JPH03208245A - Low temperature scanning type microscope - Google Patents

Low temperature scanning type microscope

Info

Publication number
JPH03208245A
JPH03208245A JP2001421A JP142190A JPH03208245A JP H03208245 A JPH03208245 A JP H03208245A JP 2001421 A JP2001421 A JP 2001421A JP 142190 A JP142190 A JP 142190A JP H03208245 A JPH03208245 A JP H03208245A
Authority
JP
Japan
Prior art keywords
specimen
sample
cooled
stage
sample stage
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2001421A
Other languages
Japanese (ja)
Inventor
Shuzo Waratani
修三 藁谷
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Fuji Electric Co Ltd
Original Assignee
Fuji Electric Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fuji Electric Co Ltd filed Critical Fuji Electric Co Ltd
Priority to JP2001421A priority Critical patent/JPH03208245A/en
Publication of JPH03208245A publication Critical patent/JPH03208245A/en
Pending legal-status Critical Current

Links

Abstract

PURPOSE:To cool specimen stages in a short time, and thereby enable urgent observation and element analysis as well by using an integrated circulation type cooler for cooling No.1 specimen stage, and also using a separated circulation type cooler for cooling No.2 specimen stage. CONSTITUTION:A specimen 9 which is cooled and frozen in a reserved exhaust chamber 12 in advance is rested on No.1 stationary specimen stage 6 which has been kept at low temperature in a specimen chamber (vacuum) 1, and is cut off by a knife unit 15 attached to the specimen stage 6. The specimen 9 which has been cut off, is transshipped to No.2 movable specimen stage 7 which has been kept at low temperature in the same specimen chamber 1, the specimen 9 is then set up at a specified position by the movable stage 7. The observation of a surface condition and element analysis are then performed in a state that the specimen 9 set up is in a cooled and frozen condition. In this case, No.1 stationary specimen stage 6 is cooled by an integrated circulation type cooler 16 mounted while being hermetically penetrated through the wall of the specimen chamber 1, and No.2 movable specimen chamber 7 is cooled by a separated circulation type cooler 20 mounted while being hermetically penetrated through the wall of the specimen chamber 1.

Description

【発明の詳細な説明】 [産業上の利用分野〕 本発明は試料を冷却凍結して観察および元素分折を行う
低温走査型電子D?lL鏡の冷却装置に関する. 〔従来の技術〕 走査型電子顕微鏡で含水状試料あるいは生物試料を観察
および元素分析を行う場合には、これら試料を冷却凍結
し、ナイフで割断し、必要に応しこの割断面に導電性付
与のための金属被膜のコーティングを行うようにする。
[Detailed Description of the Invention] [Industrial Application Field] The present invention is a low-temperature scanning electron D? Concerning the cooling device for the 1L mirror. [Prior art] When observing and conducting elemental analysis of water-containing samples or biological samples using a scanning electron microscope, these samples are cooled and frozen, cut into pieces with a knife, and the cut surfaces are made conductive if necessary. Coating with metal film for this purpose.

