JPH03208250A - Analysis electromagnet - Google Patents

Analysis electromagnet

Info

Publication number
JPH03208250A
JPH03208250A JP299790A JP299790A JPH03208250A JP H03208250 A JPH03208250 A JP H03208250A JP 299790 A JP299790 A JP 299790A JP 299790 A JP299790 A JP 299790A JP H03208250 A JPH03208250 A JP H03208250A
Authority
JP
Japan
Prior art keywords
gap
charged particle
iron core
magnetic
magnetic poles
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP299790A
Other languages
Japanese (ja)
Inventor
Shuichi Fujiwara
修一 藤原
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nissin Electric Co Ltd
Original Assignee
Nissin Electric Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nissin Electric Co Ltd filed Critical Nissin Electric Co Ltd
Priority to JP299790A priority Critical patent/JPH03208250A/en
Publication of JPH03208250A publication Critical patent/JPH03208250A/en
Pending legal-status Critical Current

Links

Abstract

PURPOSE:To improve the evenness, the transport efficiency, and the like of the charged particle beams by forming the cross section forms at the opposite sides of negative poles of an iron core to make the gap between both members, the widest at the center, and narrower gradually to the both sides. CONSTITUTION:On the roots of magnetic poles 21 and 22 of an iron core 2, coils 3 and 4 are wound. And at a gap between the magnetic poles 21 and 22, an analysis tube 5 to make the passage of charged particle beams 6 such as ion beams into a vacuum ambiance, made out of non-magnetic material bent along the magnetic poles 21 and 22 is provided. The cross section forms of the opposite surfaces 21a and 22a sides of the negative poles 21 and 22 are formed making the gap between the members the largest at the center and narrower gradually to the both sides. In such a way, a generation of aberration of charged particle beams to be analyzed is reduced, and the evenness, the transport efficiency, and the like of the beams can be improved.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 この発明は、例えばイオン注入装置、加速器等に用いら
れるものであって、イオンビームのような荷電粒子ビー
ムの質量分析、エネルギー分析等の運動量分析を行う分
析電磁石に関する。
[Detailed Description of the Invention] [Industrial Application Field] This invention is used for example in ion implantation devices, accelerators, etc., and is used for mass analysis, energy analysis, etc. of charged particle beams such as ion beams. Concerning an analytical electromagnet that performs analysis.

〔従来の技術〕[Conventional technology]

この種の分析電磁石の従来例を第5図に示す。 A conventional example of this type of analytical electromagnet is shown in FIG.

この分析電磁石はいわゆるC型分析電磁石と呼ばれるも
のであり、ギャップをあけて相対向する二つの磁極21
および22を有していて、全体の断面形状がC型で平面
形状が扇型をした鉄心2を備えている。
This analytical electromagnet is a so-called C-type analytical electromagnet, and has two magnetic poles 21 facing each other with a gap.
and 22, and includes an iron core 2 having a C-shaped overall cross-sectional shape and a fan-shaped planar shape.

この鉄心2には(より具体的にはその各磁極21、22
の根本部には)コイル3および4が巻かれている。また
その磁極21、22間のギヤ・ノブ部には、イオンビー
ムのような荷電粒子ビーム6の通路を真空雰囲気にする
ものであって磁極21、22に沿って曲げられた非磁性
材から或る分析管5が設けられている。
This iron core 2 (more specifically, each magnetic pole 21, 22
Coils 3 and 4 are wound around the base of the tube. The gear/knob portion between the magnetic poles 21 and 22 is made of a non-magnetic material bent along the magnetic poles 21 and 22, which creates a vacuum atmosphere in the passage of the charged particle beam 6 such as an ion beam. An analysis tube 5 is provided.

このような分析電磁石においては、加速された荷電粒子
ビーム6をこの分析管5の中を通すことによって、所望
の質量あるいはエネルギーの荷電粒子ビーム6のみを選
択的に導出することができる。
In such an analysis electromagnet, by passing the accelerated charged particle beam 6 through the analysis tube 5, only the charged particle beam 6 having a desired mass or energy can be selectively derived.

