JPH03210385A - Ground conditioner - Google Patents

Ground conditioner

Info

Publication number
JPH03210385A
JPH03210385A JP473890A JP473890A JPH03210385A JP H03210385 A JPH03210385 A JP H03210385A JP 473890 A JP473890 A JP 473890A JP 473890 A JP473890 A JP 473890A JP H03210385 A JPH03210385 A JP H03210385A
Authority
JP
Japan
Prior art keywords
water glass
cement
aqueous solution
ground
gel time
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP473890A
Other languages
Japanese (ja)
Inventor
Toyomitsu Yamada
山田 豊光
Hitoshi Yamauchi
山内 仁志
Hiroshi Kato
洋 加藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
AICHI KEISO KOGYO KK
Original Assignee
AICHI KEISO KOGYO KK
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by AICHI KEISO KOGYO KK filed Critical AICHI KEISO KOGYO KK
Priority to JP473890A priority Critical patent/JPH03210385A/en
Publication of JPH03210385A publication Critical patent/JPH03210385A/en
Pending legal-status Critical Current

Links

Abstract

PURPOSE:To obtain a ground conditioner having a low viscosity, excellent permeability into ground, and low variation of gel time with temperature, etc., by mixing an aqueous solution of a water glass having a high molar ratio and containing Na2O and SiO2 in a specific ratio with a cement suspension. CONSTITUTION:An aqueous solution of a water glass having a high molar ratio and containing 8-30wt.% solid content comprising Na2O and SiO2 with the amount of SiO2 being 3.7-4.5 moles for 1 mole of Na2O is mixed with a cement suspension which contains 0.7-10 pts.wt. cement for 1 pt.wt. of the solid component of the above aqueous solution.

Description

【発明の詳細な説明】[Detailed description of the invention] 【産業上の利用分野】[Industrial application field]

本発明は、土壌を安定して地盤を強化すると共に不透水
層を形成し、湧水、漏水の防止を図る地盤改良剤に関す
るものである。
The present invention relates to a ground improvement agent that stabilizes and strengthens the soil, forms an impermeable layer, and prevents water seepage and leakage.

【従来の技術】[Conventional technology]

従来の地g1改良工法には、水ガラス水溶液とセメント
懸濁液とを混合しつつ地盤に注入し、地盤中で硬化させ
ることによって地盤の強化及び止水を図っていた。 その水ガラスは、Na2O1モルに対して5iOzを3
.0〜3.3モル含んだ3号水ガラス、或いは特別条件
下で使用するNan01モルに対して5i02を1.8
〜2.5モル含んだ一般に1号及び2号水ガラスと称さ
れる低モル比の水ガラスであった。 一般には、3号水ガラス固形分(Na2O+ 5i07
)を22.5重量%含む水ガラス水溶液と、セメント量
が31.5重量%を含むセメント懸濁液とを使用するが
、両者を混合した時点から流動性が無くなって來結する
までの時間(ゲルタイム)が、温度20℃で約1分間、
10℃で約2分間、3℃で約3分間と温度降下につれて
遅くなっている。 また、1号、2号水ガラスを使用するものではさらにゲ
ルタイムが遅くなり、温度20℃で2〜7分間かかるも
のであった・
In the conventional ground g1 improvement method, a water glass aqueous solution and a cement suspension were mixed and injected into the ground, and the mixture was allowed to harden in the ground, thereby strengthening the ground and stopping water. The water glass contains 3 iOz per mole of Na2O.
.. No. 3 water glass containing 0 to 3.3 mol, or 1.8 5i02 per 1 mol of Nan0 used under special conditions.
These were low molar ratio water glasses, commonly referred to as No. 1 and No. 2 water glasses, containing ~2.5 moles. Generally, No. 3 water glass solid content (Na2O+ 5i07
) and a cement suspension containing 31.5% by weight of cement. (gel time) is approximately 1 minute at a temperature of 20°C.
The time becomes slower as the temperature decreases: about 2 minutes at 10°C and about 3 minutes at 3°C. In addition, the gel time was even slower for those using No. 1 and No. 2 water glass, taking 2 to 7 minutes at a temperature of 20°C.