低温走査型電子顕微鏡は試料の冷却ステージ,ナイフユ
ニット1コーティングユニットが走査型電子顕微鏡に一
体に組み込まれた装置である.第2図(alは従来の低
温走査型電子顕微鏡の試料保持部の構造の一例を示す図
で、第2図(blは第2図falのA−A断面図である
.真空の試料室1の予備排気室12を仕切弁13を閉じ
た後大気圧にし、試料挿入蓋11を外す.この挿入蓋1
1に付属している試料送り棒11aに、予め装I外で液
体窒素で冷却した試料9が固定された試料ホルダ8を取
り付けた後、予備排気室12を真空排気する.所定の真
空度に到達後、仕切弁13を開き、試料9が固定された
試料ホルダ8を試料室1内の第1の試料ステージ6に載
せる.この試料ステージ6は液体窒素4が入れられたタ
ンク5aにより冷却され低温に保持されており、試料9
も低温に保持される.15はナイフユニットで、常時は
図のように試料ステージ6に接触させて冷却しておき、
図示してない機構で上部に移動して試料9を割断ずる.
14はコーティングユニットで、必要に応し試料9の割
断面にi電性付与のための金属被膜のコーティングを行
う.試料9が固定された試料ホルダ8は更に試料室1内
の第2の試料ステージ7に試料送り棒11aを用いて載
せ換える。この試料ステージ7は、同様に、液体窒素4
が入れられたタンク5bにより低温に保持されている.
ここで第1の試料ステージ6は固定であり、タンク5a
により直接的に冷却されるが、第2の試料ステージ7は
図示していない駆動機構が付属されて可動となっており
、銅のより線を用いたフレキシブルな伝熱体10を通し
て間接的に冷却されている。試料9はこの可動の試料ス
テージにより所定の位置に設定され、冷却凍結した状態
で表面形状の観察および元素分析が行われる。
A cryo-scanning electron microscope is a device in which a sample cooling stage, a knife unit, and a coating unit are integrated into a scanning electron microscope. Figure 2 (al is a diagram showing an example of the structure of the sample holding part of a conventional low-temperature scanning electron microscope, and Figure 2 (bl is a sectional view taken along line A-A in Figure 2 fal). Vacuum sample chamber 1 After closing the gate valve 13, the preliminary exhaust chamber 12 is brought to atmospheric pressure, and the sample insertion lid 11 is removed.
After attaching the sample holder 8 to which the sample 9 previously cooled with liquid nitrogen outside the holder I is fixed to the sample feeding rod 11a attached to the holder 1, the preliminary evacuation chamber 12 is evacuated. After reaching a predetermined degree of vacuum, the gate valve 13 is opened, and the sample holder 8 to which the sample 9 is fixed is placed on the first sample stage 6 in the sample chamber 1. This sample stage 6 is cooled and maintained at a low temperature by a tank 5a containing liquid nitrogen 4, and the sample 9
is also kept at a low temperature. 15 is a knife unit, which is normally cooled by being in contact with the sample stage 6 as shown in the figure.
It moves to the upper part using a mechanism not shown and cuts sample 9.
Reference numeral 14 denotes a coating unit, which coats the cut surface of the sample 9 with a metal film to impart i-electrification, if necessary. The sample holder 8 with the sample 9 fixed thereon is further placed on the second sample stage 7 in the sample chamber 1 using the sample feed rod 11a. This sample stage 7 similarly includes liquid nitrogen 4
The temperature is maintained at a low temperature by the tank 5b containing the water.
Here, the first sample stage 6 is fixed, and the tank 5a
However, the second sample stage 7 is movable with an attached drive mechanism (not shown), and is indirectly cooled through a flexible heat transfer body 10 made of stranded copper wire. has been done. The sample 9 is set at a predetermined position by this movable sample stage, and surface shape observation and elemental analysis are performed in a cooled and frozen state.

〔発明が解決しようとする課題〕[Problem to be solved by the invention]

