JPH0320932A - Plasma display panel - Google Patents

Plasma display panel

Info

Publication number
JPH0320932A
JPH0320932A JP1153969A JP15396989A JPH0320932A JP H0320932 A JPH0320932 A JP H0320932A JP 1153969 A JP1153969 A JP 1153969A JP 15396989 A JP15396989 A JP 15396989A JP H0320932 A JPH0320932 A JP H0320932A
Authority
JP
Japan
Prior art keywords
holes
insulating substrate
discharge gas
gas space
walls
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP1153969A
Other languages
Japanese (ja)
Inventor
Yoshio Sano
佐野 與志雄
Keiji Nunomura
布村 恵史
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
NEC Corp
Original Assignee
NEC Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NEC Corp filed Critical NEC Corp
Priority to JP1153969A priority Critical patent/JPH0320932A/en
Publication of JPH0320932A publication Critical patent/JPH0320932A/en
Pending legal-status Critical Current

Links

Abstract

PURPOSE:To obtain a high yield at a low cost by arranging holes at positions corresponding to individual picture elements on the face of the discharge gas spaces side of the second insulating substrate, coating phosphors on the inner faces of these holes, and bringing walls between holes into contact with the first insulating substrate. CONSTITUTION:Holes are arranged at positions corresponding to individual picture elements on the face of the discharge gas spaces 8 side of the second insulating substrate 2, phosphors 10 are coated on the inner faces of these holes, and walls 9 between holes are kept in contact with the first insulating substrate 1. Blind holes are bored on a front glass by etching or the like, these holes are used for discharge gas spaces 8, and the walls 9 between holes are used for cell barriers. Cell barriers are not required to be manufactured by duplex printing, and the panel production process is simplified.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明は、近年進展著しいパーソナルコンビエ一夕やオ
フィスフークステーシ璽ン、ないしは将来の発展が期待
されている壁かけテレビ等に用いられるドットマトリク
スタイプのカラープラズマディスプレイの構造に関する
[Detailed Description of the Invention] [Industrial Field of Application] The present invention is directed to the use of dots used in personal convenience stores, office desks, and wall-mounted televisions that are expected to develop in the future. This invention relates to the structure of a matrix type color plasma display.

〔従来の技術〕[Conventional technology]

従来のカラープラズマディスプレイパネルの例としては
第6図に示す構造のものがある(エス・アイ●ディー●
88●ダイジェスト●オブ●テクニカルペーパーズ 1
42頁(SID 88 Digectof Techn
ical Papers ,P . 142) )。第
6図にかいて21は背面ガラス板、22は前面ガラス板
、23は補助陽極、24は表示陽極、25は下地電極、
26は下地電極25の上に積層された陰極、27は表示
セル、28は各表示セル間を区切るセル障壁、29は前
面ガラス板22に或膜された蛍光体である。
An example of a conventional color plasma display panel is one with the structure shown in Figure 6 (SID).
88●Digest●of●Technical Papers 1
42 pages (SID 88 Digest of Techn.
ical Papers, P. 142) ). In FIG. 6, 21 is a rear glass plate, 22 is a front glass plate, 23 is an auxiliary anode, 24 is a display anode, 25 is a base electrode,
26 is a cathode laminated on the base electrode 25, 27 is a display cell, 28 is a cell barrier separating each display cell, and 29 is a phosphor film coated on the front glass plate 22.

選択された陰極26には走査パルス電圧が印加される。A scanning pulse voltage is applied to the selected cathode 26.

補助陽極23には直流電圧が印加されてかり、選択され
た陰極26との間で補助放電を生じる。一方表示陽極2
4には表示セル27の発光に対応してパルス電圧が印加
される。発光すべき表示セル27では補助放電に誘起さ
れて放電が生じ、放電による紫外光によって蛍光体29
が刺激され、可視発光を生じる。
A DC voltage is applied to the auxiliary anode 23, and an auxiliary discharge is generated between it and the selected cathode 26. One side display anode 2
A pulse voltage is applied to 4 in response to the light emission of the display cell 27. In the display cell 27 that should emit light, a discharge occurs due to the auxiliary discharge, and the ultraviolet light from the discharge causes the phosphor 29 to emit light.
is stimulated, producing visible luminescence.

