JPH0320803A - Work simulation device - Google Patents

Work simulation device

Info

Publication number
JPH0320803A
JPH0320803A JP15457989A JP15457989A JPH0320803A JP H0320803 A JPH0320803 A JP H0320803A JP 15457989 A JP15457989 A JP 15457989A JP 15457989 A JP15457989 A JP 15457989A JP H0320803 A JPH0320803 A JP H0320803A
Authority
JP
Japan
Prior art keywords
shape
machining
final
dimension
data
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP15457989A
Other languages
Japanese (ja)
Inventor
Yasumasa Kawashima
泰正 川島
Junichi Hirai
純一 平井
Kumiko Ito
久美子 伊藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Ltd
Original Assignee
Hitachi Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Ltd filed Critical Hitachi Ltd
Priority to JP15457989A priority Critical patent/JPH0320803A/en
Publication of JPH0320803A publication Critical patent/JPH0320803A/en
Pending legal-status Critical Current

Links

Abstract

PURPOSE:To perform the dimensional evaluation of final working shape quantitatively by providing a dimensional evaluation means. CONSTITUTION:The dimensional evaluation can be performed by finding the position of a final working shape surface 21 with a dimension calculation means 40 setting a measuring point 41 on request shape data 30 as reference, and comparing the positional deviation 43 between the final working shape surface 21 and a curved surface 31 with dimensional tolerance 44. The position of the final working shape surface 21 is obtained by checking the direction of a normal 42 at the measuring point 41. Thus, the calculation of dimension and the evaluation processing of it with the dimensional evaluation means 50 can be performed. A function to calculate the dimension proper to a graphic element or that between the graphic elements is attached on the dimension calculation means 40. By employing such method, no perfectly accurate distance between the measuring point 41 and the final working shape surface 21 is obtained, however, a value within a range of practical use can be found at high speed.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明は、数値制御(以後NCと略す)工作機械による
機械加工に係わり,特に最終加工形状の寸法の良否を計
算機による加工シミュレーションによって評価する方法
に関する。
[Detailed Description of the Invention] [Industrial Application Field] The present invention relates to machining using a numerically controlled (hereinafter abbreviated as NC) machine tool, and in particular evaluates the quality of the dimensions of a final machined shape by a computer-based machining simulation. Regarding the method.

〔従来の技術〕[Conventional technology]

従来加工シミュレーションによる最終加工形状の寸法評
価は、最終加工形状,要求形状をともに2乃至3次元の
領域データとして計算機内に表現し、両者を比較するこ
とで行い、その結果は最終加工形状のみ表示するか、あ
るいは最終加工形状と要求形状の差領域を表示するかに
よってユーザに知らされていた.例えば特開昭59−1
27108号では最終加工形状,要求形状を2次元画像
に展開し,画像上での差領域の有無により「削り過ぎ」
 「削り残し」を見いだし、同時にその画像がユーザに
示される。また、精密工学会誌第54巻12号2271
頁から2276頁では、3次元データについて「削りす
ぎ」 「削り残し」を検出する方法が示されているが、
その有効な表示方法は示されていない。
The dimensional evaluation of the final machined shape using conventional machining simulation is performed by expressing both the final machined shape and the required shape in the computer as 2- or 3-dimensional area data, and comparing the two, and only the final machined shape is displayed as the result. The user was informed by whether the difference area between the final machined shape and the required shape was displayed. For example, JP-A-59-1
In No. 27108, the final processed shape and required shape are developed into a two-dimensional image, and "over-cutting" is detected based on the presence or absence of a difference area on the image.
The "leftovers" are found and the image is shown to the user at the same time. Also, Journal of Precision Engineering, Vol. 54, No. 12, 2271
Pages 2276 to 2276 show a method for detecting ``excessive cutting'' and ``uncutting'' in 3D data.
No effective way of displaying it is indicated.

〔発明が解決しようとする課題〕[Problem to be solved by the invention]

上記従来技術においては、評価精度と処理性能について
次の問題があった。
The above conventional technology has the following problems regarding evaluation accuracy and processing performance.