液体窒素が入れられたタンクによる冷却方式を用いた前
述の低温走査型電子顕微鏡においては、その冷却性能は
所定の冷却温度−130℃に到達するのに第1の試料ス
テージで約60分、第2の試料ステージでは約90分を
要し、緊急の試料の観察および元素分析が必要とされる
場合には、準備に時間がかかり過ぎるという問題があっ
た.また、液体窒素は時間の経過とともに気化するので
、観察中に何回か補充しなければならず実験の効率が悪
い問題があった.また、緊急の観察および元素分析のた
めにはこの冷却用にかなりの量の液体窒素を常時*iす
る必要があった. 本発明の課題は前述の問題点を解決して、第1及び第2
ステージ冷却のためのかなりの量の液体窒素を常時準備
する必要がなく、しかも短時間に冷却して緊急の観察お
よび元素分析が可能な低温走査型電子顕微鏡を提供する
ことにある.〔課題を解決するための手段〕 前述のI題を解決するために本発明の真空室内で低温に
保持された固定の第1の試料ステージに予め冷却凍結し
た試料を載せ、この試料ステージに付属のナイフユニッ
トにより割断し、この割断された試料を同じ真空室内で
低温に保持された可動の第2の試料ステージに載せ換え
、試料をこの可動の試料ステージにより所定の位夏に設
定し、冷却凍結した状態で表面形状の観察および元素分
析を行う低温走査型電子顕微鏡においては、固定の第1
の試料ステージは前記真空室の壁を気密貫通して取り付
けられた一体型循環式冷却器により冷却され、可動の第
2の試料ステージは真空室の壁を気密貫通して取り付け
られた分離型循環式冷却器により冷却されるようにする
. 〔作用〕 本発明の低温走査型電子顕微鏡では第1および第2の試
料ステージの冷却に従来の液体窒素を入れたタンクによ
る冷却方式に換えて、第1の試料ステージの冷却には一
体型循環式冷却器を、第2の試料ステージの冷却には分
離型循環式冷却器を用いるようにした.いずれの循環式
冷却器もコンブレンサで圧縮・放熱された冷媒が、膨脹
して低温となる作用を利用したもので、この低温の冷媒
がコールドヘッドの先端まで循環するため、その冷却性
能は非常に高い.その熱抵抗は小さく各試料ステージは
急速に冷却される。特に、第2の試料ステージは可動と
なっており、従来は銅のより腺を用いたフレキシブルな
伝熱体を通して間接的に冷却していたものが、冷媒循環
による直接的な冷却となりその効果が大きい.なお、一
体型循環式冷却器は本体部とコールドヘッドが一体とな
ったものであり、分離型循環式冷却器は本体部とコール
ドヘッドが分離しており、この間がフレキシブルチュー
ブで連絡されたものである。両者とも冷却性能は変わら
ないが、コンブレソサの人力が分離型の方が大きい. 〔実施例〕 第1図(alは本発明の一実施例の低温走査型電子顕微
鏡の試料保持部の断面図、第1図(b)は第1図fa)
のA−A断面図である.仕切弁l3を閉じ予備排気室1
2を大気圧にして、試料挿入蓋11を外し、この挿入蓋
11に付いている試料送り棒11aに、予め装置外で液
体窒素で冷却した試料9を固定した試料ホルダ8を取り
付けた後、予備排気室12を真空排気する。所定の真空
度に到達後、仕切弁13を開き、試料9が固定された試
料ホルダ8を試料室1内の第1の試料ステージ6に載せ
る。この試料ステージ6は一体型循環式冷却器16で冷
却され低温に保持されており、試料9も低温に保持され
る。
In the aforementioned cryo-scanning electron microscope that uses a cooling method using a tank filled with liquid nitrogen, its cooling performance is such that it takes about 60 minutes at the first sample stage and about 60 minutes at the first sample stage to reach the predetermined cooling temperature of -130°C. Sample stage 2 required approximately 90 minutes, and there was a problem in that it took too much time to prepare when urgent sample observation and elemental analysis were required. Additionally, since liquid nitrogen vaporizes over time, it had to be replenished several times during observation, which resulted in poor experimental efficiency. Additionally, for emergency observation and elemental analysis, it was necessary to constantly supply a considerable amount of liquid nitrogen for cooling. The object of the present invention is to solve the above-mentioned problems and to
The object of the present invention is to provide a low-temperature scanning electron microscope that does not require the constant preparation of a considerable amount of liquid nitrogen for cooling the stage, and can be cooled in a short period of time for emergency observation and elemental analysis. [Means for solving the problem] In order to solve the above-mentioned problem I, a pre-chilled and frozen sample is placed on a fixed first sample stage kept at a low temperature in the vacuum chamber of the present invention, and a sample attached to this sample stage is placed. The cut sample is placed on a movable second sample stage kept at a low temperature in the same vacuum chamber, and the sample is set at a predetermined temperature by this movable sample stage and cooled. In cryogenic scanning electron microscopy, which performs surface topography observation and elemental analysis in a frozen state,
The second sample stage is cooled by an integrated circulating cooler installed hermetically through the wall of the vacuum chamber, and the movable second sample stage is cooled by a separate circulating cooler installed hermetically through the wall of the vacuum chamber. Cooled by a type cooler. [Function] In the cryogenic scanning electron microscope of the present invention, instead of the conventional cooling method using a tank containing liquid nitrogen for cooling the first and second sample stages, an integrated circulation system is used for cooling the first sample stage. A separate circulation type cooler was used to cool the second sample stage. Both circulation type coolers utilize the effect of the refrigerant compressed and dissipated by the condenser, which expands to a lower temperature.As this low-temperature refrigerant circulates to the tip of the cold head, its cooling performance is extremely high. expensive. Its thermal resistance is small and each sample stage is cooled quickly. In particular, the second sample stage is movable, and while conventionally it was indirectly cooled through a flexible heat transfer body using copper strands, it is now directly cooled by refrigerant circulation. big. In addition, an integrated circulation type cooler is one in which the main body and cold head are integrated, and a separate type circulation type cooler is one in which the main body and cold head are separated, and the two are connected by a flexible tube. It is. Cooling performance is the same for both types, but the separate type requires more manpower to operate the combustor. [Example] Fig. 1 (Al is a cross-sectional view of the sample holding part of a low temperature scanning electron microscope according to an embodiment of the present invention, Fig. 1(b) is Fig. 1fa)
This is a sectional view taken along line A-A. Close the gate valve l3 and pre-exhaust chamber 1
2 to atmospheric pressure, remove the sample insertion lid 11, and attach the sample holder 8 to which the sample 9 previously cooled with liquid nitrogen outside the apparatus is fixed to the sample feeding rod 11a attached to the insertion lid 11. The preliminary evacuation chamber 12 is evacuated. After reaching a predetermined degree of vacuum, the gate valve 13 is opened, and the sample holder 8 to which the sample 9 is fixed is placed on the first sample stage 6 in the sample chamber 1. The sample stage 6 is cooled and kept at a low temperature by an integrated circulating cooler 16, and the sample 9 is also kept at a low temperature.