〔発明が解決しようとする課題〕[Problem to be solved by the invention]

上記のような従来の分析電磁石における各磁極21、2
2の対向面21a、22aの形状は、基本的には図示例
のように互いに平行な平面状をしている。
Each magnetic pole 21, 2 in the conventional analytical electromagnet as described above
The shapes of the two opposing surfaces 21a and 22a are basically planar shapes parallel to each other as shown in the illustrated example.

ところが、この種の分析電磁石はコスト等の制限からあ
まり大型にできず、そのため磁極21および22の幅も
十分に大きくすることができないのが現実であり、その
ため、両磁極21、22間の中心面A上での磁束密度は
、例えば第6図中に実線で示すように、中心に対して端
に向かうほど弱くなり、放物線状の分布をしている。
However, this type of analytical electromagnet cannot be made very large due to cost constraints, and therefore the width of the magnetic poles 21 and 22 cannot be made sufficiently large. The magnetic flux density on the surface A becomes weaker as it goes from the center to the edge, and has a parabolic distribution, as shown by the solid line in FIG. 6, for example.

磁束密度がそのようになると、荷電粒子ビーム6がその
影響を受けてしまい(この影響は荷電粒子ビーム6のサ
イズが大きくなるほど大きい)、その変形、集束位置の
ずれ等の収差が生しる。その結果、荷電粒子ビーム6の
均一性に悪影響が出ると共に、荷電粒子ビーム6が構造
物に当たる等してその輸送効率にも悪影響が出る。
When the magnetic flux density becomes such, the charged particle beam 6 is influenced by it (the influence becomes larger as the size of the charged particle beam 6 becomes larger), and aberrations such as deformation and deviation of the focusing position occur. As a result, the uniformity of the charged particle beam 6 is adversely affected, and the transport efficiency of the charged particle beam 6 is also adversely affected as the charged particle beam 6 hits a structure.

これに対しては、各磁極21、22の対向面21a、2
2aの両端部に、第6図中に2点鎖線で示ずような突条
のシム23を設ける場合もあり、そのようにすれば磁束
密度分布の均一性はある程度改善されるが、同図中に2
点鎖線で示すようにシム23の付近でのみ磁束密度が持
ち上げられるため、中だるみのような磁束密度分布を示
し、あまり良好とは言えない。
On the other hand, the opposing surfaces 21a, 2 of each magnetic pole 21, 22
In some cases, protruding shims 23 as shown by the two-dot chain lines in FIG. inside 2
As shown by the dotted chain line, the magnetic flux density is increased only in the vicinity of the shim 23, so the magnetic flux density distribution is sagging in the middle, which is not very good.

そこでこの発明は、上記のような磁極間の中心面上での
磁束密度分布を広い領域に亘って均一化することができ
るようにした分析電磁石を提供することを主たる目的と
する。
Therefore, the main object of the present invention is to provide an analytical electromagnet that can make the magnetic flux density distribution on the central plane between the magnetic poles uniform over a wide area as described above.

〔課題を解決するための手段〕[Means to solve the problem]

上記目的を達戒ずるため、この発明の分析電磁石は、前
述したような鉄心の各M1極の対向面側の断面形状を、
互いの間のギャップが中心部で一番広く両側が次第に狭
くなるようなものにしたことを特徴とする。
In order to achieve the above object, the analytical electromagnet of the present invention has a cross-sectional shape on the opposing surface side of each M1 pole of the iron core as described above.
The gap between them is widest at the center and gradually narrows on both sides.

〔作用〕[Effect]

両磁極の対向面の形状が平面状の場合は、その磁極間の
中心面上での磁束密度分布は前述したように放物線状に
なる。
When the opposing surfaces of both magnetic poles have a planar shape, the magnetic flux density distribution on the central plane between the magnetic poles becomes parabolic as described above.