(1)最終加工形状と要求形状の両者が領域として表現
されていなければならない。しかし、多くの場合要求形
状データは図面、CADによる図面データ又は比較的単
純な数値データ(例えば曲面データや点群データ)とし
てしか存在しない。
(1) Both the final processed shape and the required shape must be expressed as regions. However, in many cases, the required shape data exists only as a drawing, CAD drawing data, or relatively simple numerical data (for example, curved surface data or point group data).

(2)最終加工形状(あるいは最終加工形状と要求形状
の差領域)は一般に微妙な凹凸を持った複雑な形状とな
り、表示処理等の−i1荷が非常に大きい。また、差領
域の算出には膨大な計算量が必要である。しかも、それ
らをせっかく表示しても絵を見ただけでは寸法の良否の
判断がつかない。
(2) The final processed shape (or the difference area between the final processed shape and the required shape) is generally a complex shape with subtle unevenness, and the -i1 load of display processing etc. is extremely large. Furthermore, calculating the difference area requires a huge amount of calculation. Moreover, even if they are displayed, it is impossible to judge whether the dimensions are good or bad just by looking at the picture.

(3)最終加工形状と要求形状の比較において寸法公差
を考慮していないため、両者に少しでも差があると、異
常として検出されてしまう。
(3) Dimensional tolerances are not taken into account when comparing the final processed shape and the required shape, so if there is even a slight difference between the two, it will be detected as an abnormality.

(4)最終加工形状と要求形状の比較方法は、製造現場
における検査工程に見られるごとく、1通りではない。
(4) There is more than one way to compare the final processed shape and the required shape, as seen in the inspection process at manufacturing sites.

にもかかわらず,従来の加工シミュレーションでは単純
な領域比較しか行っていない。
Despite this, conventional machining simulations only perform simple area comparisons.

本発明の目的は,上記問題を解決し、 (1)加工シミュレーションにおける最終加工形状の寸
法評価を定量的に行い、またその結果の安価で効果的な
提示手段を提供すること (2)要求形状と最終加工形状の比較方法をユーザが容
易に選択可能な手段を提供する ことにある。
The purpose of the present invention is to solve the above problems and to (1) quantitatively evaluate the dimensions of the final machined shape in machining simulation, and provide an inexpensive and effective means of presenting the results. (2) required shape The object of the present invention is to provide a means by which a user can easily select a comparison method between the final machined shape and the final machined shape.

〔課題を解決するための手段〕[Means to solve the problem]

上記目的は、加工シミュレーション装置におい(1)寸
法評価手段と図形表示手段と図形要素指示手段とを備え
、最終加工形状の寸法を要求形状の図形要素に基づいて
算出・評価し評価結果により要求形状データを着色・強
調するなどの装飾・加工を施して加工して表示する, (2)最終加工形状の寸法算出手段を現実の寸法測定機
器に対応付け、ユーザが適当な寸法計測機器を選択する
ことによってその寸法計測機器と同等な寸法算出手段を
動作させる ことにより達成される。
The above purpose is to provide a machining simulation device that includes (1) a dimension evaluation means, a graphic display means, and a graphic element instruction means, calculates and evaluates the dimensions of the final machined shape based on the graphic elements of the required shape, and calculates and evaluates the dimensions of the final machined shape based on the graphic elements of the required shape, and uses the evaluation result to determine the required shape. Data is processed and displayed with decoration and processing such as coloring and emphasis. (2) The means for calculating the dimensions of the final processed shape is associated with the actual dimension measuring device, and the user selects the appropriate dimension measuring device. This is achieved by operating a dimension calculating means equivalent to the dimension measuring device.

〔作用〕[Effect]

寸法評価手段は次のように最終加工形状の寸法を評価す
る。
The dimension evaluation means evaluates the dimensions of the final processed shape as follows.

