JPH03208802A - Co converter - Google Patents

Co converter

Info

Publication number
JPH03208802A
JPH03208802A JP2003599A JP359990A JPH03208802A JP H03208802 A JPH03208802 A JP H03208802A JP 2003599 A JP2003599 A JP 2003599A JP 359990 A JP359990 A JP 359990A JP H03208802 A JPH03208802 A JP H03208802A
Authority
JP
Japan
Prior art keywords
gas
temperature
outlet
cooling water
converter
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2003599A
Other languages
Japanese (ja)
Inventor
▲お▼畑 勲
Isao Obata
Tadashi Oshima
正 大島
Yumito Kondo
近藤 弓人
Yoshiaki Amano
天野 義明
Shinjiro Kimura
木村 信二郎
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Ltd
Original Assignee
Hitachi Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Ltd filed Critical Hitachi Ltd
Priority to JP2003599A priority Critical patent/JPH03208802A/en
Publication of JPH03208802A publication Critical patent/JPH03208802A/en
Pending legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/06Combination of fuel cells with means for production of reactants or for treatment of residues
    • H01M8/0606Combination of fuel cells with means for production of reactants or for treatment of residues with means for production of gaseous reactants
    • H01M8/0612Combination of fuel cells with means for production of reactants or for treatment of residues with means for production of gaseous reactants from carbon-containing material
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/50Fuel cells

Landscapes

  • Life Sciences & Earth Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Sustainable Development (AREA)
  • Sustainable Energy (AREA)
  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Hydrogen, Water And Hydrids (AREA)

Abstract

PURPOSE:To provide a CO converter having a long service life and high performance by measuring the temp. of a gas on the outlet side of a vessel packed with a CO conversion catalyst and controlling the amt. of cooling water based on the measurement signal to hold the outlet gas at a specified temp. CONSTITUTION:A vessel 2 packed with a CO conversion catalyst 1, an inlet cooler 3, an intermediate cooler 4, etc., are integrated to constitute a CO converter. A gaseous reactant contg. CO and steam is supplied to the converter from an inlet 5 to cause an exothermic reaction in the presence of the catalyst and converted into CO2 and hydrogen, and the converted gas is discharged from an outlet 6. The outlet gas temp. is measured by a thermometer 11 set at the outlet 6, the control valve 10 of a cooling water pipeline 9 is actuated by a controller 12 based on the measurement signal to adjust the amt. of cooling water to be supplied to the cooler 3, hence the outlet gas is held at a specified temp., and the reaction is carried out. Consequently, the outlet gas is always held at a specified temp. irrespective of the amt. of the gaseous reactant, and the composition of the outlet gas is kept constant.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明は、燃料電池システム、水素製造装置の燃料改質
系の中で、−酸化炭素と水蒸気を、触媒の下で発熱反応
を起こさせ、二酸化炭素と水素に転換するためのCOO
コンバータ関する。
[Detailed Description of the Invention] [Field of Industrial Application] The present invention is a fuel cell system or a fuel reforming system of a hydrogen production device, in which carbon oxide and water vapor undergo an exothermic reaction under a catalyst. , COO for conversion to carbon dioxide and hydrogen
Regarding converters.

〔従来の技術〕[Conventional technology]

従来のCOOコンバータ、高温CQコンバータ、低温C
OOコンバータよび中間冷却器より構成されているが1
反応ガスの温度制御ができなかった。
Conventional COO converter, high temperature CQ converter, low temperature C
It consists of an OO converter and an intercooler.1
It was not possible to control the temperature of the reaction gas.

また、特開昭60−200801号に記載のようにCO
Oコンバータ冷却器を一体化したものもあるが、これも
反応ガスの温度制御ができなかった。
In addition, as described in JP-A-60-200801, CO
There is also an integrated O-converter cooler, but this also makes it impossible to control the temperature of the reactant gas.