【発明が解決しようとするTI題】[TI problem to be solved by the invention]

しかしながら、水を多量に含む地盤や間隙の大きい地盤
において地盤改良範囲を最小に限定して行う場合も多く
、この場合はゲルタイムの短い改良剤が必要となる。 従来ではこの場合、セメント懸濁液のセメント量を50
%以上に増量するか、セメント懸濁液を水ガラス水溶液
より多くして混合比率を変える方杖、或いはセメント懸
濁液中に石膏や消石灰等のカルシウム系硬化剤を混合し
てゲルタイムの短縮を図るものもあった。 しかしながら、セメン1量を増やせば粘性が高くなって
水ガラス水溶液との混合か不充分になると同時に、地盤
への浸透が非常に困難となる問題点があった。 また、水ガラス水溶液とセメント懸濁液との混合比率を
変えることも両者の混合が不充分となると共に、その注
入ポンプの混合調整が正確にできないことからゲルタイ
ムの変動が大きい問題点があった。 そして、カルシウム系硬化剤を使用する場合は、水和反
応が速いため時間経過と共に増粘して地盤へ注入する前
にセメント懸濁液のみで凝結する欠点があった。 そこで本発明者は、ゲルタイムを短縮する上で種々の欠
点を改善するため、水ガラスの種類を種々変えて改良に
努めた結果、高モル比の水ガラス水溶液を使用すること
により、低粘性で地盤の浸透がよく、温度変化によるゲ
ルタイムの変動が非常に小さくなると共に、地下水の希
釈によるゲルタイムの遅延も少なく強度発現に優れた地
盤改良剤を得たのである。
However, in the case of soil containing a large amount of water or soil with large gaps, the scope of soil improvement is often limited to the minimum, and in this case, an improving agent with a short gel time is required. Conventionally, in this case, the amount of cement in the cement suspension was set to 50
% or more, or change the mixing ratio by adding more cement suspension than water glass aqueous solution, or shorten the gel time by mixing calcium-based hardeners such as gypsum or slaked lime in the cement suspension. There were also things to aim for. However, if the amount of cement is increased, the viscosity increases, resulting in insufficient mixing with the water glass aqueous solution, and at the same time, there are problems in that it becomes extremely difficult to penetrate into the ground. Additionally, changing the mixing ratio of the water glass aqueous solution and the cement suspension resulted in insufficient mixing of the two, and the inability to accurately adjust the mixing of the injection pump caused the problem of large fluctuations in gel time. . When a calcium-based curing agent is used, the hydration reaction is rapid, so the viscosity increases over time and the cement suspension only solidifies before being poured into the ground. Therefore, in order to shorten the gel time and improve the various drawbacks, the present inventor made efforts to improve the water glass by changing various types of water glass, and as a result, by using a water glass aqueous solution with a high molar ratio, a solution with low viscosity and We have obtained a ground improvement agent that has good penetration into the ground, very little variation in gel time due to temperature changes, less delay in gel time due to dilution of groundwater, and excellent strength development.