〔発明が解決しようとする課題〕[Problem to be solved by the invention]

上述した従来の技術では、表示セルを固定し、また背面
ガラスと前面ガラスを適当な距離に保ち表示セルの放電
空間を得るた躬にセル障壁を用いている。このセル障壁
はいわゆるスクリーン印刷法を用いて作製されるが、セ
ル障壁の横幅をある値に選択すると、1回の印刷で得ら
れるセル障壁の高さには限度があるため、高精細パネル
に必要とされる、幅が狭く、高さが高いセル障壁を作製
しようとする場合は、重ね塗bを行なってセル障壁を形
成する必要がある。しかし重ね塗bを行うと製造コスト
が高くなる.重ね塗シを行うときa1合せが必要で、し
かも色合せ誤差によシ寸法精度が悪化して、パネル製造
プロセスにかける歩留bが低下してしまう、重ね塗シを
行う間に、下地の陰極表面をいためる可能性がある、と
いった欠点があった。
In the above-mentioned conventional technology, a cell barrier is used to fix the display cell and maintain a suitable distance between the back glass and the front glass to obtain a discharge space for the display cell. This cell barrier is produced using the so-called screen printing method, but if the width of the cell barrier is selected to a certain value, there is a limit to the height of the cell barrier that can be obtained with one printing, so it is difficult to produce high-definition panels. If a cell barrier with a required narrow width and high height is to be produced, it is necessary to perform multiple coatings b to form the cell barrier. However, if multiple coats are applied, the manufacturing cost will increase. When performing overcoating, it is necessary to match A1, and the dimensional accuracy deteriorates due to color matching errors, reducing the yield rate B for the panel manufacturing process. There was a drawback that the cathode surface could be damaged.

〔課題を解決するための手段〕[Means to solve the problem]

本発明によれば放電ガス空間と、放電ガス空間をはさむ
ように平行におかれた2枚の絶縁基板を有し、第1絶縁
基板の放電ガス空間側の面上には、縞状の列電極、及び
この列電極と電気的に絶縁され、この列電極と直交する
方向に配置された縞状の行電極を有し、第2絶縁基板の
放電ガス空間側の面上には各画素に対応する位置に穴を
配置し、この穴の内面に蛍光体を塗布し、穴と穴の間の
壁が第1絶縁基板と接していることを特徴とするプラズ
マディスプレイパネルが得られる。
According to the present invention, there is provided a discharge gas space and two insulating substrates placed in parallel so as to sandwich the discharge gas space, and on the surface of the first insulating substrate facing the discharge gas space, striped rows are formed. electrodes, and striped row electrodes that are electrically insulated from the column electrodes and arranged in a direction perpendicular to the column electrodes. A plasma display panel is obtained in which the holes are arranged at corresponding positions, the inner surfaces of the holes are coated with phosphor, and the walls between the holes are in contact with the first insulating substrate.

〔作用〕[Effect]

本発明は上述の構成を用いることにより従来技術の問題
点を解決した。すなわち、従来は、背面ガラス上にセル
障壁を形戒していたが、本発明ではセル障壁として前面
ガラスの一部を用いることとした。すなわち、前面ガラ
スにエッチング等によシめくら穴を堀b,この穴を放電
ガス空間とし、穴と穴の間の壁をセル障壁として用いる
。従って、従来のようにセル障壁を多重印刷で作製する
必要がなくなシ、パネル製造プロセスが簡単で、コスト
も低くかさえることができ、また製造歩留bが高まった
The present invention solves the problems of the prior art by using the above-described configuration. That is, conventionally, a cell barrier was formed on the back glass, but in the present invention, a part of the front glass is used as the cell barrier. That is, a blind hole b is formed by etching or the like in the front glass, this hole is used as a discharge gas space, and the wall between the holes is used as a cell barrier. Therefore, there is no need to fabricate cell barriers by multiple printing as in the past, the panel manufacturing process is simple, costs can be kept low, and the manufacturing yield b is increased.