〔発明が解決しようとする課題〕[Problem to be solved by the invention]

上記従来技術は、装置のコンパクト化および温度制御の
点について考慮されておらず、負荷の変化に伴い、ガス
温度が変わるため、ガス組成が一定にならず、また、ガ
ス温度が高い方が反応速度が速いため、負荷により温度
が低い場合は、目的のガス組成にならない可能性があっ
た。また、温度が高くなりすぎた場合、触媒の活性が下
がり、寿命が短かくなるという問題があった。
The above conventional technology does not take into account compactness of the device and temperature control, and the gas temperature changes as the load changes, so the gas composition does not become constant, and the higher the gas temperature, the more the reaction occurs. Because the speed is high, if the temperature is low due to the load, there is a possibility that the desired gas composition may not be obtained. Furthermore, when the temperature becomes too high, the activity of the catalyst decreases, resulting in a shortened lifespan.

本発明の目的は、COコンバータ出出方ガス組成負荷に
よらず一定にし、かつ触媒の長寿命化。
The purpose of the present invention is to keep the composition of the gas coming out of the CO converter constant regardless of the load, and to extend the life of the catalyst.

装置のコンパクト化を図ることにある。The purpose is to make the device more compact.

〔課題を解決するための手段〕[Means to solve the problem]

上記目的を達成するために本発明のCOOコンバータ、
CO転化触媒、該CO転化触媒を充填するための容器、
該容器入口側に設置した冷却器、該冷却器にガスおよび
冷却水を導くための配管、該配管に流れる冷却水量を制
御するための調節弁。
In order to achieve the above object, the COO converter of the present invention,
a CO conversion catalyst, a container for filling the CO conversion catalyst;
A cooler installed on the inlet side of the container, piping for guiding gas and cooling water to the cooler, and a control valve for controlling the amount of cooling water flowing into the piping.

該容器出口側に設置した測温器、および該測温器の測定
信号を受けて該容器出口ガス温度を所定値に保つように
前記調節弁を作動させる調節器を備えた構成としたもの
である。
A temperature measuring device installed on the outlet side of the container, and a regulator that receives a measurement signal from the temperature measuring device and operates the control valve to maintain the gas temperature at the outlet of the container at a predetermined value. be.

〔作用〕[Effect]

COコンバータは、下記反応式により燃料改質装置から
の改質ガX (Hz 、 CO、COx 、 CH4e
Hx O)のCO濃度を下げる装置である。
The CO converter converts reformed gas X (Hz, CO, COx, CH4e) from the fuel reformer using the following reaction formula.
This is a device that lowers the CO concentration of Hx O).

GO十HzO→Hx + COx 上式は発熱反応であり、ガスの温度が上昇する。GO 1HzO → Hx + COx The above equation is an exothermic reaction, and the temperature of the gas increases.

CO濃度を下げるには上記反応を低温の下で実行させる
必要があるため、冷却器が必要である。
A cooler is necessary because the above reaction needs to be carried out at a low temperature to lower the CO concentration.

また、上記反応は温度が高い方が反応速度が速いため、
co濃度が一定値になる温度以下で温度が高い領域にお
いて反応を起こさせるのが効率的である。
In addition, the reaction rate is faster at higher temperatures, so
It is efficient to cause the reaction to occur in a high temperature region below the temperature at which the co concentration becomes a constant value.

ン 一方、GOコたバータ出ロガス温度は入口ガス温度によ
り決まり、出口ガス温度を一定にできれば、出口ガス組
成も一定となる。このことから、本発明では、測温器、
調節器、調節弁からなる制御系を用いて、出口ガス温度
を測定した結果によりCOO化触媒層入口冷却器に流す
冷却水量を調節し、入口ガス温度を制御する。このよう
にすれば、ガス量に関係なく出口ガス温度を所定値に保
てるため、常に出口ガス組成を一定にできるうえ、反応
速度の速い温度領域で反応を起こさせることができるの
で、触媒量が少なくてよく、装置をコンパクトにできる
On the other hand, the GO converter output log gas temperature is determined by the inlet gas temperature, and if the outlet gas temperature can be kept constant, the outlet gas composition will also be constant. For this reason, in the present invention, a temperature measuring device,
Using a control system consisting of a regulator and a control valve, the amount of cooling water flowing to the COO catalyst bed inlet cooler is adjusted based on the result of measuring the outlet gas temperature, thereby controlling the inlet gas temperature. In this way, the outlet gas temperature can be maintained at a predetermined value regardless of the gas amount, so the outlet gas composition can always be kept constant, and the reaction can be caused in a temperature range where the reaction rate is high, so the amount of catalyst can be reduced. It can be made smaller and the device can be made more compact.