【課題を解決するための手段] このため本発明は、地盤中に混合注入して地盤中で硬化
させるものであって、Na201モルに対して5in2
 を3.7〜4.5モルの割合で含有する高モル比の水
ガラス水溶液と、セメント懸濁液とから成るものである
。 なお、水ガラス水溶液とセメント懸濁液とをほぼ同量と
し、水ガラス水溶液における固形分濃度(Na2O+S
iO2 )を8〜30重量%とすると共に、水ガラス固
形分(Na2O+ 5i02)の1重量部に対してセメ
ントを0.7〜10重量部を含んだセメント懸濁液と成
してもよい。 (イ)ここでNa2O1モルに対して5i02 を3.
7〜4.5モルの割合としたのは、5i02が3.7モ
ル以下ではゲルタイムを短縮する効果が少ないためであ
り、 SiO2を4.5モル以上では固形分が低くて長
期安定性に欠ける水ガラスになるからである。 最適な1lil囲は、Na2O1モルに対してSiO2
を3.8〜4.4モルの割合である。 (+1)またその水ガラス水溶液のa度(Na2O+S
iO2)は8〜30重量%が妥当であり、最適には10
〜25重量%である水ガラス水溶液を同容量の水と混合
した希釈水ガラスの粘性と温度の関係を示すw41図の
ように、低い粘性を保持できて浸透性が良好となるの1
ある。 (ハ)さらにセメント懸濁液におけるセメント量は、水
ガラス水溶液とセメント懸濁液とを同量使用する場合に
おいては、水ガラス固形分(Na2O+5iO2)の1
重量部に対して0.7〜10重量部が妥当であり、この
範囲より少ないとゲルタイムが長くなると共に、これ以
上では初期強度が低くなるからである。なお、好ましく
は1〜8重量部がよい。 (=)なお、セメント懸濁液のセメントは、普通ポルト
ランドセメントの他、早強ポルトランドセメント、コロ
イドセメント、混合セメント等一般にセメント注入工法
に使用されるセメントであればよく、ゲルタイム、強度
、浸透性等の特性に応じ地盤によって使い分ければよい
。 【作 用】 水ガラス水溶液とセメント懸濁液とを別々ポンプで圧送
し、7字管や二重管等を使用して両者を混合しつつ地盤
に注入させるのである。 モル比(5in2/ Na2O)が高くても水ガラス潤
度が低い水溶液のため粘性が低いことがら地盤への浸透
性が優れるのである。また該モル比が高いためセメント
懸濁液によって速いゲルタイムとなるのである。
[Means for Solving the Problems] Therefore, the present invention is to mix and inject into the ground and harden it in the ground, and 5in2 per 1 mol of Na.
It consists of a high molar ratio water glass aqueous solution containing 3.7 to 4.5 moles of water glass and a cement suspension. In addition, the water glass aqueous solution and the cement suspension are used in approximately the same amount, and the solid content concentration (Na2O+S
A cement suspension may be prepared in which 8 to 30% by weight of iO2) and 0.7 to 10 parts by weight of cement are contained per 1 part by weight of water glass solid content (Na2O+ 5i02). (a) Here, add 3.5i02 to 1 mole of Na2O.
The reason for setting the ratio to be 7 to 4.5 moles is because if 5i02 is less than 3.7 moles, there is little effect in shortening the gel time, and if SiO2 is more than 4.5 moles, the solid content is low and long-term stability is lacking. This is because it becomes water glass. The optimal 1 lil range is SiO2 for 1 mol of Na2O.
The ratio is 3.8 to 4.4 moles. (+1) Also, the a degree of the water glass aqueous solution (Na2O+S
iO2) is appropriately 8 to 30% by weight, optimally 10
As shown in Figure W41, which shows the relationship between viscosity and temperature of diluted water glass, which is obtained by mixing ~25% by weight water glass aqueous solution with the same volume of water, low viscosity can be maintained and permeability is good.
be. (c) Furthermore, when using the same amount of water glass aqueous solution and cement suspension, the amount of cement in the cement suspension is 1 of the water glass solid content (Na2O + 5iO2).
A ratio of 0.7 to 10 parts by weight is appropriate; if it is less than this range, the gel time will be long, and if it is more than this, the initial strength will be low. Note that the amount is preferably 1 to 8 parts by weight. (=) In addition to ordinary Portland cement, the cement used in the cement suspension may be any cement that is generally used in cement injection methods, such as ordinary Portland cement, early-strength Portland cement, colloidal cement, or mixed cement. They can be used depending on the ground according to their characteristics. [Operation] The water glass aqueous solution and the cement suspension are pumped separately, and the two are mixed and injected into the ground using a 7-shaped pipe or double pipe. Even if the molar ratio (5in2/Na2O) is high, it is an aqueous solution with low water glass moisture content, so it has low viscosity and excellent permeability into the ground. Also, due to the high molar ratio, the cement suspension provides a fast gel time.