(L)要求形状データが曲面データのときは、要求形状
表面上に設定された点と最終加工形状表面との距離が公
差内にあるか否かにより正常加工,異常を判定する.そ
の際、最終加工形状データが領域を表現したデータであ
れば、要求形状表面上の点が最終加工形状領域内にある
か否かにより削り過ぎ・削り残しの判定まで行う。
(L) When the required shape data is curved surface data, normal machining or abnormality is determined depending on whether the distance between the point set on the required shape surface and the final machined shape surface is within the tolerance. At this time, if the final machining shape data is data expressing a region, over-cutting/uncutting is determined based on whether a point on the surface of the requested shape is within the final machining shape region.

(2)要求形状が曲面データではなく、その寸法が特定
の図形要素、あるいは図形要素簡にのみ設定されている
とき、画面に表示された要求形状について必要な図形要
素をユーザが対話的に指示する。寸法評価手段は,指示
された要求形状の図形要素に対応する図形要素を最終加
工形状データより捜し、それについて寸法を算出し評価
する. この寸法評価手段の作用により、寸法評価は定量的にな
される。
(2) When the requested shape is not curved surface data and its dimensions are set only for a specific graphical element or a simple graphical element, the user interactively instructs the necessary graphical elements for the requested shape displayed on the screen. do. The dimension evaluation means searches the final machining shape data for a graphical element corresponding to the graphical element of the specified requested shape, and calculates and evaluates the dimensions of the graphical element. Due to the action of this dimensional evaluation means, dimensional evaluation is performed quantitatively.

また寸法評価結果は、最終加工形状ではなく要求形状を
表示する際に,その図形要素に関する付加情報として出
力する.それにより複雑で処理負荷が大きい最終加工形
状を表示せずども加工状態の善し悪しをユーザに知らせ
ることができる. 一方、上述の最終加工形状の寸法算出手段を現実の寸法
計測機器と対応づけることにより、ユーザは対象となる
形状の特徴に応じて適切な寸法算出手段をきわめて容易
に選択することができる。
In addition, the dimensional evaluation results are output as additional information regarding the geometric element when displaying the required shape rather than the final machined shape. This allows the user to be informed of the quality of the machining state without displaying the final machining shape, which is complex and requires a large processing load. On the other hand, by associating the above-mentioned dimension calculation means for the final processed shape with an actual dimension measuring device, the user can very easily select an appropriate dimension calculation means according to the characteristics of the target shape.

〔実施例〕〔Example〕

以下図を用いて本発明の実施例を説明する。 Embodiments of the present invention will be described below with reference to the drawings.

第1図は,要求形状データが曲面として与えられるとき
の寸法評価結果の表示方法の実施例を示している。同図
(a)は要求形状データ30を「削りすぎJ 「削り残
し」の度合いを表す着色を施して表示する例,(b)は
「削りすぎ』 「削り残し」の量を表す法l!42方向
の線分51を付加して要求形状データ30を表示した例
である。また(c)は「削りすぎ」 「削り残し」の量
を等高線52で表示した例である。また.(d)は多面
体で与えられた要求形状データ30の構成面32の間に
設定された寸法についての評価結果を表示した例である
FIG. 1 shows an embodiment of a method for displaying dimensional evaluation results when required shape data is given as a curved surface. In the same figure, (a) is an example of displaying the required shape data 30 with coloring indicating the degree of "over-shaving" and "unshaving", and (b) is an example of displaying the requested shape data 30 with color representing the amount of "over-shaving" and "unshaving". This is an example in which requested shape data 30 is displayed with line segments 51 in 42 directions added. Further, (c) is an example in which the amount of "over-shaving" and "unshaving" is displayed using contour lines 52. Also. (d) is an example of displaying evaluation results regarding dimensions set between constituent faces 32 of required shape data 30 given as a polyhedron.

次に本発明を実施する加工シミュレーション装置の構成
と取り扱われるデータの形式を示す。第2図は加工シミ
ュレーションil置の構成例である。
Next, the configuration of a machining simulation apparatus that implements the present invention and the format of data handled will be described. FIG. 2 shows an example of the configuration of a machining simulation installation.