〔実施例〕〔Example〕

第1図に本発明の一実施例の基本的構成を示す。 FIG. 1 shows the basic configuration of an embodiment of the present invention.

本実施例のCOコンバータは、COO化触媒1を充填し
た触媒容器2.入口冷却器3.中間冷却器49反応ガス
入入口1反応ガス出口6.冷却水入ロア、冷却水出口8
を一体に形成し、入口ガス温度を制御するために調節弁
10.測温器11゜調節器12を備えた構成となってい
る。
The CO converter of this embodiment includes a catalyst container 2 filled with a COO conversion catalyst 1. Inlet cooler 3. Intercooler 49 Reaction gas inlet 1 Reaction gas outlet 6. Cooling water inlet lower, cooling water outlet 8
and a regulating valve 10. to control the inlet gas temperature. It has a configuration including a temperature measuring device 11 and a temperature regulator 12.

上記構成において、反応ガス人口5から入った反応ガス
は入口冷却器3で冷却される。このとき、調節器12は
測温器11からのCO転転化触媒層出方ガス温度測定信
号を受けて、冷却水配管9に設置された調節弁10を作
動させ、調節弁10は入口冷却器3に必要斌の冷却水を
流している。入口冷却器3で冷却された反応ガスはCO
O化触媒1層に入り、下記反応式により反応を進めてゆ
く。
In the above configuration, the reactant gas entering from the reactant gas population 5 is cooled by the inlet cooler 3. At this time, the regulator 12 receives a temperature measurement signal from the CO conversion catalyst bed from the temperature measuring device 11 and operates the regulating valve 10 installed in the cooling water pipe 9. The necessary cooling water is flowing through 3. The reaction gas cooled by the inlet cooler 3 is CO
It enters the first layer of O-conversion catalyst, and the reaction proceeds according to the following reaction formula.

CO+HzC)4Hz+COz この反応は発熱反応であるため、反応力が進むにつれて
温度が上昇する。そして、COO化触媒層から出るとき
には所定の温度まで上昇しており。
CO+HzC)4Hz+COz Since this reaction is exothermic, the temperature increases as the reaction force progresses. Then, when it leaves the COO catalyst layer, the temperature has risen to a predetermined temperature.

反応ガスは所定の組成になっている。調節器12は、所
定の温度と出口ガス温度に差があれば、その差をなくす
ように調節弁10の開度を変え、入口側冷却器3に流す
冷却水量を調節する。
The reaction gas has a predetermined composition. If there is a difference between the predetermined temperature and the outlet gas temperature, the regulator 12 changes the opening degree of the control valve 10 to eliminate the difference, and adjusts the amount of cooling water flowing into the inlet cooler 3.

ここで、COO化触媒層−段で反応させた場合は、温度
上昇幅が広いため、1種類の触媒では対応できない。例
として触媒の使用温度域およびガス温度上昇幅を次に示
す。
Here, when the reaction is carried out in the COO catalyst layer stage, the range of temperature rise is wide, so one type of catalyst cannot cope with the reaction. As an example, the operating temperature range of the catalyst and the range of gas temperature rise are shown below.

