JPH03209818A - Semiconductor device - Google Patents

Semiconductor device

Info

Publication number
JPH03209818A
JPH03209818A JP509090A JP509090A JPH03209818A JP H03209818 A JPH03209818 A JP H03209818A JP 509090 A JP509090 A JP 509090A JP 509090 A JP509090 A JP 509090A JP H03209818 A JPH03209818 A JP H03209818A
Authority
JP
Japan
Prior art keywords
layer
diffusion layer
defective
melting point
contact resistance
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP509090A
Other languages
Japanese (ja)
Inventor
Tadashi Nishigori
西郡 忠
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
NEC Corp
Original Assignee
NEC Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NEC Corp filed Critical NEC Corp
Priority to JP509090A priority Critical patent/JPH03209818A/en
Publication of JPH03209818A publication Critical patent/JPH03209818A/en
Pending legal-status Critical Current

Links

Landscapes

  • Electrodes Of Semiconductors (AREA)
  • Internal Circuitry In Semiconductor Integrated Circuit Devices (AREA)

Abstract

PURPOSE:To obtain a stabilized low contact resistor between a high melting point metal or its silicide layer and a diffused layer by a method wherein a defective layer is provided on the surface of the diffused layer on the boundary surface between a wiring, the lower layer part of which is composed of high melting point metal or its silicide layer, and the diffused layer. CONSTITUTION:A silicon defective layer 7 is provided on the surface of the diffusion layer 4 of a semiconductor device having a wiring 20, formed with high melting point metal or its silicide layer on the part which is brought into contact with the diffusion layer 4. To be more precise, the defective layer 7 is formed by implanting the ions such as Ar, Si, Ga and the like into a contact hole 6, and when a W-layer 8 is formed thereon, the contact resistance of the layer 8 and the defective layer 7 becomes lower than the contact resistance in effective barrier height of the W and silicon by the increase of level in the energy gap of the defective layer 7. As a result, a low contact resistance can be obtained between the W-layer 8 and the P<+> type diffusion layer 4 in a stable manner through the intermediary of the defective layer 7.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明は半導体装置に関し、特に配線と拡散層との接続
部の構造に関する。
DETAILED DESCRIPTION OF THE INVENTION [Industrial Field of Application] The present invention relates to a semiconductor device, and particularly to a structure of a connecting portion between a wiring and a diffusion layer.

〔従来の技術〕[Conventional technology]

下層部を高融点全極又はそのシリサイドで構成している
配線と拡散層とを電気的に接続する半導体装置の製造方
法を図面を用いて説明する。
DESCRIPTION OF THE PREFERRED EMBODIMENTS A method for manufacturing a semiconductor device in which a diffusion layer is electrically connected to a wiring whose lower layer is made of a high-melting-point all-pole or its silicide will be described with reference to the drawings.

まず第2図(a)に示すように、シリコン基板11上に
フィールド酸化膜3を形成したのち不純物を導入し拡散
層12を形成する。次で全面にBP8G等からなる層間
絶縁膜5を形成する。
First, as shown in FIG. 2(a), a field oxide film 3 is formed on a silicon substrate 11, and then impurities are introduced to form a diffusion layer 12. Next, an interlayer insulating film 5 made of BP8G or the like is formed over the entire surface.

次に第2図(b)に示すように、拡散層12上の層間絶
縁膜5にコンタクト孔6を設けたのちCVD法等によ!
llWll全層成する。
Next, as shown in FIG. 2(b), a contact hole 6 is formed in the interlayer insulating film 5 on the diffusion layer 12, and then a contact hole 6 is formed by a CVD method or the like.
llWll all layers.

次に第2図(C)に示すように、W層8上にAI!層9
を形成したのちバターニンクし、W層8とAJ層9とか
らなる配線10を形成する。
Next, as shown in FIG. 2(C), AI! layer 9
After forming, buttering is performed to form a wiring 10 consisting of a W layer 8 and an AJ layer 9.

〔発明が解決しようとする課題〕[Problem to be solved by the invention]

上述した従来半導体装置の製造方法によって形成された
配線では、高融点金属又はそのシリサイド層と拡散層1
2との接触部における金属とシリコンとのフェルミレベ
ルの差であるバリアハイドqφ3の値によってコンタク
ト抵抗RcO値が高くなシ、素子のスピードが落ると共
に、半導体装置の歩留シ及び信頼性が低下するという欠
点がある。
In the wiring formed by the conventional semiconductor device manufacturing method described above, a high melting point metal or its silicide layer and a diffusion layer 1 are used.
The contact resistance RcO value becomes high due to the value of the barrier hide qφ3, which is the Fermi level difference between the metal and silicon at the contact part with the metal, and the element speed decreases, and the yield and reliability of the semiconductor device decreases. The disadvantage is that it decreases.