ここで16aはこの冷却器16のコールドヘッドであり
、取/【j台19を介して第1の試料ステージ6を冷却
している。15はナイフユニノトで、常時は図のように
試ネ:1ステージ6に接触させて冷却しておき、図示し
てない機構で上部に移動して試料9を割断ずる。14は
コーティングユニットで必要に応し試料9の割断面に導
電性付与のための金属被膜のコーティングを行う。試料
9が固定された試料ホルダ8は更に試料室1内の可動の
第2の試料ステジ7に試料送り棒11aを用いて載せ換
えられる。
Here, 16a is a cold head of this cooler 16, which cools the first sample stage 6 via the stand 19. Reference numeral 15 denotes a knife unit, which is normally kept in contact with the sample stage 6 as shown in the figure to cool it, and is moved to the upper part by a mechanism not shown to cut the sample 9. A coating unit 14 coats the cut surface of the sample 9 with a metal film for imparting conductivity, if necessary. The sample holder 8 to which the sample 9 is fixed is further transferred to the movable second sample stage 7 in the sample chamber 1 using the sample feed rod 11a.

この可動の試料ステージ7は分離型循環式冷却器20で
冷却され低温に保持されている.ここで、20aはこの
冷却器20のコールドヘッドであり、取付台l9を介し
て第2の試料ステージ7を冷却している。
This movable sample stage 7 is cooled and kept at a low temperature by a separate circulating cooler 20. Here, 20a is a cold head of this cooler 20, which cools the second sample stage 7 via a mounting base l9.

この冷却器20は分離型で本体とコールドへット20a
は分離しておりフレキシブルチューブ20bで連絡され
ている.従って、コールドヘッド20aは可動となって
おり、従来は銅のより線を用いたフレキシブルな伝熱体
を通して間接的に冷却していたものが、コールドヘフド
20aにより直接に冷却される.試料9はこの可動の試
料ステージにより所定の位置に設定され、冷却凍結した
状態で表面形状の観察および元素分析が行われる。
This cooler 20 is a separate type, with a main body and a cold head 20a.
are separated and connected by a flexible tube 20b. Therefore, the cold head 20a is movable, and instead of being cooled indirectly through a flexible heat transfer body using stranded copper wire, the cold head 20a cools directly. The sample 9 is set at a predetermined position by this movable sample stage, and surface shape observation and elemental analysis are performed in a cooled and frozen state.

固定の第1の試料ステージに取り付けた一体型循環式冷
却器および可動の第2の試料ステージに取り付けた分離
型循環式冷却器は、いずれも、作動流体にヘリウムガス
を用いた、例えば、逆スターリングサイクル式冷却器で
極低温を得るのに適したものである。原理としてはコン
ブレノサの圧縮シリンダ.コールドへノドの膨脹シリン
ダ1駆動モータ等が全て一つの空間内に収納され、駆動
モータの回転により、圧縮工程と膨脹工程を繰り返し、
圧縮工程で圧縮シリンダに設けられた冷却フィンにより
放熱し、膨脹工程で、膨脹シリンダのあるコールドヘッ
ドより吸熱するもので、膨脹して低温となった冷媒がコ
ールドヘッドの先端まで循環しており、その冷却性能は
非常に高い。
Both an integral circulating cooler attached to a fixed first sample stage and a separate circulating cooler attached to a movable second sample stage are capable of using helium gas as the working fluid, e.g. It is suitable for obtaining extremely low temperatures in Stirling cycle coolers. The principle is a Combrenosa compression cylinder. The expansion cylinder 1 drive motor etc. of the cold throat are all housed in one space, and the rotation of the drive motor repeats the compression process and the expansion process.
During the compression process, heat is radiated by the cooling fins provided on the compression cylinder, and during the expansion process, heat is absorbed from the cold head in the expansion cylinder.The expanded and low-temperature refrigerant is circulated to the tip of the cold head. Its cooling performance is extremely high.