触媒使用温度域200〜280℃(温度差80℃) ガス温度上昇幅ΔT=150℃ 本実施例では、入口ガス温度が200℃以下にならない
ように調節弁10の開度を調節し、余分な熱量を中間冷
却器4で取ることにより、一種類の触媒で対応できるよ
うにしている。また、触媒の活性が下がった場合、初期
状態と同じ入口ガス温度では反応が進みにくくなるため
、調節弁10は入口ガス温度を上昇させることにより、
出口ガス温度を所定値に保つように働く、C○転化反応
は温度が高いほど反応速度が速いという特性を持ってい
るため、本実施例のCQコンバータは、初期状態から長
期に渡って同じ性能を発揮でき、非常に長寿命である。
Catalyst operating temperature range: 200 to 280°C (temperature difference: 80°C) Gas temperature rise width ΔT = 150°C In this example, the opening degree of the control valve 10 is adjusted so that the inlet gas temperature does not fall below 200°C. By taking the amount of heat in the intercooler 4, it is possible to use only one type of catalyst. Furthermore, if the activity of the catalyst decreases, the reaction will be difficult to proceed at the same inlet gas temperature as the initial state, so the control valve 10 increases the inlet gas temperature.
The C○ conversion reaction, which works to maintain the outlet gas temperature at a predetermined value, has the characteristic that the higher the temperature, the faster the reaction rate. Therefore, the CQ converter of this example maintains the same performance over a long period of time from the initial state. It has an extremely long lifespan.

また、反応速度の速い温度領域で使用できるために触媒
量が少なくてよく、冷却器をコンバータに組み込んだこ
とと相まって装置をコンパクトにできる。
In addition, since it can be used in a temperature range where the reaction rate is high, the amount of catalyst can be small, and when combined with the fact that a cooler is built into the converter, the device can be made more compact.

第2図は本発明の他の実施例を示す。FIG. 2 shows another embodiment of the invention.

本実施例のCOコンバータは、低温COO化触媒1a、
高温COO化触媒1bを充填した触媒容器2a、2b、
低温側入ロ冷却器3a、高温側入口冷却器3b、反応ガ
ス人ロ51反応ガス出口6゜冷却水入ロア、冷却水出口
8を一体に形成し、低温側入口ガス温度を制御するため
に調節弁10゜測温器11.調節器12を備えた構成と
なっている。
The CO converter of this example includes a low temperature COO conversion catalyst 1a,
Catalyst containers 2a, 2b filled with high temperature COO catalyst 1b,
The low-temperature side inlet cooler 3a, the high-temperature side inlet cooler 3b, the reactant gas lower 51, the reactant gas outlet 6°, the cooling water inlet lower, and the cooling water outlet 8 are integrally formed to control the low-temperature side inlet gas temperature. Control valve 10° Temperature meter 11. The configuration includes a regulator 12.

上記構成において、反応ガス人口5から入った反応ガス
は高温側入口冷却113bで冷却され高温CO転化触媒
1b層に導かれる。本実施例では。
In the above configuration, the reaction gas entering from the reaction gas population 5 is cooled by the high temperature side inlet cooling 113b and guided to the high temperature CO conversion catalyst 1b layer. In this example.

高温C○転化触媒層で約2/3の反応が終えるため、温
度上昇が激しい、高温CO転化触媒層から出た反応ガス
は、低温側入口冷却器3aで冷却される。このとき、調
節[12は測温器11からの低温CO転転化触媒層出方
ガス温度測定信号を受けて、冷却水配管9に設置された
調節弁10を作動させ、調節弁10は低温側入口冷却器
3aに必要量の冷却水を流している。すなわち、低温c
Since about 2/3 of the reaction is completed in the high temperature CO conversion catalyst layer, the reaction gas discharged from the high temperature CO conversion catalyst layer, where the temperature rises rapidly, is cooled by the low temperature side inlet cooler 3a. At this time, the adjustment [12] receives a temperature measurement signal from the low-temperature CO conversion catalyst bed from the temperature measuring device 11, and operates the control valve 10 installed in the cooling water pipe 9. A necessary amount of cooling water is flowing into the inlet cooler 3a. That is, low temperature c
.