〔実施例〕〔Example〕

次に、本発明について図面を参照して説明する。 Next, the present invention will be explained with reference to the drawings.

第1図は本発明の一実施例であう第1図人は平面図、第
l図Bは第1図Aのa−a’にかける断面図である。1
は2−厚さのガラスよシなる第1絶縁基板、2ぱやはう
2箇厚さのソーダガラスよシなる第2絶縁基板、3は銀
の厚膜印刷によシ第1絶縁基板面に作製した厚さ約10
ミクロン、幅100ミクロンの列電極、4及びl4は列
電極3と同じく銀の厚膜印刷によシ作製した厚さ約10
ミクロン、幅100ミクロンの行電極、5は低融点ガラ
スの焼或によシ得られる厚さ約20くクロンで、列電極
3と行電極3と行電極4を電気的に絶縁する第1絶縁層
、6は行電極4の上部を放電ガス空間9よb絶縁する、
厚さ約20μmの低融点ガラスを焼或して得られる第2
絶縁層60表面を放電ガスから保護する、真空蒸着法に
よう得られる厚さs o o ofのMgO膜、8は第
2絶縁基板2にあけた、300ミクロン角で深さ200
ミクロンの角型のめくら穴ようなる放電ガス空間、9は
放電ガス空間8である第2絶縁基板2にあけた穴と穴と
の間の、厚さ100ミクロン、高さ200ミクロンの壁
、10は蛍光体である。
FIG. 1 is a plan view of one embodiment of the present invention, and FIG. 1B is a sectional view taken along line a-a' in FIG. 1A. 1
is a first insulating substrate made of glass with a thickness of 2-2, a second insulating substrate made of soda glass with a thickness of 2-ply, and 3 is printed with a thick film of silver on the surface of the first insulating substrate. The fabricated thickness is approximately 10
Column electrodes 4 and 14 with a width of 100 microns and a width of about 10
The row electrode 5 has a width of 100 microns and has a thickness of about 20 microns obtained by annealing a low-melting glass. layer 6 insulates the upper part of the row electrode 4 from the discharge gas space 9,
A second glass plate obtained by firing a low melting point glass with a thickness of about 20 μm.
A MgO film 8 having a thickness of s o o of obtained by vacuum evaporation and protecting the surface of the insulating layer 60 from discharge gas, 8 is a 300 micron square hole with a depth of 200 mm.
A discharge gas space in the form of a square blind hole of microns, reference numeral 9 indicates a wall of 100 microns in thickness and 200 microns in height between the holes drilled in the second insulating substrate 2, which is the discharge gas space 8; is a phosphor.

第2絶縁基板2に穴をあけるには、周知のフォトリング
ラフィ法によシ、まず平らなガラス基板上に壁と同一パ
ターンのレジスト部を残し、ついで沸酸を用いてガラス
基板をエクチングする方法を用いた。本方法を用いるこ
とによb1第1絶縁基板1の上にあるMgO膜7を傷つ
けることなく、容易に放電セルを区切b1第1絶縁基板
lと、第2絶縁基板2の間の放電ガス空間8を保持する
壁9を得ることができた。この場合、フォトリソグ27
イ法によって穴位置を確定しているので、壁の位置の誤
差は、厚膜印刷法にくらべて1/5以下にでき、従って
大面積パネルを作製する場合特に有利である。
To make a hole in the second insulating substrate 2, a well-known photolithography method is used to first leave a resist part in the same pattern as the wall on a flat glass substrate, and then to etch the glass substrate using hydrochloric acid. method was used. By using this method, the discharge cells can be easily partitioned without damaging the MgO film 7 on the first insulating substrate b1, and the discharge gas space between the first insulating substrate b1 and the second insulating substrate 2. It was possible to obtain a wall 9 that holds 8. In this case, photolithography 27
Since the hole positions are determined by the A method, the error in wall position can be reduced to 1/5 or less compared to the thick film printing method, and is therefore particularly advantageous when producing large-area panels.

