JPH01282499A - Deflected electromagnet for charged-particle device - Google Patents

Deflected electromagnet for charged-particle device

Info

Publication number
JPH01282499A
JPH01282499A JP63110821A JP11082188A JPH01282499A JP H01282499 A JPH01282499 A JP H01282499A JP 63110821 A JP63110821 A JP 63110821A JP 11082188 A JP11082188 A JP 11082188A JP H01282499 A JPH01282499 A JP H01282499A
Authority
JP
Japan
Prior art keywords
magnetic field
yoke
aperture
return yoke
electromagnet
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP63110821A
Other languages
Japanese (ja)
Inventor
Tetsuya Matsuda
哲也 松田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Electric Corp
Original Assignee
Mitsubishi Electric Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Electric Corp filed Critical Mitsubishi Electric Corp
Priority to JP63110821A priority Critical patent/JPH01282499A/en
Publication of JPH01282499A publication Critical patent/JPH01282499A/en
Pending legal-status Critical Current

Links

Landscapes

  • Particle Accelerators (AREA)

Abstract

PURPOSE:To realize the reduction of a magnetic loss and a leaking magnetic field under a high magnetic field, by forming a return yoke in an inflected arc shape and by providing a protruding part of the yoke. CONSTITUTION:A return yoke 1 inflects in an arc shape, on the whole, and forms an aperture 3 also in an arc shape, and moreover an inner side of the inflected yoke inflects again to an opposite direction to that of the overall yoke to form a protruding part 4. With this structure, the return yoke 1 is able to obtain a larger effective thickness than that determined by the curvature of the aperture 3, by an effect of the protruding part 4. Therewith, without increasing a size of an electromagnet significantly, a magnetic loss and a leaking magnetic field under a high magnetic field can be diminished, and the effective thickness of the yoke can be adjusted with the degree of protrusion and a shape of inflection of the part 4.

Description

【発明の詳細な説明】 [産業上の利用分野] この発明は荷電粒子の進行方向を曲げるために使用され
る荷電粒子装置用偏向電磁石、特にそのヨーク部分の改
良に関するものである。
DETAILED DESCRIPTION OF THE INVENTION [Industrial Application Field] The present invention relates to a deflecting electromagnet for a charged particle device used to bend the traveling direction of charged particles, and in particular to improvements in the yoke portion thereof.

[従来の技術] 従来のこの種の荷電粒子装置用偏向電磁石としては、例
えば第3図と第4図に示すようなものがあった。第3図
は偏向電磁石を上からみた状態を示し、第4図は第3図
IV−IV部分の断面状態を示す。
[Prior Art] Conventional bending electromagnets for charged particle devices of this type include those shown in FIGS. 3 and 4, for example. FIG. 3 shows the bending electromagnet viewed from above, and FIG. 4 shows a sectional view taken along line IV-IV in FIG.

同図に示す偏向電磁石は、例えば文献rINS−NUM
A−24Fild  Measure−ment  o
f  Dipole  Magnetsfor  TR
ANJ p36.37に示されたものであって、(1)
はリターンヨーク、(2)はコイル、(3)はアパーチ
ャーである。
The bending electromagnet shown in the figure is, for example, described in the document rINS-NUM.
A-24Field Measurement o
f Dipole Magnets for TR
As shown in ANJ p36.37, (1)
is a return yoke, (2) is a coil, and (3) is an aperture.

リターンヨーク(1)は鉄などの導磁材を用いて構成さ
れ、円弧状に湾曲するアパーチャー(3)を形成するた
めに全体が湾曲して形成されている。
The return yoke (1) is made of a magnetically conductive material such as iron, and is entirely curved to form an arcuate aperture (3).

以上のように構成された偏向電磁石は、コイル(2)で
発生された磁界がヨーク(2)によってアパーチャー(
3)に収束される。アパーチャ=(3)に進入した荷電
粒子は、磁界と荷電粒子との間に作用するローレンツ力
によって、その進行方向を曲げられながらアパーチャー
(3)内を通過する。これにより、荷電粒子をアバーチ
ャ−(3)の湾曲方向に沿って偏向することができる。
In the bending electromagnet configured as described above, the magnetic field generated by the coil (2) is transmitted through the aperture (
3). The charged particles that have entered the aperture (3) pass through the aperture (3) while their traveling direction is bent by the Lorentz force acting between the magnetic field and the charged particles. Thereby, the charged particles can be deflected along the curved direction of the aperture (3).