体型は本体とコールドヘッドが一体となったものであり
、分離型は本体とコールドヘッドが分離しており、この
間がフレキシブルチューブで連絡されたものである。両
者とも冷却性能は変わらないが、コンブレソサの入力が
分離型の方が大きい.本発明ではこれら循環式冷却器で
、冷却温度80KC− 193℃)、冷却能力1ジュー
ル/秒(lwatt)仕様のものを使用した場合、第1
の試料ステージは所定の冷却温度−130℃に到達する
のに約10分であった。これは従来の方法では約60分
を必要としていたものである。第2の試料ステージにつ
いても所定の冷却温度−130℃に到達するのに約10
分であり、これは従来の方法では約90分を必要として
いたものである.また、前述の仕様の循環式冷却器で、
その入力は一体型で35W,分離型で45Wであり、こ
の両者を適所に使い分けることにより、少ない入力で大
きな冷却効果が得られる。
The body type is one in which the main body and cold head are integrated, while the separate type has the main body and cold head separated, and the two are connected by a flexible tube. Cooling performance is the same for both types, but the input to the combustor is greater for the separate type. In the present invention, when using these circulation type coolers with a cooling temperature of 80KC-193℃ and a cooling capacity of 1 joule/second (lwatt), the first
It took about 10 minutes for the sample stage to reach the predetermined cooling temperature of -130°C. This required approximately 60 minutes in the conventional method. For the second sample stage as well, it took about 10
The conventional method required approximately 90 minutes. In addition, with a circulation cooler of the specifications mentioned above,
The input power is 35W for the integrated type and 45W for the separate type, and by using both in appropriate locations, a large cooling effect can be obtained with a small input.

〔発明の効果〕〔Effect of the invention〕

本発明によれば、低温走査型電子顕微鏡において、固定
されている第1の試料ステージは人力の小さい一体型循
環式冷却器で、可動する第2の試料ステージはコールド
ヘッドが可動の分離型冷却器でそれぞれ冷却することに
より、一体型35W分離型45W,計80Wの少ない入
力で、第1および第2の試料ステージとも所定の冷却温
度−130℃に到達するのに約10分である。これは、
従来、第1の試料ステージで60分,第2の試料ステー
ジで90分を必要としていたもので、これによって緊急
の観察および元素分析が可能となった。
According to the present invention, in a cryo-scanning electron microscope, the fixed first sample stage is an integrated circulating cooler that requires little human power, and the movable second sample stage is a separate cooling type with a movable cold head. By cooling each stage in a separate device, it takes about 10 minutes to reach the predetermined cooling temperature of −130° C. for both the first and second sample stages with a small input of 80 W (integrated type 35 W and separated type 45 W). this is,
Conventionally, the first sample stage required 60 minutes and the second sample stage 90 minutes, but this now enables emergency observation and elemental analysis.

また、循環式冷却器を用いることで、従来、試料ステー
ジ冷却用にかなりの量の液体窒素を常時準備する必要が
あったが、これが全く不要となった.
Additionally, by using a circulating cooler, the conventional need to constantly prepare a considerable amount of liquid nitrogen to cool the sample stage is no longer necessary.

【図面の簡単な説明】[Brief explanation of drawings]

第1図ta+は本発明の一実施例の低温走査型電子顕微
鏡の試料保持部の断面図、第1図(′b)は第1図(a
+のA−A断面図、第2図ta+は従来の一例の低温走
査型電子顕微鏡の試料保持部の断面図、第2図山)は第
2図fatのA−A断面図である.1:試料室(真空)
  6:第1の試料ステージ(固定)、7:第2の試料
ステージ (可動)、9:試料、l5:ナイフユニット
、16:一体型循環式冷/ 6第l一試利ス〒−シ゜(固幻 第1図
FIG. 1(a) is a cross-sectional view of the sample holding part of a cryo-scanning electron microscope according to an embodiment of the present invention, and FIG.
Figure 2 (ta+) is a cross-sectional view of the sample holding part of a conventional cryo-scanning electron microscope, and Figure 2 (mountain) is a cross-sectional view taken along line A-A in Figure 2 (fat). 1: Sample chamber (vacuum)
6: First sample stage (fixed), 7: Second sample stage (movable), 9: Sample, 15: Knife unit, 16: Integrated circulation cooling / 6 1st sample stage (movable) Fig. 1