加工情報10,被加工物データ13及び要求形状データ
30はそれぞれファイルで与えられる。幾何}寅算手段
l2は被加工物データ13,加工情報10より最終加工
形状データ20を生成する。寸法評価手段50は寸法算
出手段40を含み、最終加工形状データ20,要求形状
データ30を用いた最終加工形状の寸法計測・評価を行
う。加工情報編集手段71は加工情報検索手段70を含
み、要求形状データ30または最終加工形状データ20
から加工動作を検索し加工情報10を編集する。ここで
、寸法評価手段50,加工情報編集手段71は対話装置
62を介したユーザの指示を受けて動作する。対話装置
62は図形表示手段60と図形要素指示手段61を含ん
でいる。
Machining information 10, workpiece data 13, and requested shape data 30 are each given as files. The geometry calculation means 12 generates final machining shape data 20 from the workpiece data 13 and machining information 10. The dimension evaluation means 50 includes a dimension calculation means 40, and measures and evaluates the dimensions of the final machined shape using the final machined shape data 20 and the requested shape data 30. The machining information editing means 71 includes a machining information retrieval means 70, and the machining information editing means 71 includes a machining information retrieval means 70.
The machining operation is searched for and the machining information 10 is edited. Here, the dimension evaluation means 50 and the processing information editing means 71 operate in response to instructions from the user via the dialogue device 62. The dialogue device 62 includes a graphic display means 60 and a graphic element indicating means 61.

本装置で扱われるデータは例えば以下の形式で表現され
る。加工情報10は例えばJIS  B63l4で定義
されるNCプログラムとする。被加工物データ13及び
最終加工形状データ20は領域を表現するデータ(例え
ばソリッドモデル)として与える。第3図はその実施例
であり、本例では形状を曲面によって区切られる空間の
集合演算結果として表現する。また第4図は要求形状デ
ータ30の実施例を示すもので、同図(a)は要求形状
が曲面のときのデータ形式の実施例、(b)は図面の寸
法線として与えられるときの実施例である. 次に寸法評価手段50における寸法算出及び寸法評価処
理の実施例を示す。尚,寸法算出は寸法算出手段40で
行われる。まず第5図は要求形状データ30が曲面デー
タで与えられるときの寸法算出・評価方法を示している
。この場合、寸法算出手段40により要求形状データ3
0上の計測点41を基準に最終加工形状表面21の位置
を求め、最終加工形状表面21と要求曲面31どの位置
のずれ43を寸法公差44と比較することで寸法評価を
行う.最終加工形状表面2lの位置は計測点41での法
i!42方向に調べるものとする。この方法によれは計
測点41と最終加工形状表面21の完全に正確な距離は
得られないが、実用範囲での値が高速に求められるとい
う効果がある。
The data handled by this device is expressed, for example, in the following format. The processing information 10 is, for example, an NC program defined in JIS B63l4. The workpiece data 13 and the final processed shape data 20 are provided as data representing a region (for example, a solid model). FIG. 3 shows an example of this, and in this example, the shape is expressed as a set calculation result of a space partitioned by curved surfaces. FIG. 4 shows an example of the requested shape data 30. FIG. 4(a) shows an example of the data format when the requested shape is a curved surface, and FIG. This is an example. Next, an example of dimension calculation and dimension evaluation processing in the dimension evaluation means 50 will be described. Note that the dimension calculation is performed by the dimension calculation means 40. First, FIG. 5 shows a method for calculating and evaluating dimensions when the required shape data 30 is given as curved surface data. In this case, the dimension calculation means 40 uses the required shape data 3.
The position of the final machined shape surface 21 is determined based on the measurement point 41 on 0, and the dimensional evaluation is performed by comparing the positional deviation 43 between the final machined shape surface 21 and the required curved surface 31 with the dimensional tolerance 44. The position of the final machined shape surface 2l is the modulus i! at the measurement point 41! It is assumed that the search is performed in 42 directions. Although this method cannot obtain a completely accurate distance between the measurement point 41 and the surface 21 of the final machined shape, it has the effect that a value within a practical range can be determined at high speed.

