratio
JP2942996B2 (en) Manufacturing method of electro-optical device
JPH10149890A (en) Liquid crystal display element
JP3228735B2 (en) Liquid crystal electro-optical device
JP2000285736A (en) Electrode substrate
KR920003706B1 (en) Plate type thin film transistor and its manufacturing method
JP2831666B2 (en) Active matrix type liquid crystal display element and manufacturing method thereof
JPH0954339A (en) Liquid crystal display device
JPS62192783A (en) Display unit
JPS63202720A (en) Production of liquid crystal display device
JP2884359B2 (en) Manufacturing method of electro-optical device
JPH02187730A (en) Production of active matrix element
JPH04360575A (en) Manufacture of display device