リターンヨーク(1)の形状は、得ようとする偏向角度
によって決められる。
The shape of the return yoke (1) is determined by the desired deflection angle.

例えば、180度の偏向角度を得るためには、第5図に
示すように、全体が180度に湾曲された形状のリター
ンヨーク(1)が使用される。
For example, in order to obtain a deflection angle of 180 degrees, a return yoke (1) whose entire shape is curved at 180 degrees is used, as shown in FIG.

ところで、この種の偏向電磁石では、荷電粒子のビーム
強度及び偏向角度に応じて、アパーチャー(3)に収束
すべき磁界の大きさを決めなければならない。荷電粒子
のビームが強い場合、あるいは偏向角度か深い場合は、
それに応じた高磁界をアパーチャー(3)に収束させる
必要がある。
By the way, in this type of deflection electromagnet, the magnitude of the magnetic field to be focused on the aperture (3) must be determined depending on the beam intensity and deflection angle of the charged particles. If the beam of charged particles is strong or the deflection angle is deep,
It is necessary to focus a correspondingly high magnetic field onto the aperture (3).

アパーチャー(3)に高磁界を収束させるに際しては、
リターンヨーク(1)における磁気1貝失と漏れ磁界を
それぞれ少なくすることが要求される。このためには、
リターンヨーク(1)が磁気飽和する磁界レベルすなわ
ち磁気飽和レベルを高くする必要がある。磁気飽和レベ
ルを高くするためには、リターンヨーク(1)の厚みW
をできるたけ大きくする必要がある。
When focusing a high magnetic field on the aperture (3),
It is required to reduce magnetic field loss and leakage magnetic field in the return yoke (1). For this purpose,
It is necessary to increase the magnetic field level at which the return yoke (1) is magnetically saturated, that is, the magnetic saturation level. In order to increase the magnetic saturation level, the thickness W of the return yoke (1) must be
needs to be as large as possible.

[発明が解決しようとする課′、XU]しかしながら、
従来の荷電粒子装置用偏向電磁石は、第3図に示すよう
に、リターンヨーク(1)の全体をアパーチャー(3)
の湾曲形状に合せて形成していたので、リターンヨーク
(1)の厚みWがアパーチャー(3)の内周側における
曲率半径Wmaxよりも大きくなることはなかった。つ
まり、リターンヨーク(1)の厚みWはアパーチャー(
3)の湾曲曲率によって規定されていた。
[The problem that the invention seeks to solve, XU] However,
As shown in Fig. 3, in the conventional bending electromagnet for charged particle devices, the entire return yoke (1) is connected to the aperture (3).
Since the return yoke (1) was formed in accordance with the curved shape of the return yoke (1), the thickness W of the return yoke (1) was never larger than the radius of curvature Wmax on the inner peripheral side of the aperture (3). In other words, the thickness W of the return yoke (1) is equal to the aperture (
It was defined by the curvature of 3).

このため、リターンヨーク(1)の磁気飽和レベルはア
パーチャー(3)の湾曲曲率によって制限され、高磁界
あるいは偏向角度が深い場合は、磁気損失及び漏れ磁界
の増大を防ぐことができなくなる、という課題があった
Therefore, the magnetic saturation level of the return yoke (1) is limited by the curvature of the aperture (3), and when the magnetic field is high or the deflection angle is deep, it becomes impossible to prevent increases in magnetic loss and leakage magnetic field. was there.