寸法算出手段40には、図形要素固有、または図形要素
間の寸法を算出する機能を持たせる.第6図は,寸法算
出手段40の入力(図形要素63)と出力(距離45,
ピッチ径46)の例である。
The dimension calculating means 40 is provided with a function of calculating dimensions specific to graphic elements or between graphic elements. FIG. 6 shows the input (figure element 63) and output (distance 45,
This is an example of pitch diameter 46).

寸法の算出方法は、それぞれ現実に存在する寸法計測機
器と対応付ける,すなわち、第5図で示した寸法測定は
3次元位置測定器に、第6図は物差し等の測長器に対応
付けられる。第5図の場合、各計測点4工の法線42は
3次元測定器の触針の軌道にあたり、法線42上で求っ
たと最終加工形状表面21の交点が触針が最終加工形状
表面2lに触れた位置である。第6図の場合は、ユーザ
が図形要素を指示する操作が物差しを形状にあてるとい
う計測時の動作と対応する。
The dimension calculation methods are associated with actually existing dimension measuring devices, that is, the dimension measurement shown in FIG. 5 is associated with a three-dimensional position measuring device, and the method shown in FIG. 6 is associated with a length measuring device such as a ruler. In the case of Fig. 5, the normal line 42 of each of the four measurement points corresponds to the trajectory of the stylus of the three-dimensional measuring instrument, and the intersection of the final machining shape surface 21 found on the normal line 42 is the point where the stylus is on the final machining shape surface. This is the position where it touched 2l. In the case of FIG. 6, the user's operation of designating a graphical element corresponds to the measurement operation of applying a ruler to a shape.

本装置における加工情報検索手段70及び加工情報編集
手段71は本発明を効果的に用いて加工情報の修正を行
うために設けたものである。第7図は加工情報編集手段
71の図形表示手段60上での画面構戊例に示す図であ
り、本例では対話装置62の画面上に図形表示手段60
,加工情報編集手段71がそれぞれウインドウとして存
在し、図形表示手段60に最終加工形状データ20,要
求形状データ30を、一方加工情報編集手段71に加工
情報10を表示している.ユーザが最終加工形状データ
20または要求形状データ30の図形要素63を図形要
素指示手段61によって指示するとその図形要素に関す
る寸法計測・評価が行われその結果が表示される。また
それと同時に加工情報検索手段70によってその図形要
素を加工する加工動作が加工情報から検索され,加工情
報編集手段71の表示内容が加工情報検索手段70が出
力した加工動作11の近傍に変更される。
The processed information searching means 70 and the processed information editing means 71 in this apparatus are provided in order to effectively utilize the present invention to correct processed information. FIG. 7 is a diagram showing an example of the screen structure on the graphic display means 60 of the processing information editing means 71. In this example, the graphic display means 60 is displayed on the screen of the dialog device 62.
, machining information editing means 71 exist as windows, and the final machining shape data 20 and requested shape data 30 are displayed on the graphic display means 60, while the machining information 10 is displayed on the machining information editing means 71. When the user specifies a graphic element 63 of the final processed shape data 20 or the requested shape data 30 using the graphic element specifying means 61, the dimensions of the graphic element are measured and evaluated, and the results are displayed. At the same time, the machining information search means 70 searches the machining information for a machining operation for machining the graphic element, and the display content of the machining information editing means 71 is changed to the vicinity of the machining operation 11 output by the machining information retrieval means 70. .

〔発明の効果〕〔Effect of the invention〕

本発明の効果は、第一に寸法評価手段によって最終加工
形状の寸法の良否を定量的且つ少ない処理量で評価でき
ることにある。第2に評価結果を最終加工形状ではなく
表示が容易な要求形状に基づいて表示できることである
,最後に、最終加工形状と要求形状の比較方法を現実の
寸法計測機器に投影することでユーザは場面に応じて適
切々方法を容易に選択できることである。
The first advantage of the present invention is that the size evaluation means can quantitatively evaluate the quality of the dimensions of the final machined shape with a small amount of processing. Second, the evaluation results can be displayed based on the required shape, which is easier to display, rather than the final machined shape.Finally, by projecting the comparison method between the final machined shape and the required shape onto the actual dimension measuring equipment, the user can It is possible to easily select an appropriate method depending on the situation.