これに対して、各磁極の対向面側の断面形状をこの発明
のようにすれば、磁極間の中心面上での磁束密度が中心
部で相対的に下がり端部で相対的に上がるので、放物線
状になろうとする磁束密度分布が補正され、広い領域に
亘ってその均一性が向上する。
On the other hand, if the cross-sectional shape of the opposing surfaces of each magnetic pole is made as in the present invention, the magnetic flux density on the center plane between the magnetic poles will decrease relatively at the center and relatively increase at the ends. The magnetic flux density distribution, which tends to become parabolic, is corrected, and its uniformity is improved over a wide area.

〔実施例〕〔Example〕

第1図は、この発明の一実施例に係る分析電磁石を示す
概略縦断面図である。第5図の従来例と同一または相当
する部分には同一符号を付し、以下においては当該従来
例との相違点を主に説明する。
FIG. 1 is a schematic vertical sectional view showing an analysis electromagnet according to an embodiment of the present invention. The same reference numerals are given to the same or corresponding parts as in the conventional example shown in FIG. 5, and the differences from the conventional example will be mainly explained below.

この実施例においては、前述したような各磁極21、2
2の対向面21a、22a側の断面形状を、各磁極21
、22の中心に対して左右対称な放物線状にしている。
In this embodiment, each magnetic pole 21, 2 as described above is used.
2, the cross-sectional shape of the opposing surfaces 21a and 22a of each magnetic pole 21
, 22 is shaped like a parabola that is symmetrical about the center.

前述したように、磁極21、22の対向面の形状が平面
状の場合はその間の磁束密度分布は放物線状になるので
、特性上からは各磁極21、22の対向面側の断面形状
をこの実施例のように放物線状にするのが好ましく、そ
のようにすれば、放物線状のものをその逆の放物線状に
補正することになるので、中心面A上での磁束密度分布
を広い領域に亘って(例えば磁極21、22の一端側か
ら他端側までのほぼ全域に亘って)直線状に近づけて非
常に均一化することができる。
As mentioned above, when the opposing surfaces of the magnetic poles 21 and 22 are planar, the magnetic flux density distribution therebetween becomes a parabola. Therefore, from the viewpoint of characteristics, the cross-sectional shape of the opposing surfaces of each magnetic pole 21 and 22 should be shaped like this. It is preferable to make it a parabola as in the example, and in that case, the parabola will be corrected to the opposite parabola, so the magnetic flux density distribution on the central plane A can be spread over a wide area. It is possible to approximate a straight line and make it very uniform over the entire area (for example, over almost the entire area from one end side to the other end side of the magnetic poles 21 and 22).

もっとも、加工の容易さからは、上記のような放物線を
直線化して、第2図の実施例のように、各磁極21、2
2の対向面21a、22a側の断面形状を、各1極21
、22の中心に対して左右対称なへ字状(三角状あるい
は山型とも言える)にするのが好ましく、この場合でも
中心面A上での磁束密度分布をかなり広い領域に亘って
均一化することができる。
However, from the viewpoint of ease of processing, the above-mentioned parabola should be straightened, and each magnetic pole 21, 2
The cross-sectional shape of the opposing surfaces 21a and 22a of 2 is one pole 21 each.
, 22, it is preferable to form it into a symmetrical shape (triangular or mountain-shaped) with respect to the center. Even in this case, the magnetic flux density distribution on the central plane A is made uniform over a fairly wide area. be able to.

第2図のような分析電磁石における各磁極21、22の
対向面21a、22aの勾配を変化させた場合の中心面
A上での磁束密度分布の計算結果の例を第3図に示し、
その磁束密度側の目盛を中心部の磁束密度に対する誤差
で表したものを第4図に示す。
FIG. 3 shows an example of the calculation results of the magnetic flux density distribution on the central plane A when the gradients of the opposing surfaces 21a, 22a of the respective magnetic poles 21, 22 in the analytical electromagnet shown in FIG. 2 are changed.
FIG. 4 shows the scale on the magnetic flux density side expressed as an error with respect to the magnetic flux density at the center.