【実施例】【Example】

以下、本発明の詳細を実施例で説明する。 水ガラス水溶液とセメント懸濁液とを夫々2゜Oml得
る標準配合の本例では、表1のように、Na2O1モル
ニ対してSiO2 を3.7.3.8.4.0.4.3
.4.5モルの夫々の割合で含有した水ガラス100m
、Qに水100mMを加えて溶がした水ガラス水溶液と
、普通ポルトランドセメント80g或いは120gを水
で溶がして200mMのセメント懸濁液を得た。 夏−」 そして、夫々固形分濃度16%の水ガラス水溶液として
使用した場合、3号水ガラスと比較して温度変化による
ゲルタイム測定結果を第2図に示す。 これによると、3号水ガラスに比べて本例の高モル比水
ガラスは約3分の1のゲルタイムであり低温でもゲルタ
イムの遅延は僅がであった。 第3図には普通ポルトランドセメントに変えて早強ポル
トランドセメントを使用した測定結果を示すが、本例の
高モル比水力ラスを使用することで、セメント以外の一
切の添加剤を加えなくても10秒以下のゲルタイムを得
ることができたゆ特に冬期施工時に効果的に使用できる
ものである。 また、第4図は普通ポルトランドセメントを使用して本
例の高モル比水ガラス、3号水ガラスの水希釈によるゲ
ルタイム比較を示したもので、第5図には早強ポルトラ
ンドセメントを使用した場合の同様実験のゲルタイムを
示している。 なお、希釈量は表1の標準配合で水ガラス水溶液+セメ
ント懸濁液の1容量部に対する水の容量部である。 これによると、本例の高モル比改良剤は地下水を多量に
含む地盤において使用した場合、地下水によって希釈さ
れるがゲルタイムの遅延は僅かであり、遅延の著しい3
号水ガラスのように地下汚染の原因となることもない。 さらに、本例の高モル比水ガラス水溶液とセメント懸濁
液を20℃でaS配合して硬化させたホモゲル(直径5
0II11、高さ100+++m)をビニール袋に密閉
して約20℃の水溶中で湿式養生し時間経過によりホモ
ゲルの一軸圧縮強度を実験測定した結果を第6図及び第
7図に示す、なお、第6図は普通ポルトランドセメント
を、第7図は早強ポルトランドセメントを使用した場合
である。 第6図及び第7図から、3号水ガラスに比較して本例の
高モル比水ガラスは極めて初期強度の発現性に優れてい
る。なお、地盤改良は、軟弱地盤や破砕帯の補強、湧水
や漏水の防止等の目的で行うが、地盤改良を行った箇所
を再掘削することも多い。このため必要以上の高い強度
では一般的な機械掘削ができなくなることがしばしば生
じる。 この点、本例の高モル比改良剤は、目的の強度に短時間
でに達すると共に、その強度を持続できるものである。 必要な範囲内で高い強度を得るには特殊配合とすればよ
く1本例の高モル比水ガラスを14011文用いると共
に、91通ポルトランドセメントを160g使用した場
合のホモゲルの一軸圧縮強度を第8図に示す、また、こ
の場合の温度変化によるゲルタイムを第9図に示す。 このように高圧の湧水帯や軟弱な断層破砕帯では高モル
比水ガラス及びセメント量を増量することにより調整で
きるのである。
The details of the present invention will be explained below with reference to Examples. In this example of the standard formulation to obtain 2°Oml of each of the water glass aqueous solution and the cement suspension, as shown in Table 1, SiO2 is 3.7.3.8.4.0.4.3 for 1 mol of Na2O.
.. 100 m of water glass containing 4.5 mol of each
A water glass aqueous solution prepared by adding and dissolving 100mM of water in Q, and 80g or 120g of ordinary Portland cement were dissolved in water to obtain a 200mM cement suspension. FIG. 2 shows the results of gel time measurements due to temperature changes compared to No. 3 water glass when each sample was used as an aqueous solution of water glass with a solid content concentration of 16%. According to this, compared to No. 3 water glass, the high molar ratio water glass of this example had about one-third the gel time, and the gel time was only slightly delayed even at low temperatures. Figure 3 shows the measurement results using early-strength Portland cement instead of ordinary Portland cement, but by using the high molar ratio hydraulic lath of this example, there is no need to add any additives other than cement. Since it was possible to obtain a gel time of 10 seconds or less, it can be effectively used especially during winter construction. In addition, Figure 4 shows a comparison of gel time by water dilution of the high molar ratio water glass of this example and No. 3 water glass using ordinary Portland cement, and Figure 5 shows the comparison of gel time by water dilution of the high molar ratio water glass of this example and No. 3 water glass using ordinary Portland cement. The gel time for a similar experiment is shown. Note that the dilution amount is the volume part of water per 1 volume part of the water glass aqueous solution + cement suspension in the standard formulation shown in Table 1. According to this, when the high molar ratio improver of this example is used in ground containing a large amount of groundwater, it is diluted by groundwater, but the delay in gel time is slight, and 3.
Unlike Gosui Glass, it does not cause underground contamination. Furthermore, a homogel (diameter 5
0II11, height 100+++ m) sealed in a plastic bag and wet-cured in water solution at about 20°C, and experimentally measured the unconfined compressive strength of the homogel over time. The results are shown in Figures 6 and 7. Figure 6 shows the case where ordinary Portland cement is used, and Figure 7 shows the case where early strength Portland cement is used. From FIG. 6 and FIG. 7, compared to No. 3 water glass, the high molar ratio water glass of this example is extremely excellent in developing initial strength. Ground improvement is performed for the purpose of reinforcing soft ground and fractured zones, and preventing water seepage and leakage, but in many cases the areas where ground improvement has been performed are re-excavated. For this reason, it often happens that general mechanical excavation cannot be performed if the strength is higher than necessary. In this regard, the high molar ratio improver of this example can reach the desired strength in a short time and maintain that strength. In order to obtain high strength within the required range, a special blend can be used.The unconfined compressive strength of the homogel when 14011 grams of the high molar ratio water glass of this example is used and 160 g of 91 Portland cement is used is 8. Furthermore, the gel time due to temperature changes in this case is shown in FIG. In this way, high pressure spring zones and soft fault fracture zones can be adjusted by increasing the amount of high molar ratio water glass and cement.