【図面の簡単な説明】[Brief explanation of the drawing]

第t図は寸法評価結果表示の実施例である。第2図は本
発明を実施する加工シミュレーション装置の構或図であ
る。第3図は被加工物,!終加工形状のデータ形式例で
ある。第4図は要求形状のデータ形式である。第5図は
曲面データで与えられた要求曲面に対する寸法算出・評
価の実施例である。第6図は図形要素間の寸法計測であ
る。第7図は画面構成例である。 10・・・加工情報、11・・・加工動作,12・・・
幾何演算手段、13・・・被加工物データ、20・・・
最終加工形状データ、2l・・・最終加工形状表面,3
0・・・要求形状データ、31・・要求曲面、32・・
・多面体構成面.40・・・寸法算出手段,41・・・
計測点、42・・・法線、43・・・位置のずれ、44
・・・寸法公差、45・・・距離、46・・・ピッチ径
、50・・・寸法評価手段、51・・・線分、52・・
・等高線、60・・・図形表示手段、61・・・図形要
素指示手段、62・・・対話装置、63・・・図形要奏
、70・・・加工情報検索手段、71′11 尾1図 (11) 6z 尾 l 図 (Dノ L空間: Bよ(X)≧O 菩合濱罵関数 帛4−図 沫癲Nよ (b) コ0 高 5 図 嶌6図 (OL) 繻獅電索63 40
Figure t shows an example of displaying the dimensional evaluation results. FIG. 2 is a diagram showing the structure of a machining simulation apparatus that implements the present invention. Figure 3 shows the workpiece! This is an example of the data format of the final processed shape. FIG. 4 shows the data format of the requested shape. FIG. 5 shows an example of dimension calculation and evaluation for a required curved surface given by curved surface data. FIG. 6 shows the measurement of dimensions between graphic elements. FIG. 7 shows an example of the screen configuration. 10... Machining information, 11... Machining operation, 12...
Geometric calculation means, 13... Workpiece data, 20...
Final machining shape data, 2l...Final machining shape surface, 3
0...Required shape data, 31...Required surface, 32...
・Polyhedral composition surfaces. 40...Dimension calculation means, 41...
Measurement point, 42... Normal line, 43... Position shift, 44
...Dimension tolerance, 45...Distance, 46...Pitch diameter, 50...Dimension evaluation means, 51...Line segment, 52...
- Contour line, 60... Graphic display means, 61... Graphic element instruction means, 62... Dialogue device, 63... Graphic outline, 70... Processing information retrieval means, 71'11 Tail 1 figure (11) 6z tail l diagram (D no L space: Byo (X) ≧ O Bogohama abuse function 4-Zuhama Nyo (b) Ko0 High 5 Tsushima 6 figure (OL) cable 63 40

Claims (1)