上述の問題を解消するためには、アパーチャー(3)の
内周側における曲率半径WBxを十分に大きくすること
が考えられる。しかし、アパーチャー(3)の内周側に
おける曲率半径WIllaXを大きくするにことは、リ
ターンヨーク(1)の曲率半径の増大すなわち大型化を
意味する。つまり、強ビームの荷電粒子を高磁界によっ
て偏向するためには、その高磁界下での磁気損失及び漏
れ磁界を少なくするために、偏向電磁石を著しく大型化
しなければならなくなる、という別の課題が生じる。
In order to solve the above-mentioned problem, it is conceivable to make the radius of curvature WBx on the inner peripheral side of the aperture (3) sufficiently large. However, increasing the radius of curvature WIllaX on the inner peripheral side of the aperture (3) means increasing the radius of curvature of the return yoke (1), that is, increasing its size. In other words, in order to deflect charged particles in an intense beam using a high magnetic field, another problem arises: the deflection electromagnet must be significantly larger in order to reduce magnetic loss and leakage magnetic field under the high magnetic field. arise.

この発明はかかる課題を解決するためになされたもので
、電磁石のサイズを著しく増大させることなく、高磁界
下での磁気損失及び漏れ磁界が少ない荷電粒子装置用偏
向電磁石を得ることを目的とする。
The present invention has been made to solve such problems, and its purpose is to obtain a bending electromagnet for charged particle devices that has less magnetic loss and less magnetic field leakage under high magnetic fields without significantly increasing the size of the electromagnet. .

[課題を解決するための手段] この発明に係る荷電粒子装置用偏向電磁石は、円弧状に
湾曲したアパーチャーを形成するために全体として円弧
状に湾曲形成されるとともに、その湾曲の内側部分が全
体の湾曲方向とは反対方向に湾曲して突き出して形成さ
れたリターンヨークを何するものである。
[Means for Solving the Problems] A bending electromagnet for a charged particle device according to the present invention is curved in an arc shape as a whole to form an aperture curved in an arc shape, and the inner part of the curve is formed as a whole. What is the purpose of the return yoke that is curved and protruded in the opposite direction to the curve direction of the return yoke?

[作用] 上記手段によって、リターンヨークの実効的な厚みをア
パーチャーの湾曲曲率で規定される厚みよりも大きくす
ることができるようになるため、電磁石全体の外形サイ
ズを著しく増大させることなく、高磁界下での磁気損失
及び漏れ磁界が少ない荷電粒子装置用偏向電磁石を得る
ことができる。
[Function] With the above means, the effective thickness of the return yoke can be made larger than the thickness defined by the curvature of the aperture, so it is possible to handle high magnetic fields without significantly increasing the overall external size of the electromagnet. It is possible to obtain a deflecting electromagnet for a charged particle device with less magnetic loss and leakage magnetic field underneath.

[実施例] 以下、この発明の実施例を図面に基づいて説明する。[Example] Embodiments of the present invention will be described below based on the drawings.

なお、図において、従来と同一または対応する部分は同
一符号で示す。
In the figures, parts that are the same as or correspond to the conventional ones are indicated by the same reference numerals.

第1図はこの発明の第1実施例による荷電粒子装置用偏
向電磁石の要部を示す。
FIG. 1 shows the main parts of a deflecting electromagnet for a charged particle device according to a first embodiment of the present invention.

同図において、(1)はリターンヨーク、(2)はコイ
ル、(3)はアパーチャーである。
In the figure, (1) is a return yoke, (2) is a coil, and (3) is an aperture.

ここで、リターンヨーク(1)は、全体が円弧状に湾曲
することによって円弧状に屈曲するアパーチャー(3)
を形成するとともに、その湾曲が全体の湾曲方向とは反
対方向に湾曲して突き出している。(4)はその突き出
し部分を示す。
Here, the return yoke (1) has an aperture (3) that is bent in an arc shape by curving the whole in an arc shape.
, and its curve protrudes in a direction opposite to the overall curve direction. (4) shows the protruding portion.

上記のように形成されたリターンヨーク(1)は、アパ
ーチャー(3)の曲率半径を大きくしなくても、上記突
き出し部分(4)によって、その実効的な厚みを、アパ
ーチャー(3)の湾曲曲率で規定される厚みよりも大き
くすることができる。
The return yoke (1) formed as described above has its effective thickness reduced by the curvature of the aperture (3) without increasing the radius of curvature of the aperture (3). The thickness can be made larger than the specified thickness.

これにより、電磁石のサイズを著しく増大させ−ること
なく、高磁界下での磁気損失及び磁界が少ない荷電粒子
装置用偏向電磁石を得ることができるようになる。
This makes it possible to obtain a bending electromagnet for a charged particle device with less magnetic loss and less magnetic field under a high magnetic field without significantly increasing the size of the electromagnet.