なシここでは通常のソーダガラスを7fトリソグラフィ
法によシエッチングする方法を述べたが、ソーダガラス
のかわbに感光性ガラスを用いて、感光性ガラスのエク
チングによう、第2絶縁基板2の穴加工を行うこともで
きる。
Here, we have described a method of etching ordinary soda glass using the 7F lithography method. It is also possible to perform hole machining.

筐た、第2絶縁基板2に穴をあけるためにサンドイラス
ト法を用いても、良好な結果が得られた。
Even when the sand illustration method was used to make holes in the second insulating substrate 2, good results were obtained.

この場合は、筐ず、沸酸によるエグチング法と同様に、
周知のフォトリングラフイ法によう、平らなガラス基板
上に壁と同一の7ォトレジストパターンを形或する。次
にサンドブラスト法によシ、ガラス基板にコラ/ダム、
カーボランダム、等の研磨材やSi(hの粉を吹き付け
、穴となる部分を削シとシ、穴を形威した。この場合も
、フォトリングラフィ法によって穴位置を確定している
ので、大面積にわたシ精度よく、ガラス基板を加工して
、第2絶縁基板2を得ることができた。
In this case, similar to the etching method using fluoric acid,
A photoresist pattern identical to that of the wall is formed on a flat glass substrate using the well-known photolithography method. Next, apply sandblasting to the glass substrate.
The hole was shaped by spraying an abrasive such as carborundum or Si (h) powder and cutting the hole.In this case, the hole position was determined by the photolithography method, The second insulating substrate 2 could be obtained by processing the glass substrate over a large area with high precision.

次に本発明の第2の実施例を第2図に示す。第1図の場
合と同様、第2図Aは平面図、第2図Bは断面図である
。第2図では、第1図と異なシ行電極4ぱ各画素に1本
とし、いわゆる維持放電は行電極4と列電極3の間で行
うようにしている。
Next, a second embodiment of the present invention is shown in FIG. As in the case of FIG. 1, FIG. 2A is a plan view, and FIG. 2B is a sectional view. In FIG. 2, one row electrode 4 is provided for each pixel, which is different from FIG. 1, and so-called sustaining discharge is performed between the row electrode 4 and column electrode 3.

この他は第1図の実施例と同じである。この実施例は、
行電極の数が第1の実施例の半分ですむため、高精細化
にかいて有利である。
The rest is the same as the embodiment shown in FIG. This example is
Since the number of row electrodes is half that of the first embodiment, it is advantageous in achieving high definition.

本発明の第3の実施例を第3図(第3図Aは平面図、第
3図Bは断面図)に示す。第3図では、第1図と異なシ
行電極が両側の画素(放電ガス空間)にまたがって形或
されて>,6、1行の行電極が2行の画素に対して共通
の電極となっている。
A third embodiment of the present invention is shown in FIG. 3 (FIG. 3A is a plan view and FIG. 3B is a sectional view). In Fig. 3, different row electrodes from Fig. 1 are formed across pixels (discharge gas space) on both sides, and the row electrode of one row is a common electrode for the pixels of two rows. It has become.