【発明の効果】【Effect of the invention】

本発明によると、セメン訃以外に添加剤を一切使用する
ことなくゲルタイムを短縮でき、温度変化によるゲルタ
イムの著しい変動を防止できると共に、地下水によって
希釈されてもゲルタイムの遅延が少なく、またホモゲル
の初期強度の発現性に優れ、掘削するに支障のない強度
を持続でき、さらに粘性が低くてt#盤への浸透性が良
好なことの効果が大きい。 請求項第2項のものでは、その効果が一層優れるのであ
る・
According to the present invention, the gel time can be shortened without using any additives other than cement, it is possible to prevent significant fluctuations in the gel time due to temperature changes, there is little delay in the gel time even when diluted with ground water, and the initial stage of homogel It has excellent strength development, maintains strength that does not interfere with excavation, and has low viscosity and good permeability into the T# board, which is a great effect. The effect of claim 2 is even better.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は実施例の粘度と温度の相関図 第2図はその温度とゲルタイムの相関図、第3図は別セ
メント使用における温度とゲルタイムの相関図、 第4図は希釈量とゲルタイムの相関図、第5図は別セメ
ント使用における希釈量とゲルタイムの相関図、 第6図は養生時間と一軸圧縮強度の相関図、第7図は別
セメント使用における養生時間と一軸圧縮強度の相関図
、 第8図は特殊配合における養生時間と一軸圧縮強度の相
関図、 第9図はその特殊配合における液温とゲルタイムの相関
図である。 第4図
Figure 1 is a correlation diagram between viscosity and temperature in the example. Figure 2 is a correlation diagram between temperature and gel time. Figure 3 is a correlation diagram between temperature and gel time when using a different cement. Figure 4 is a correlation diagram between dilution amount and gel time. Figure 5 is a correlation diagram between dilution amount and gel time when using a different cement, Figure 6 is a correlation diagram between curing time and unconfined compressive strength, and Figure 7 is a correlation diagram between curing time and unconfined compressive strength when using a different cement. Figure 8 is a correlation diagram between curing time and unconfined compressive strength in a special formulation, and Figure 9 is a correlation diagram between liquid temperature and gel time in that special formulation. Figure 4