【特許請求の範囲】 1、所定の幾何計算によつて機械加工を模擬し加工情報
は被加工物データから最終加工形状データを求める加工
シミュレーション装置であつて、形状が持つ頂点、稜線
、輪郭線、面、および形状表面上の任意の一点を図形要
素とし、又該図形要素固有または複数の図形要素間に別
途定められる幾何データを形状の寸法とするとき、加工
の目標となる形状を示す要求形状の各部の寸法及びその
公差を表すデータである要求形状データの一部または全
部と前記最終加工形状データを比較して最終加工形状の
寸法の良否を判定する寸法評価手段と、前記寸法評価手
段による判定結果に応じて装飾・加工された前記要求形
状データを表示する図形表示手段とを有することを特徴
とする加工シミュレーション装置。 2、前記要求形状データが少なくとも前記要求形状の寸
法に関して形状表面上の任意または予め定められた点の
位置と位置公差の情報を直接または間接に有するとき、
前記寸法評価手段において、該要求形状表面上の点につ
いて該点から前記最終加工形状表面までの距離を算出し
、該距離が前記位置公差内にあるときその点を正常加工
、そうでないときを異常加工として判定することを特徴
とする特許請求の範囲第1項記載の加工シミュレーショ
ン装置。 3、前記最終加工形状データが領域を表現するデータで
あつて、且つ前記要求形状データが少なくとも前記要求
形状の寸法に関して形状表面上の任意または予め定めら
れた点の位置と位置公差の情報を直接または間接に有す
るとき、前記寸法評価手段において、該要求形状表面上
の点について該点から前記最終加工形状表面までの距離
の算出と、該点が前記最終加工形状領域の内外いずれに
あるかの判定とを実施し、該距離が前記位置公差内にあ
るときその点を正常加工、そうでないときを異常加工と
して判定し、さらに前記点が最終加工形状領域内部にあ
るときを削り残し、外部にあるときを削りすぎると判定
することを特徴とする特許請求の範囲第1項記載の加工
シミュレーション装置。 4、前記図形表示手段に表示された図形についてその図
形要素を指示する図形要素指示手段を備え、該図形要素
指示装置によつて指示された1つ乃至複数の前記要求形
状の図形要素について、前記寸法評価手段において該要
求形状の図形要素に対応する前記最終加工形状の図形要
素を検索した後、該最終加工形状の図形要素について所
定の寸法を算出し該寸法を要求形状データと比較するこ
とを特徴とする特許請求の範囲第1項記載の加工シミュ
レーション装置。 5、所定の幾何計算によつて機械加工を模擬し加工情報
は被加工物データから最終加工形状データを求める加工
シミュレーション装置であつて、該最終加工形状データ
を参照して最終加工形状の寸法を算出する手段を少なく
とも1つ備え、該寸法算出手段のそれぞれをその寸法算
出方法により寸法計測機器と対応付け、該加工シミュレ
ーション装置のユーザが前記寸法計測機器を選択するこ
とを前記寸法算出手段を選択することを等価に扱うこと
を特徴とした加工シミュレーション装置。
[Claims] 1. A machining simulation device that simulates machining through predetermined geometric calculations and obtains final machining shape data from workpiece data as machining information, which includes vertices, ridges, and contours of the shape. , a surface, and an arbitrary point on the surface of a shape as a graphical element, and when geometric data specific to the graphical element or separately determined between multiple graphical elements are defined as the dimensions of the shape, a request to indicate the shape that is the target of processing. a dimension evaluation means for determining the quality of the dimensions of the final machined shape by comparing part or all of the required shape data, which is data representing the dimensions of each part of the shape and their tolerances, with the final machined shape data; and the dimension evaluation means A processing simulation device comprising: a graphic display means for displaying the requested shape data that has been decorated and processed according to a determination result obtained by the processing simulation apparatus. 2. When the requested shape data directly or indirectly has at least information on the position and positional tolerance of arbitrary or predetermined points on the shape surface regarding the dimensions of the requested shape;
The dimension evaluation means calculates the distance from the point on the surface of the required shape to the surface of the final machined shape, and when the distance is within the positional tolerance, the point is processed normally, and when it is not, it is processed abnormally. The machining simulation device according to claim 1, wherein the machining simulation device determines that the machining is performed. 3. The final processed shape data is data representing a region, and the requested shape data directly provides information on the position and positional tolerance of an arbitrary or predetermined point on the shape surface with respect to at least the dimensions of the requested shape. or indirectly, the dimension evaluation means calculates the distance from the point on the surface of the required shape to the surface of the final machined shape, and determines whether the point is inside or outside the final machined shape area. If the distance is within the positional tolerance, the point is determined to be normal machining, otherwise it is determined to be abnormal machining, and when the point is within the final machining shape area, it is left uncut and the point is machined externally. 2. The machining simulation apparatus according to claim 1, wherein a certain time is determined to be excessive cutting. 4. Graphic element designating means for designating a graphical element of a graphic displayed on the graphic displaying device, the graphical element designating means for designating one or more graphical elements of the requested shape designated by the graphical element designating device. After searching for a graphical element of the final processed shape corresponding to a graphical element of the requested shape in the dimension evaluation means, a predetermined dimension is calculated for the graphical element of the final processed shape and the dimension is compared with the requested shape data. A machining simulation device according to claim 1, characterized in that: 5. A machining simulation device that simulates machining through predetermined geometric calculations and obtains final machining shape data from workpiece data as machining information, and calculates the dimensions of the final machining shape by referring to the final machining shape data. At least one calculating means is provided, each of the dimension calculating means is associated with a dimension measuring device according to its dimension calculating method, and the user of the machining simulation apparatus selects the dimension calculating means to select the dimension measuring device. A machining simulation device that is characterized by treating all operations equally.
JP15457989A 1989-06-19 1989-06-19 Work simulation device Pending JPH0320803A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP15457989A JPH0320803A (en) 1989-06-19 1989-06-19 Work simulation device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP15457989A JPH0320803A (en) 1989-06-19 1989-06-19 Work simulation device