また、]二記文き出し部分(4)によって増大させられ
るリターンヨーク(1)の実効的な厚みは、上記突出部
分(4)の突出の大きさ及び湾曲の形状などによって任
意に選択及び調整することができる。
In addition, the effective thickness of the return yoke (1) increased by the starting part (4) can be arbitrarily selected and adjusted depending on the size of the protrusion and the shape of the curve of the protruding part (4). can do.

第2図はこの発明の別の実施例の要部を示したものであ
って、ここではリターンヨーク(1)の全体を180度
湾曲させることによって、180度の荷電粒子偏向角度
をi)でいるとともに、その湾曲の内側に、全体の湾曲
方向とは反対方向に湾曲して突き出す突き出し部分(4
)によって、リターンヨーク(1)の実効的な厚みを大
幅に増大させている。
FIG. 2 shows the main part of another embodiment of the present invention, in which the charged particle deflection angle of 180 degrees is obtained by curving the entire return yoke (1) by 180 degrees. At the same time, there is a protruding part (4
), the effective thickness of the return yoke (1) is significantly increased.

これにより、第1の実施例の場合と同様に、電磁石のサ
イズを考しく増大させることなく、高磁界下での磁気損
失及び漏れ磁界が少ない荷電粒子装置用偏向電磁石を得
ることができるようになっている。
As a result, as in the case of the first embodiment, it is possible to obtain a bending electromagnet for a charged particle device with less magnetic loss and less magnetic field leakage under a high magnetic field without unnecessarily increasing the size of the electromagnet. It has become.

[発明の効果コ この発明は以−り説明したとおり、円弧状に湾曲したア
パーチャーを形成するために全体として円弧状に湾曲形
成されるとともに、その湾曲の内側部分が全体の湾曲方
向とは反対方向に湾曲して突き出して形成されたリター
ンヨークを何する構造により、リターンヨークの実効的
な厚みをアパーチャーの湾曲曲率で規定される厚みより
も大きくすることができるようになるため、電磁石全体
の外形サイズを著しく増大させることなく、高磁界下で
の磁気損失及び漏れ磁界が少ない荷7は粒子装置用(−
向7ヒ磁石を得ることができる効果がある。
[Effects of the Invention] As explained hereinafter, in order to form an aperture curved in a circular arc, the present invention is curved in an arc shape as a whole, and the inner part of the curve is opposite to the direction of the entire curve. The structure of the return yoke, which is formed by protruding in a curved direction, makes it possible to make the effective thickness of the return yoke larger than the thickness defined by the curvature of the aperture. Load 7, which has low magnetic loss and leakage magnetic field under high magnetic fields without significantly increasing the external size, is suitable for particle devices (-
This has the effect of making it possible to obtain a magnet in the opposite direction.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図はこの発明の第1の実施例による荷電粒子装置用
偏向電磁石の要部を示す上面図、第2図はこの発明の第
2の実施例による荷電粒子装置用偏向電磁石の要部を示
す上面図、第3図は従来の荷電粒子装置用偏向電磁石の
第1の構成例を示す上面図、第4図は第3図のIV−I
V部分の断面図、第5図は従来の荷電粒子装置用偏向電
磁石の第1の構成例を示す上面図である。 図中(1)はリターンヨーク、(2)はコイル、(3)
はアパーチャー、(4)は突き出し部分である。 なお、図中、同一符号は同一、又は相当部分を示す。 代理人 弁理士 大 岩 増 雄 (他 2名) 偏句電琺七 第1図 電−石・)二面 @2図
FIG. 1 is a top view showing the main parts of a bending electromagnet for a charged particle device according to a first embodiment of the invention, and FIG. 2 shows the main parts of a bending electromagnet for a charged particle device according to a second embodiment of the invention. 3 is a top view showing a first configuration example of a conventional bending electromagnet for a charged particle device, and FIG. 4 is a top view showing IV-I in FIG. 3.
A cross-sectional view of the V portion and FIG. 5 are top views showing a first configuration example of a conventional bending electromagnet for a charged particle device. In the figure, (1) is the return yoke, (2) is the coil, and (3)
is an aperture, and (4) is a protruding portion. In addition, in the figures, the same reference numerals indicate the same or equivalent parts. Agent: Patent attorney Masuo Oiwa (and 2 others)