ここでコンタクト抵抗BJcは、Rc二expただしε
Sは半導体の誘電定数、 fi*は有効質量、φ8はシ
ョットキーバリア、NI)は拡散層の不純物濃度である
Here, the contact resistance BJc is Rc2exp, but ε
S is the dielectric constant of the semiconductor, fi* is the effective mass, φ8 is the Schottky barrier, and NI) is the impurity concentration of the diffusion layer.

例えばCMO8集積回路において高融点金属又はそのシ
リサイドに関して、N型拡散層とのコンタクト抵抗が低
い場合にはP型拡散層とのコンタクト抵抗が高くなり、
N型拡散層とのコンタクト抵抗が高い場合にはP型拡散
層とのコンタクト抵抗が低くなるという現象が起こる。
For example, in a CMO8 integrated circuit, when a refractory metal or its silicide has a low contact resistance with an N-type diffusion layer, a high contact resistance with a P-type diffusion layer.
When the contact resistance with the N-type diffusion layer is high, a phenomenon occurs in which the contact resistance with the P-type diffusion layer becomes low.

この現象の原因として以下のことが考えられる。Possible causes of this phenomenon are as follows.

高融点金属又はそのシリサイドとN型シリコンとの間の
バリアハイドq$BNと、高融点金机又はそのシリサイ
ドとP型シリコンとの間のバリアハイドq#BPの和が
、シリコンのエネルキーギャップEgになることから、
qφBNが低い時にはqφ8゜は高<、qφBNが高い
時にはqφB、Pが低くなシ、これがコンタクト抵抗の
値に影響するというものである。特にP型拡散層とのコ
ンタクト抵抗が非常に高くなる場合がある。
The sum of the barrier hide q$BN between the high melting point metal or its silicide and N-type silicon and the barrier hide q#BP between the high melting point metal or its silicide and P-type silicon is the energy gap Eg of silicon. Because it becomes
When qφBN is low, qφ8° is high, and when qφBN is high, qφB and P are low, which affects the value of the contact resistance. In particular, the contact resistance with the P-type diffusion layer may become extremely high.

〔課題を解決するための手段〕[Means to solve the problem]

本発明の半導体装置は、半導体基板に形成された不純物
の拡散層とこの拡散層上に設けられ少くとも拡散層と接
触する部分が高融点金属またはそのシリサイド層で構成
された配線とを有する半導体装置において、前記拡散層
表面にシリコンの欠陥層を設けたものである。
A semiconductor device of the present invention includes an impurity diffusion layer formed on a semiconductor substrate and a wiring provided on the diffusion layer and having at least a portion in contact with the diffusion layer made of a high melting point metal or its silicide layer. In the device, a silicon defect layer is provided on the surface of the diffusion layer.

〔実施例〕〔Example〕

次に本発明の実施例について図面を参照して説明する。 Next, embodiments of the present invention will be described with reference to the drawings.

第1図(a)〜(f)は本発明の一実施例を説明するだ
めの工程順に配置した半導体チップの断面図である。
FIGS. 1(a) to 1(f) are cross-sectional views of semiconductor chips arranged in a sequential process order to explain an embodiment of the present invention.

まず第1図ta+に示すように、P型シリコン基板1上
にNウェル層2を形成したのちP+型拡散層4とフィー
ルド酸化膜3を形成する。次でBPSG膜からなる層間
絶縁膜5を形成する。
First, as shown in FIG. 1 (ta+), an N well layer 2 is formed on a P type silicon substrate 1, and then a P+ type diffusion layer 4 and a field oxide film 3 are formed. Next, an interlayer insulating film 5 made of a BPSG film is formed.

次に第1図(b)に示すように、P 型拡散層4の上の
層間絶縁膜5にコンタクト孔6を開ける。
Next, as shown in FIG. 1(b), a contact hole 6 is opened in the interlayer insulating film 5 on the P type diffusion layer 4.