Claims (1)

【特許請求の範囲】[Claims] 1)真空室内で低温に保持された固定の第1の試料ステ
ージに予め冷却凍結した試料を載せ、この試料ステージ
に付属のナイフユニットにより割断し、この割断された
試料を同じ真空室内で低温に保持された可動の第2の試
料ステージに載せ換え、試料をこの可動の試料ステージ
により所定の位置に設定し、冷却凍結した状態で表面形
状の観察および元素分析を行う低温走査型電子顕微鏡に
おいて、固定の第1の試料ステージは前記真空室の壁を
気密貫通して取り付けられた一体型循環式冷却器により
冷却され、可動の第2の試料ステージは真空室の壁を気
密貫通して取り付けられた分離型循環式冷却器により冷
却されることを特徴とする低温走査型電子顕微鏡。
1) Place a sample that has been cooled and frozen in advance on a fixed first sample stage that is kept at a low temperature in a vacuum chamber, cut it into pieces with a knife unit attached to this sample stage, and then keep the cut sample at a low temperature in the same vacuum chamber. In a low-temperature scanning electron microscope, the sample is transferred to a second movable sample stage held, the sample is set at a predetermined position by this movable sample stage, and the surface shape is observed and elemental analysis is performed in a cooled and frozen state. The fixed first sample stage is cooled by an integrated circulating cooler mounted hermetically through the wall of the vacuum chamber, and the movable second sample stage is mounted hermetically through the wall of the vacuum chamber. A low-temperature scanning electron microscope characterized by being cooled by a separate circulating cooler.
JP2001421A 1990-01-08 1990-01-08 Low temperature scanning type microscope Pending JPH03208245A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2001421A JPH03208245A (en) 1990-01-08 1990-01-08 Low temperature scanning type microscope

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2001421A JPH03208245A (en) 1990-01-08 1990-01-08 Low temperature scanning type microscope

Publications (1)

Publication Number Publication Date
JPH03208245A true JPH03208245A (en) 1991-09-11

Family

ID=11501002

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2001421A Pending JPH03208245A (en) 1990-01-08 1990-01-08 Low temperature scanning type microscope

Country Status (1)

Country Link
JP (1) JPH03208245A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013250265A (en) * 2012-06-04 2013-12-12 Leica Mikrosysteme Gmbh Device for preparing, covering in particular, sample
JP2016114609A (en) * 2014-12-17 2016-06-23 ライカ ミクロジュステーメ ゲーエムベーハー Freeze-fracture device

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013250265A (en) * 2012-06-04 2013-12-12 Leica Mikrosysteme Gmbh Device for preparing, covering in particular, sample
JP2016114609A (en) * 2014-12-17 2016-06-23 ライカ ミクロジュステーメ ゲーエムベーハー Freeze-fracture device
US10073016B2 (en) 2014-12-17 2018-09-11 Leica Mikrosysteme Gmbh Freeze fracture machine

Similar Documents

Publication Publication Date Title
Escaig New instruments which facilitate rapid freezing at 83 K and 6 K
US4284894A (en) Cold chamber for the working objects for microscopic and electron microscopic investigations
JP3510914B2 (en) Apparatus and method for rapidly changing heating and cooling
US4827736A (en) Cryogenic refrigeration system for cooling a specimen
US3296821A (en) Microtome including freezing attachments
CN110617650B (en) Cryogenic cooling system
US3456538A (en) Microtome apparatus
JPH03208245A (en) Low temperature scanning type microscope
JP3374273B2 (en) High magnetic field low temperature physical property measurement device
JP3285751B2 (en) Magnetic refrigerator
JP3180856B2 (en) Superconducting critical current measuring device
JP3952279B2 (en) Detection system
JP3843186B2 (en) Overhaul device and overhaul method for cryogenic refrigerator
JPH0610342B2 (en) Vacuum deposition equipment
CN117339650A (en) Low-temperature test system and low-temperature test method
JP3286494B2 (en) Stirling refrigeration equipment
JPH07332829A (en) Freezer
JPH04225755A (en) Cryogenic refrigerating device
JP2001280724A (en) Low temperature mechanical thermal switch
JP2000208083A (en) Sample cooling device for electron microscope
JP3358376B2 (en) Cooling support device and method
JPH0610612Y2 (en) Sample cooling device such as electron microscope
JPH04158841A (en) Refrigerating machine exchange jig
JPS6168547A (en) Cryogenic tester
US20230268157A1 (en) Specimen holder