両図においては、磁極21、22間の端部のギャップ長
Gを60mmに保ち、中心部のギャンブ長G0を60m
m(これは従来例に相当する)、61mm、62mm、
64mmと変化させることで各磁極2l、22の対向面
の勾配を変化させている。
In both figures, the gap length G at the end between the magnetic poles 21 and 22 is kept at 60 mm, and the gamb length G0 at the center is kept at 60 m.
m (this corresponds to the conventional example), 61 mm, 62 mm,
By changing the diameter to 64 mm, the slope of the opposing surfaces of the magnetic poles 2l and 22 is changed.

両図から分かるように、各磁極21、22の対向面21
a、22aの勾配を適当に選べば(例えば中心部のギャ
ップ長G0を61mmかそれよりわずかに小さくすれば
)、磁束密度分布をかなり広い領域に亘って均一化する
(例えば±0.1%の誤差内に入れたりそれに近づけた
りする)ことができる。
As can be seen from both figures, the opposing surfaces 21 of each magnetic pole 21, 22
If the gradients of a and 22a are selected appropriately (for example, if the gap length G0 at the center is set to 61 mm or slightly smaller), the magnetic flux density distribution can be made uniform over a fairly wide area (for example, ±0.1%). (within or close to the error).

なお、上記のような構造は、鉄心の内形がH型をしたい
わゆるH一型分析電磁石等にも通用することができるの
は勿論である。
It goes without saying that the above structure can also be applied to so-called H-type analytical electromagnets in which the inner shape of the iron core is H-shaped.

〔発明の効果〕〔Effect of the invention〕

以上のようにこの発明によれば、鉄心の各磁極の対向面
側の断面形状を、互いの間のギャップが中心部で一番広
く両側が次第に狭くなるようなものにしたので、磁極間
の中心面上での磁束密度分布を広い領域に亘って均一化
することができる。
As described above, according to the present invention, the cross-sectional shape of the opposing surfaces of each magnetic pole of the iron core is made such that the gap between them is widest at the center and gradually narrows on both sides. The magnetic flux density distribution on the central plane can be made uniform over a wide area.

その結果、分析しようとする荷電粒子ビームに収差が生
しるのを軽減して、ビームの均一性、輸送効率等を向上
させることができる。
As a result, it is possible to reduce the occurrence of aberrations in the charged particle beam to be analyzed, and improve beam uniformity, transport efficiency, etc.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は、この発明の一実施例に係る分析電磁石を示す
概略縦断面図である。第2図は、この発明の他の実施例
に係る分析!磁石を示す概略縦断面図である。第3図は
、第2図のような分析iit磁石における各磁極の対向
面の勾配を変化させた場合の磁極間の中心面上での磁束
密度分布の計算結果の例を示す図である。第4図は、第
3図の磁束密度側の目盛を中心部の磁束密度に対する誤
差で表した図である。第5図は、従来の分析if磁石の
一例を示す概略縦断面図である。第6図は、従来の分析
電磁石における磁極間の中心面上での磁束密度分布の概
略例を示す図である。 2・・・鉄心、21.22・・・磁極、21a,22a
・・・対向面、3.4・・・コイル、5・・・分析管、
6・・・荷電粒子ビーム。
FIG. 1 is a schematic vertical sectional view showing an analysis electromagnet according to an embodiment of the present invention. FIG. 2 is an analysis of another embodiment of this invention! FIG. 3 is a schematic vertical cross-sectional view showing a magnet. FIG. 3 is a diagram showing an example of the calculation result of the magnetic flux density distribution on the center plane between the magnetic poles when the slope of the opposing surface of each magnetic pole in the analytical IIT magnet shown in FIG. 2 is changed. FIG. 4 is a diagram showing the scale on the magnetic flux density side of FIG. 3 as an error with respect to the magnetic flux density at the center. FIG. 5 is a schematic longitudinal sectional view showing an example of a conventional analysis if magnet. FIG. 6 is a diagram showing a schematic example of magnetic flux density distribution on the center plane between magnetic poles in a conventional analysis electromagnet. 2... Iron core, 21.22... Magnetic pole, 21a, 22a
... Opposing surface, 3.4... Coil, 5... Analysis tube,
6...Charged particle beam.