次に第1図tc)に示すように、コンタクト孔6の中に
Ar 、 Si 、Ga 、 In 、 BF2等のイ
オンをlXl014〜1x10  m  程度のドーズ
量で注入することによってシリコンに結晶欠陥を発生さ
せ、コンタクト孔6の下にある拡散層の表面に厚さ10
00〜2000A程度の欠陥層7を形成する。
Next, as shown in Fig. 1 (tc), crystal defects are generated in the silicon by implanting ions of Ar, Si, Ga, In, BF2, etc. into the contact hole 6 at a dose of about 1x1014 to 1x10 m. to a thickness of 10 mm on the surface of the diffusion layer below the contact hole 6.
A defect layer 7 of about 00 to 2000A is formed.

次に第1図(d)に示すように、全面にW層8を形成し
た後、第1図(e)に示すように、AI!層9を形成す
る。
Next, as shown in FIG. 1(d), after forming a W layer 8 on the entire surface, as shown in FIG. 1(e), AI! Form layer 9.

次に第1図(f)に示すように、W層8とAI!%9の
バターニングを行ない配線20を形成する。
Next, as shown in FIG. 1(f), the W layer 8 and AI! %9 patterning is performed to form wiring 20.

このように構成された本実施例によれば、W層8は欠陥
層7と境界を接しており、W層8と欠陥層7とのコンタ
クト抵抗は、拡散層とのコンタクト抵抗に比較して低く
なる。その理由として以下のことが考えられる。すなわ
ち欠陥層においてはエネルキーギャップ中の準位が増大
してWとシリコンとの実効的なバリアハイ) qφ8が
、無欠陥層と接する場合と比較して減るためにコンタク
ト5− 抵抗R6が低くなるというものである。
According to this embodiment configured in this way, the W layer 8 borders the defect layer 7, and the contact resistance between the W layer 8 and the defect layer 7 is lower than the contact resistance with the diffusion layer. It gets lower. Possible reasons for this are as follows. In other words, in the defect layer, the energy level in the energy gap increases and the effective barrier height between W and silicon (qφ8) decreases compared to when contacting with a defect-free layer, so the contact resistance R6 decreases. It is something.

以上のようにしてW%gは、欠陥層7を介してP+型拡
散層4との間で安定して低いコンタクト抵抗が得られる
As described above, W%g can stably obtain low contact resistance with the P+ type diffusion layer 4 via the defect layer 7.

尚、上記実施例においては配線を構成する高融点金属と
してWを用いた場合について説明したが、これに限定さ
れるものではなく、MO−?Ti及びこれらのシリサイ
ドを用いてもよい。また配線としては高融点金属または
そのシリサイドの単層でちってもよい。
Incidentally, in the above embodiment, the case where W is used as the high melting point metal constituting the wiring is explained, but the invention is not limited to this, and MO-? Ti and silicides thereof may also be used. Further, the wiring may be made of a single layer of high melting point metal or its silicide.

〔発明の効果〕〔Effect of the invention〕

以上説明したように本発明は、下層部を高融点金属又は
そのシリサイド層で構成している配線と拡散層との境界
面の拡散層表面に欠陥層を設けることによシ、高融点金
属層又はそのシリサイド層と拡散層との間に安定して低
いコンタクト抵抗が得られる。従って素子の安定した特
性が得られるとともにスピード向上が図れるため、半導
体装置の歩留9及び信頼性が向上するという効果がある
As explained above, the present invention provides a method for forming a high melting point metal layer by providing a defect layer on the surface of the diffusion layer at the interface between the wiring and the diffusion layer, the lower layer of which is made of a high melting point metal or its silicide layer. Alternatively, a stable and low contact resistance can be obtained between the silicide layer and the diffusion layer. Therefore, stable characteristics of the element can be obtained and the speed can be improved, which has the effect of improving the yield rate and reliability of the semiconductor device.

6一61

【図面の簡単な説明】[Brief explanation of drawings]

第1図(a)〜(f)は本発明の一実施例を説明するた
めの製造工程順に配置した半導体チップの断面図、第2
図(a)〜(C)は従来例を説明するための製造工程順
に配置した半導体チップの断面図である。 1・・・P型シリコン基板、2・・・Nウェル層、3・
・・フィールド酸化膜、4・・・P十型拡散層、5・・
・層間絶縁膜、6・・・コンタクト孔、7・・・欠陥層
、8・・・W層、9・・・Aj?層、10・・・配線、
11・・・シリコン基板、12・・・拡散層。
1(a) to 1(f) are cross-sectional views of semiconductor chips arranged in the order of manufacturing steps for explaining one embodiment of the present invention;
Figures (a) to (C) are cross-sectional views of semiconductor chips arranged in the order of manufacturing steps to explain a conventional example. 1... P type silicon substrate, 2... N well layer, 3...
...Field oxide film, 4...P-type diffusion layer, 5...
- Interlayer insulating film, 6... Contact hole, 7... Defect layer, 8... W layer, 9... Aj? Layer 10...wiring,
11... Silicon substrate, 12... Diffusion layer.