Claims (2)

【特許請求の範囲】[Claims] (1)地盤中に混合注入して地盤中で硬化させるもので
あって、Na_2O1モルに対してSiO_2を3.7
〜4.5モルの割合で含有する高モル比の水ガラス水溶
液と、セメント懸濁液とから成る地盤改良剤。
(1) It is mixed and injected into the ground and hardened in the ground, with 3.7% of SiO_2 per 1 mole of Na_2O.
A ground improvement agent consisting of a high molar ratio water glass aqueous solution containing ~4.5 moles and a cement suspension.
(2)水ガラス水溶液とセメント懸濁液とをほぼ同量と
し、水ガラス水溶液の濃度(Na_2O+SiO_2)
を8〜30重量%とすると共に、水ガラス固形分(Na
_2O+SiO_2)の1重量部に対してセメントを0
.7〜10重量部を含んだセメント懸濁液と成した請求
項第1項記載の地盤改良剤。
(2) The water glass aqueous solution and the cement suspension are made into approximately the same amount, and the concentration of the water glass aqueous solution (Na_2O+SiO_2)
8 to 30% by weight, and water glass solid content (Na
_2O+SiO_2) 0 cement for 1 part by weight
.. The ground improvement agent according to claim 1, which is a cement suspension containing 7 to 10 parts by weight.
JP473890A 1990-01-13 1990-01-13 Ground conditioner Pending JPH03210385A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP473890A JPH03210385A (en) 1990-01-13 1990-01-13 Ground conditioner

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP473890A JPH03210385A (en) 1990-01-13 1990-01-13 Ground conditioner

Publications (1)

Publication Number Publication Date
JPH03210385A true JPH03210385A (en) 1991-09-13

Family

ID=11592255

Family Applications (1)

Application Number Title Priority Date Filing Date
JP473890A Pending JPH03210385A (en) 1990-01-13 1990-01-13 Ground conditioner

Country Status (1)

Country Link
JP (1) JPH03210385A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011208131A (en) * 2010-03-10 2011-10-20 Fuji Kagaku Kk Flash setting ground-grouting chemical solution

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011208131A (en) * 2010-03-10 2011-10-20 Fuji Kagaku Kk Flash setting ground-grouting chemical solution

Similar Documents

Publication Publication Date Title
US6405801B1 (en) Environmentally acceptable well cement fluid loss control additives, compositions and methods
JP5059354B2 (en) Ground injection material for soil stabilization
JPH03210385A (en) Ground conditioner
CA1242071A (en) Process and composition for cementing wells passing through salt formations
JPS5837080A (en) Material and method for grouting
JPS6216991B2 (en)
RU2133337C1 (en) Gel-formation compound for isolation of water inflows to well
JP3143583B2 (en) Civil engineering material and construction method using the same
JPH02102162A (en) Grouting material
JPS629154B2 (en)
JPS6223995B2 (en)
JPS629155B2 (en)
JPS63182394A (en) Grount for ground
SU1258986A1 (en) Cementing composition for boreholes
JP2004204102A (en) Packing material for cavity and packing construction method using the same
JPH0649837A (en) Grouting construction method
JPS6115114B2 (en)
JP2547120B2 (en) Ground injection method
JPS5949284A (en) Slag-lime liquid impregnation method
JPS5949281A (en) Grouting material and grouting process
SU1629484A1 (en) Stopping up composition
JPS5949283A (en) Water glass grouting material made from slag and lime
JPH1161123A (en) Material for civil engineering and its application
JPS6375085A (en) Quick-setting grout material
JPH05179245A (en) Chemical raw material for grouting into ground