この他は先の実施例と同じである。この場合も、行電極
の数は、第1の実施例の半分ですむため、高精細化に有
利である。1た本実施例の構造では、粋に壁90幅が設
計値ようも大きくなると、行電極4が放電に寄与する面
積が、壁9がMgO膜7に接する部分で遮蔽され、放電
特性が変動する。特に壁9の幅が極端に設計値よう大き
くなると行電極4の全面が壁9をMgO!7に接する部
分でシシわれてし筐い、放電しなくなる恐れもある。壁
9をスクリーン印刷法で作製する場合は、このような恐
れが十分にあるが、本実施例によれば、壁9の位置及び
壁9のMgO膜7に接する部分の幅を設計値通bに作製
できるので、行電極4が放電に寄与する面積が一定とな
う,パネル全体にわたって、各画素の放電が一定にそろ
ったパネルが得られる。従って、各画素の発光輝度も一
定となるので、非常に表示品位の高いディスプレイパネ
ルを得ることができる。
The rest is the same as the previous embodiment. In this case as well, the number of row electrodes is half that of the first embodiment, which is advantageous for achieving high definition. 1. In the structure of this embodiment, when the width of the wall 90 becomes larger than the designed value, the area where the row electrode 4 contributes to discharge is blocked by the portion where the wall 9 contacts the MgO film 7, and the discharge characteristics vary. do. In particular, when the width of the wall 9 becomes extremely large to the designed value, the entire surface of the row electrode 4 covers the wall 9 with MgO! There is also a risk that the part where it touches 7 will be squeezed and the casing will stop discharging. When the wall 9 is manufactured by the screen printing method, there is a sufficient risk of this, but according to this embodiment, the position of the wall 9 and the width of the portion of the wall 9 in contact with the MgO film 7 are adjusted to the design values. Therefore, a panel can be obtained in which the area where the row electrodes 4 contribute to the discharge is constant and the discharge of each pixel is uniform over the entire panel. Therefore, since the luminance of each pixel is also constant, a display panel with extremely high display quality can be obtained.

第4の実施例の断面図を第4図に示す。なお平面図は第
3図Aと同じであるので略している。
A sectional view of the fourth embodiment is shown in FIG. The plan view is omitted because it is the same as FIG. 3A.

第4図にかいては、第2絶縁基板2にアルカリ成分を含
!ない硬質ガラスを用い、この硬質ガラス上に低融点ガ
ラスを壁9の高さに平らに焼或し、しかるのち、第1の
実施例で述べたフォトリソグラフィー法によシ低融点ガ
ラス部分をエッチングして、低融点ガラスようなる壁9
を形成した。この場合、硬質ガラスの沸酸によるエッチ
ング速度は、低融点ガラスの沸酸によるエッチング速度
にくらべて十分遅いため、エッチングは実質上低融点ガ
ラス部分のみで停止する。従って壁9の高さを容易に調
整することができ、製造上非常に有利である。このよう
なエクテング方法は第1及び第2の実施例においても用
いることができる。
In FIG. 4, the second insulating substrate 2 contains an alkaline component! A low-melting point glass is baked flat on the hard glass to the height of the wall 9, and then the low-melting point glass portion is etched using the photolithography method described in the first embodiment. The wall becomes like low melting point glass 9
was formed. In this case, since the etching rate of hard glass with boiling acid is sufficiently slower than the etching rate of low melting point glass with boiling acid, etching substantially stops only at the low melting point glass portion. Therefore, the height of the wall 9 can be easily adjusted, which is very advantageous in manufacturing. Such an extending method can also be used in the first and second embodiments.

なか、第1〜第4の実施例では、蛍光体10は穴底部、
すなわち放電ガス空間底部に形戒され、千面iCになっ
ていたが、必ずしもこれにこだわる必要はなく、第5図
に示すように壁の側面にも蛍光体が付着していてもよい
。このようにすると、放電ガス空間8で発生した紫外光
を効率よく可視光に変換できて、発光の輝度・効率が上
昇するのでディスプレイの表示品位が向上し、消費電力
が低減される効果がある。
In the first to fourth embodiments, the phosphor 10 is located at the bottom of the hole,
In other words, the shape is placed at the bottom of the discharge gas space, and it has a thousand-sided iC, but it is not necessary to stick to this, and the phosphor may also be attached to the side surface of the wall, as shown in FIG. In this way, the ultraviolet light generated in the discharge gas space 8 can be efficiently converted into visible light, increasing the luminance and efficiency of light emission, improving the display quality of the display, and reducing power consumption. .