転化触媒層出口ガス温度により入口ガス温度を決めてい
るので、第1図の実施例と同様に、ガス量に関係なく低
温CO転転化触媒層出方ガス温度所定値に保ち、出口ガ
ス組成を一定にすることができる。また、低温COO化
触媒の活性が下がった場合は、初期状態と同じ入口ガス
温度では出口ガス温度が下がるため、調節弁10は入口
ガス温度を上げることにより、出口ガス温度を所定値に
保つように働くので、初期状態から長期に渡って反応速
度の速い温度領域で使用でき、性能変化はほとんどなく
なる。したがって、本実施例によれば、コンパクトで長
寿命、高性能のCOコンバータを提供できる。
Since the inlet gas temperature is determined by the temperature of the gas at the outlet of the conversion catalyst layer, the temperature of the gas exiting the low-temperature CO conversion catalyst layer is maintained at a predetermined value regardless of the gas amount, and the composition of the outlet gas is adjusted, similar to the embodiment shown in FIG. It can be kept constant. Furthermore, when the activity of the low-temperature COO catalyst decreases, the outlet gas temperature will decrease if the inlet gas temperature is the same as the initial state, so the control valve 10 increases the inlet gas temperature to maintain the outlet gas temperature at a predetermined value. Therefore, it can be used from the initial state for a long period of time in a temperature range where the reaction rate is high, and there is almost no change in performance. Therefore, according to this embodiment, a compact, long-life, and high-performance CO converter can be provided.

〔発明の効果〕〔Effect of the invention〕

本発明によれば、ガス量に関係なく出口ガス温度を常に
所定値に保てるため、出口ガス組成を一定にできるうえ
、反応速度の速い温度領域で使用できるため、触媒量が
少なくてよく、装置をコンパクトにでき、また触媒の活
性の変化に対応して反応ガス温度を制御できるため、長
寿命、高性能のCOコンバータを提供することができる
According to the present invention, the outlet gas temperature can always be kept at a predetermined value regardless of the gas amount, so the outlet gas composition can be kept constant, and it can be used in a temperature range where the reaction rate is high, so the amount of catalyst can be small and the equipment Since the reactor gas temperature can be controlled in response to changes in catalyst activity, a long-life, high-performance CO converter can be provided.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は本発明の一実施例の構成図、第2図は本発明の
他の実施例の構成図である。 1・・・COO化触媒、la・・・低温COO化触媒。 1b・・・高温COO化触媒、2,2a、2b・・・触
媒容器、3・・・入口冷却器、3a・・・低温側入口冷
却器、3b・・・高温側入口冷却器、4・・・中間冷却
器、5・・・反応ガス入口、6・・・反応ガス出口、7
・・・冷却水入口、8・・・冷却水出口、9・・・冷却
水配管、10・・・調率 ! 乞 11  閃逼呑 11−
FIG. 1 is a block diagram of one embodiment of the present invention, and FIG. 2 is a block diagram of another embodiment of the present invention. 1...COO catalyst, la...Low temperature COO catalyst. 1b...High temperature COO catalyst, 2, 2a, 2b...Catalyst container, 3...Inlet cooler, 3a...Low temperature side inlet cooler, 3b...High temperature side inlet cooler, 4... ...Intercooler, 5...Reaction gas inlet, 6...Reaction gas outlet, 7
...Cooling water inlet, 8...Cooling water outlet, 9...Cooling water piping, 10...Adjustment! Beggar 11 Sendandon 11-

Claims (1)