Publications (1)

Publication Number Publication Date
JPH0320803A true JPH0320803A (en) 1991-01-29

Family

ID=15587302

Family Applications (1)

Application Number Title Priority Date Filing Date
JP15457989A Pending JPH0320803A (en) 1989-06-19 1989-06-19 Work simulation device

Country Status (1)

Country Link
JP (1) JPH0320803A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6316513B1 (en) * 2016-12-27 2018-04-25 三菱電機株式会社 Machining program analyzer

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS59121502A (en) * 1982-12-28 1984-07-13 Fanuc Ltd Numerical control device provided with display device
JPS60238259A (en) * 1984-05-11 1985-11-27 Toyota Motor Corp Method of displaying workpiece deviation and device therefor
JPS63119934A (en) * 1986-11-06 1988-05-24 Honda Motor Co Ltd Metallic die working data checking device

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS59121502A (en) * 1982-12-28 1984-07-13 Fanuc Ltd Numerical control device provided with display device
JPS60238259A (en) * 1984-05-11 1985-11-27 Toyota Motor Corp Method of displaying workpiece deviation and device therefor
JPS63119934A (en) * 1986-11-06 1988-05-24 Honda Motor Co Ltd Metallic die working data checking device

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6316513B1 (en) * 2016-12-27 2018-04-25 三菱電機株式会社 Machining program analyzer
WO2018122986A1 (en) * 2016-12-27 2018-07-05 三菱電機株式会社 Processing program analysys device

Similar Documents

Publication Publication Date Title
US5627771A (en) Apparatus and method for evaluating shape of three-dimensional object
Roth et al. Surface swept by a toroidal cutter during 5-axis machining
US7006084B1 (en) Method and system for computer aided manufacturing measurement analysis
US6161079A (en) Method and apparatus for determining tolerance and nominal measurement values for a coordinate measuring machine
EP0879674B1 (en) Generation of measurement program in nc machining and machining management based on the measurement program
US10990075B2 (en) Context sensitive relational feature/measurement command menu display in coordinate measurement machine (CMM) user interface
CN107664985B (en) CAD/CAM-CNC integrated system
JPH05143140A (en) Three-dimensional working method
JP2578241B2 (en) Automatic program creation device
Li et al. Error measurements for flank milling
JPS6190206A (en) Nc data making device for die machining
JP5610883B2 (en) Processing simulation apparatus and method
JPH0320803A (en) Work simulation device
JP3066646B2 (en) Motion simulation system
JP2000292156A (en) Method for measuring effective screw hole depth
US20140172144A1 (en) System and Method for Determining Surface Defects
JPH0126817B2 (en)
Kountanya* Surface finish and tool wear characterization in hard turning using a mathematical cutting tool representation
Singh et al. A new approach to find gouge free tool positions for a toroidal cutter for Bézier surfaces in five-axis machining
JPH0365842B2 (en)
WO2023132038A1 (en) Display device, numerical control device, machining system, display method, numerical control method, and machining method
JPH0622777B2 (en) Cutting condition setting device in automatic processing machine
KR19990058290A (en) Tools and methods for measuring tools and machined parts
Van Thiel Feature based automated part inspection
JPS63285615A (en) Off-line teaching device for three-dimensional measuring instrument