なか、第1〜第4の実施例とも穴の形は角形としたが、
必ずしも角形とする必要はなく、かどのとれた角形等任
意の形状でもよい。
In the first to fourth embodiments, the holes were square in shape,
It does not necessarily have to be a rectangular shape, but may be any shape such as a squared shape.

咬た第1や第2の実施例で述べた数値は例として示した
ものであシ、本発明の適用範囲を制限するものではない
The numerical values described in the first and second embodiments are shown as examples, and do not limit the scope of application of the present invention.

1た電極構成については、第1絶縁基板1の側に行電極
と列電極が形成されるのであれば、いかなる形式の電極
構或でもよい。また電極、及び絶縁層とも厚膜印刷で製
造される必要はなく、薄膜プロセス等によシ作製しても
よいことはもちろんである。
Regarding the second electrode structure, any type of electrode structure may be used as long as row electrodes and column electrodes are formed on the first insulating substrate 1 side. Further, it is needless to say that the electrodes and the insulating layer do not need to be manufactured by thick film printing, and may be manufactured by a thin film process or the like.

〔発明の効果〕〔Effect of the invention〕

以上説明したように、本発明は従来の厚膜印刷にかわっ
て、ガラスのエッチングによb1放電セルを区切シ放電
ガス空間を保持する壁を形或するようにしたため、低価
格で高歩留シのカラープラズマディスプレイパネルを製
造Tきる。また、厚膜印刷にたいして、寸法精度がずっ
とよい。
As explained above, the present invention uses glass etching instead of conventional thick film printing to form walls that partition the B1 discharge cells and hold the discharge gas space, resulting in low cost and high yield. Manufactures color plasma display panels. Also, dimensional accuracy is much better for thick film printing.

7オトリソグラフィ法によシ壁を形成するため、大面積
パネルを、寸歩の狂いZく、容昌に製造することができ
る。
7. Since the walls are formed by the otolithography method, large-area panels can be manufactured with irregularities and dimensions.

【図面の簡単な説明】[Brief explanation of drawings]

第1図A,Bは本発明のプラズマディスプレイの第1の
実施例の平面図及び断面図、第2図A,Bは本発明のプ
ラズマディスプレイの第2の実施例の平面図及び断面図
、第3図A,Bは本発明のの第4の実施例の断面図、第
5図は本発明の第1〜第4の実施例で蛍光体の配置が異
なる場合の例を示す図、第6図は従来のプラズマディス
プレイ・パネルの斜視図である。 1・・・・・・第1絶縁基板、2・・・・・・第2絶縁
基板、3・・・・・・列電極、4,14・・・・・・行
電極、5・・・・・・第1絶縁屑、6・・・・・・第2
絶縁層、7・・・・・・MgO膜、8・・・・・・放電
ガス空間、9・・・・・・壁、10.29・・・・・・
蛍光体、2l・・・・・・背面ガラス板、2 2−・・
・・・前面ガラス板、23・・・・・・補助陽極、24
・・・・・・表示陽極、25・・・・・・下地電極、2
6・・・・・・陰極、27・・・・一表示セル、2 8
 −−−−−−セル障壁。
1A and B are a plan view and a sectional view of a first embodiment of a plasma display of the present invention, FIGS. 2A and B are a plan view and a sectional view of a second embodiment of a plasma display of the present invention, 3A and 3B are cross-sectional views of the fourth embodiment of the present invention, and FIG. FIG. 6 is a perspective view of a conventional plasma display panel. DESCRIPTION OF SYMBOLS 1...First insulating substrate, 2...Second insulating substrate, 3...Column electrode, 4, 14...Row electrode, 5... ...First insulation scrap, 6...Second
Insulating layer, 7...MgO film, 8...Discharge gas space, 9...Wall, 10.29...
Phosphor, 2l... Rear glass plate, 2 2-...
...Front glass plate, 23...Auxiliary anode, 24
... Display anode, 25 ... Base electrode, 2
6...Cathode, 27...1 display cell, 2 8
−−−−−−Cell barrier.