【特許請求の範囲】[Claims] 1、CO転化触媒、該CO転化触媒を充填するための容
器、該容器入口側に設置した冷却器、該冷却器にガスお
よび冷却水を導くための配管、該配管に流れる冷却水量
を制御するための調節弁、該容器出口側に設置した測温
器、および該測温器の測定信号を受けて該容器出口ガス
温度を所定値に保つように前記調節弁を作動させる調節
器を備えてなるCOコンバータ。
1. A CO conversion catalyst, a container for filling the CO conversion catalyst, a cooler installed on the inlet side of the container, piping for guiding gas and cooling water to the cooler, and controlling the amount of cooling water flowing into the piping. a temperature measuring device installed on the outlet side of the container, and a controller that receives a measurement signal from the temperature measuring device and operates the regulating valve so as to maintain the gas temperature at the container outlet at a predetermined value. CO converter.
JP2003599A 1990-01-12 1990-01-12 Co converter Pending JPH03208802A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2003599A JPH03208802A (en) 1990-01-12 1990-01-12 Co converter

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2003599A JPH03208802A (en) 1990-01-12 1990-01-12 Co converter

Publications (1)

Publication Number Publication Date
JPH03208802A true JPH03208802A (en) 1991-09-12

Family

ID=11561949

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2003599A Pending JPH03208802A (en) 1990-01-12 1990-01-12 Co converter

Country Status (1)

Country Link
JP (1) JPH03208802A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1994009523A1 (en) * 1992-10-09 1994-04-28 Ballard Power Systems Inc. Method and apparatus for the selective oxidation of carbon monoxide in a hydrogen-containing gas mixture
KR100422804B1 (en) * 2001-09-05 2004-03-16 현대자동차주식회사 Apparatus to remove carbon monoxide for fuel cell
JP2012031055A (en) * 2010-07-06 2012-02-16 Renaissance Energy Research:Kk Apparatus and method for converting carbon monoxide and apparatus for producing hydrogen

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1994009523A1 (en) * 1992-10-09 1994-04-28 Ballard Power Systems Inc. Method and apparatus for the selective oxidation of carbon monoxide in a hydrogen-containing gas mixture
AU664925B2 (en) * 1992-10-09 1995-12-07 Ballard Power Systems Inc. Selective oxidation of carbon monoxide in an hydrogenous gas mixture
KR100422804B1 (en) * 2001-09-05 2004-03-16 현대자동차주식회사 Apparatus to remove carbon monoxide for fuel cell
JP2012031055A (en) * 2010-07-06 2012-02-16 Renaissance Energy Research:Kk Apparatus and method for converting carbon monoxide and apparatus for producing hydrogen

Similar Documents

Publication Publication Date Title
US5750076A (en) Apparatus for the two-stage selective oxidation of carbon monoxide in a hydrogen-containing gas mixture
US4046956A (en) Process for controlling the output of a selective oxidizer
JP3678118B2 (en) Fuel reforming system
US4642273A (en) Reformer reaction control apparatus for a fuel cell
EP1273552A2 (en) Hydrogen producing apparatus and power generating system
US20120224997A1 (en) Reformed Gas Production Method And Reformed Gas Production Apparatus
WO2007091632A1 (en) Fuel cell system
JP2004006093A (en) Fuel treating equipment and fuel cell power generation system
US6299853B1 (en) Method and apparatus for operating a reformer/co oxidation unit
JPH03208802A (en) Co converter
US7192458B1 (en) Process, control system and apparatus for the distribution of air in a fuel cell/fuel processor system
JPH11130403A (en) Method for controlling temperature of reformer for fuel cell
JP4742520B2 (en) Reactor, reactor control system, and catalytic gas phase oxidation reaction method
EP1329417A1 (en) Hydrogen forming device
WO2006007319A2 (en) Maintaining oxygen/carbon ratio with temperature controlled valve
JPH02188406A (en) Carbon monoxide converter
JPS59194365A (en) Control device of fuel cell power generating plant
JP4610097B2 (en) Fuel reforming system
TWI858788B (en) Carbon dioxide sequestration equipment
JP4446672B2 (en) Operation control system for carbon monoxide remover and operation control system for fuel cell system
JP2004043206A (en) Fuel reforming apparatus and fuel cell using the same
US20060000142A1 (en) Precise oxygen to carbon ratio control in oxidation reformers
JPH043070B2 (en)
JPS6342733A (en) Endothermic reacting device
JP3027169B2 (en) Fuel cell power generator