Claims (1)

【特許請求の範囲】 この発明は荷電粒子の進行方向を曲げるために使用され
る荷電粒子装置用偏向電磁石、特にそのヨーク部分の改
良に関するものである。 円弧状に湾曲したアパーチャーを形成するために全体と
して円弧状に湾曲形成されるとともに、その湾曲の内側
部分が全体の湾曲方向とは反対方向に湾曲して突き出し
て形成されたリターンヨークを備えたことを特徴とする
荷電粒子装置用偏向電磁石。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a deflection electromagnet for a charged particle device used for bending the traveling direction of charged particles, and in particular to improvements in the yoke portion thereof. The return yoke is formed by being curved in an arc shape as a whole to form an arc-shaped aperture, and the inner part of the curve is curved and protrudes in a direction opposite to the direction of the entire curve. A bending electromagnet for a charged particle device characterized by:
JP63110821A 1988-05-07 1988-05-07 Deflected electromagnet for charged-particle device Pending JPH01282499A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP63110821A JPH01282499A (en) 1988-05-07 1988-05-07 Deflected electromagnet for charged-particle device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP63110821A JPH01282499A (en) 1988-05-07 1988-05-07 Deflected electromagnet for charged-particle device

Publications (1)

Publication Number Publication Date
JPH01282499A true JPH01282499A (en) 1989-11-14

Family

ID=14545511

Family Applications (1)

Application Number Title Priority Date Filing Date
JP63110821A Pending JPH01282499A (en) 1988-05-07 1988-05-07 Deflected electromagnet for charged-particle device

Country Status (1)

Country Link
JP (1) JPH01282499A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006156209A (en) * 2004-11-30 2006-06-15 Sumitomo Eaton Noba Kk Ion beam/charged particle beam irradiator
JP2007207467A (en) * 2006-01-31 2007-08-16 Jeol Ltd Energy filter
KR101226505B1 (en) * 2004-11-30 2013-01-25 가부시키가이샤 에스이엔 Irradiation system with ion beam/charged particle beam

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006156209A (en) * 2004-11-30 2006-06-15 Sumitomo Eaton Noba Kk Ion beam/charged particle beam irradiator
KR101226505B1 (en) * 2004-11-30 2013-01-25 가부시키가이샤 에스이엔 Irradiation system with ion beam/charged particle beam
JP2007207467A (en) * 2006-01-31 2007-08-16 Jeol Ltd Energy filter

Similar Documents

Publication Publication Date Title
EP0661913B1 (en) Normal conducting bending electromagnet
US5034715A (en) Permanent magnet field sources of conical orientation
JPH01282499A (en) Deflected electromagnet for charged-particle device
JPH06508004A (en) composite permanent magnet
US3671895A (en) Graded field magnets
KR930017070A (en) Deflection yoke for cathode ray tube and cathode ray tube display device having same
GB1461521A (en) Focusing magnet
JPH04322099A (en) Charged particle device
JPS5944743B2 (en) Irradiation electron lens system for scanning electron microscopes, etc.
US5486801A (en) Spherical magnet structure for use in synchrotron radiation source
US3643191A (en) Electron lens for electron microscope and the like
JP3065988B2 (en) Normal conduction type bending electromagnet
JPS5978433A (en) Electromagnetic objective
JP2002025795A (en) Charged particle deflecting electromagnet
JP3157707B2 (en) Quadrupole magnet
JP2002025796A (en) Variable magnetic field intensity type electromagnet and variable energy type accelerator using the same
JP4215227B2 (en) electromagnet
JPS617543A (en) Color picture tube
JPH0215982B2 (en)
JPH01167999A (en) Plasma foam control method and control device
JP2505665B2 (en) Bending electromagnet for accelerator
JP2758686B2 (en) Ordinary conductive magnets for charged particle devices
JPH03208250A (en) Analysis electromagnet
JP2522775Y2 (en) Quadrupole electromagnets for charged particle devices
EP0031647A1 (en) Bubble memory structure