Claims (1)

【特許請求の範囲】[Claims] 放電ガス空間と、放電ガス空間をはさむように平行にお
かれた2枚の絶縁基板を有し、第1絶縁基板の放電ガス
空間側の面上には、縞状の列電極、及びこの列電極と電
気的に絶縁され、この列電極と直交する方向に配置され
た縞状の行電極を有し、第2絶縁基板の放電ガス空間側
の面上には各画素に対応する位置に穴を配置し、この穴
の内面に蛍光体を塗布し、穴と穴の間の壁が第1絶縁基
板と接していることを特徴とするプラズマディスプレイ
パネル。
It has a discharge gas space and two insulating substrates placed in parallel so as to sandwich the discharge gas space, and on the surface of the first insulating substrate facing the discharge gas space, striped column electrodes and striped column electrodes are provided on the surface of the first insulating substrate facing the discharge gas space. It has striped row electrodes that are electrically insulated from the electrodes and arranged in a direction perpendicular to the column electrodes, and holes are provided at positions corresponding to each pixel on the surface of the second insulating substrate facing the discharge gas space. A plasma display panel characterized in that the inner surfaces of the holes are coated with a phosphor, and the walls between the holes are in contact with a first insulating substrate.
JP1153969A 1989-06-16 1989-06-16 Plasma display panel Pending JPH0320932A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP1153969A JPH0320932A (en) 1989-06-16 1989-06-16 Plasma display panel

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP1153969A JPH0320932A (en) 1989-06-16 1989-06-16 Plasma display panel

Publications (1)

Publication Number Publication Date
JPH0320932A true JPH0320932A (en) 1991-01-29

Family

ID=15574034

Family Applications (1)

Application Number Title Priority Date Filing Date
JP1153969A Pending JPH0320932A (en) 1989-06-16 1989-06-16 Plasma display panel

Country Status (1)

Country Link
JP (1) JPH0320932A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2001073810A1 (en) * 2000-03-27 2001-10-04 Technology Trade And Transfer Corporation Single substrate type discharge display device, method of driving the discharge display device, and color single substrate type discharge display device

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2001073810A1 (en) * 2000-03-27 2001-10-04 Technology Trade And Transfer Corporation Single substrate type discharge display device, method of driving the discharge display device, and color single substrate type discharge display device

Similar Documents

Publication Publication Date Title
US5264758A (en) Plasma display panel and method of producing the same
US6236160B1 (en) Plasma display panel with first and second ribs structure
EP0784333B1 (en) Gas discharging type display panel and manufacturing method thereof
US5144200A (en) Plasma display panel and manufacturing method thereof
JPH04137343A (en) Picture display device
JP2001084913A (en) Gas discharge type display panel
US6019655A (en) Method for manufacturing a plasma display discharge panel
JPH0266870A (en) Thin film el element and manufacture thereof
JPH0320932A (en) Plasma display panel
US20080150429A1 (en) Plasma display panel
KR20010029933A (en) Flat display apparatus and manufacturing method of the same
JP2000173480A (en) Rear substrate of plasma display panel and its manufacture
JP2629982B2 (en) Plasma display panel
KR100741400B1 (en) Plasma display panel
JP2532970B2 (en) Plasma display panel using perforated metal plate as partition wall and method of manufacturing the same
JP2783011B2 (en) Surface discharge display board
KR950003649B1 (en) Spacer field emission display and manufacturing method thereof
KR20010014721A (en) Flat display device and fabricating method of the same
JPH05190101A (en) Dc type plasma display pannel
JPH10116556A (en) Plasma display diaphragm structure and its forming method
KR100326531B1 (en) Plasma Display Panel Device
JPH0935646A (en) Plasma display panel
JP2002203475A (en) Electron source substrate, its manufacturing method and image display device provided with it
KR100869412B1 (en) Plasma display panel
JPH08236029A (en) Plasma display panel