Claims (1)

【特許請求の範囲】[Claims] 半導体基板に形成された不純物の拡散層とこの拡散層上
に設けられ少くとも拡散層と接触する部分が高融点金属
またはそのシリサイド層で構成された配線とを有する半
導体装置において、前記拡散層表面にシリコンの欠陥層
を設けたことを特徴とする半導体装置。
In a semiconductor device having an impurity diffusion layer formed on a semiconductor substrate and a wiring provided on the diffusion layer and having at least a portion in contact with the diffusion layer made of a high melting point metal or a silicide layer thereof, the diffusion layer surface A semiconductor device characterized in that a silicon defect layer is provided in the semiconductor device.
JP509090A 1990-01-12 1990-01-12 Semiconductor device Pending JPH03209818A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP509090A JPH03209818A (en) 1990-01-12 1990-01-12 Semiconductor device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP509090A JPH03209818A (en) 1990-01-12 1990-01-12 Semiconductor device

Publications (1)

Publication Number Publication Date
JPH03209818A true JPH03209818A (en) 1991-09-12

Family

ID=11601696

Family Applications (1)

Application Number Title Priority Date Filing Date
JP509090A Pending JPH03209818A (en) 1990-01-12 1990-01-12 Semiconductor device

Country Status (1)

Country Link
JP (1) JPH03209818A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6667523B2 (en) * 1999-06-23 2003-12-23 Intersil Americas Inc. Highly linear integrated resistive contact

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5669844A (en) * 1979-11-10 1981-06-11 Toshiba Corp Manufacture of semiconductor device
JPS6233466A (en) * 1985-08-07 1987-02-13 Hitachi Ltd Manufacture of semiconductor device
JPS6313326A (en) * 1986-07-04 1988-01-20 Sony Corp Manufacture of semiconductor device

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5669844A (en) * 1979-11-10 1981-06-11 Toshiba Corp Manufacture of semiconductor device
JPS6233466A (en) * 1985-08-07 1987-02-13 Hitachi Ltd Manufacture of semiconductor device
JPS6313326A (en) * 1986-07-04 1988-01-20 Sony Corp Manufacture of semiconductor device

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6667523B2 (en) * 1999-06-23 2003-12-23 Intersil Americas Inc. Highly linear integrated resistive contact

Similar Documents

Publication Publication Date Title
US4912543A (en) Integrated semiconductor circuit having an external contacting track level consisting of aluminum or of an aluminum alloy
EP0174773A2 (en) Semiconductor device having interconnection layers
JPH088224B2 (en) Method of forming contact and internal connection line of integrated circuit
JPH02275624A (en) Ohmic electrode and its forming method
US4161744A (en) Passivated semiconductor device and method of making same
JPH06244185A (en) Wiring structure and its manufacture
JPS6364057B2 (en)
JPH03209818A (en) Semiconductor device
JPH10229086A (en) Semiconductor device and fabrication thereof
JPH1092764A (en) Method for forming polycide layer for semiconductor element
JPS60176281A (en) Schottky barrier diode
US6677207B1 (en) Vanishingly small integrated circuit diode
JPH02130961A (en) Field-effect transistor
JP2563760B2 (en) Method for manufacturing semiconductor device
JPH06120479A (en) Semiconductor device and manufacture thereof
KR950003221B1 (en) Fabricating method of semiconductor device
JPS6455853A (en) Semiconductor device and manufacture thereof
JP3823826B2 (en) Manufacturing method of semiconductor device
JP2511023B2 (en) Bidirectional thyristor
JPH03166728A (en) Semiconductor device
JPH03276763A (en) Semiconductor device
JPH06104428A (en) Semiconductor device and its manufacture
JPS6386514A (en) Manufacture of semiconductor device
JPH03157925A (en) Manufacture of semiconductor device
JP2003197925A (en) Method for manufacturing semiconductor element