Claims (1)

【特許請求の範囲】[Claims] (1)ギャップをあけて相対向する二つの磁極を有する
鉄心と、この鉄心に巻かれたコイルと、同鉄心のギャッ
プ部に設けられた分析管とを備える分析電磁石において
、前記鉄心の各磁極の対向面側の断面形状を、互いの間
のギャップが中心部で一番広く両側が次第に狭くなるよ
うなものにしたことを特徴とする分析電磁石。
(1) In an analytical electromagnet comprising an iron core having two magnetic poles facing each other with a gap, a coil wound around this iron core, and an analysis tube installed in the gap of the iron core, each magnetic pole of the iron core is An analytical electromagnet characterized in that the cross-sectional shape of opposing surfaces of the magnet is such that the gap between them is widest at the center and gradually narrows on both sides.
JP299790A 1990-01-09 1990-01-09 Analysis electromagnet Pending JPH03208250A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP299790A JPH03208250A (en) 1990-01-09 1990-01-09 Analysis electromagnet

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP299790A JPH03208250A (en) 1990-01-09 1990-01-09 Analysis electromagnet

Publications (1)

Publication Number Publication Date
JPH03208250A true JPH03208250A (en) 1991-09-11

Family

ID=11545021

Family Applications (1)

Application Number Title Priority Date Filing Date
JP299790A Pending JPH03208250A (en) 1990-01-09 1990-01-09 Analysis electromagnet

Country Status (1)

Country Link
JP (1) JPH03208250A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6194684B1 (en) 1998-11-02 2001-02-27 Lincoln Global, Inc. Output choke for D.C. welder and method of using same

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6194684B1 (en) 1998-11-02 2001-02-27 Lincoln Global, Inc. Output choke for D.C. welder and method of using same
US6859128B1 (en) 1998-11-02 2005-02-22 Lincoln Global, Inc. Output choke for D.C. welder and method of using same
US6930580B2 (en) 1998-11-02 2005-08-16 Lincoln Global, Inc. Output choke for D.C. welder and method of using same
US7102479B2 (en) 1998-11-02 2006-09-05 Lincoln Global, Inc. Output choke for D.C. welder and method of using same

Similar Documents

Publication Publication Date Title
US5483129A (en) Synchrotron radiation light-source apparatus and method of manufacturing same
US5568109A (en) Normal conducting bending electromagnet
JP2667832B2 (en) Deflection magnet
TWI381413B (en) Irradiation system with ion beam/charged particle beam
US10290463B2 (en) Compact deflecting magnet
WO2012165385A1 (en) Racetrack-shape magnetic field generator for magnetron sputtering
US3831121A (en) Focusing magnet
US3787790A (en) Magnetic mass spectrometer with shaped, uniformly saturating magnetic poles
JPH03208250A (en) Analysis electromagnet
JP4218699B2 (en) Analysis electromagnet
JP7416377B2 (en) Multipolar electromagnets and accelerators using them
US3388359A (en) Particle beam focussing magnet with a septum wall
JP3867668B2 (en) Bending electromagnet, charged particle transport path, and circular accelerator
US3699332A (en) Magnetic mass spectrometer with shaped, uniformly saturating magnetic poles
JP4298312B2 (en) Electromagnet device and charged particle acceleration device
JPH0521197A (en) Bipolar electromagnet
JP3065988B2 (en) Normal conduction type bending electromagnet
JPH01282499A (en) Deflected electromagnet for charged-particle device
KR0147039B1 (en) 4pole electromagnet of accelerator
JP2700687B2 (en) Wiggler equipment
JPH034500A (en) Wiggler for electron beam
JPH0367200A (en) Magnetic field type deflector
JPH04292844A (en) Mass spectro meter
JPH02201899A (en) Deflecting electromagnet for charged particle apparatus
JPS5650038A (en) Electromagnetic focusing type colour picture tube