JPH03207908A - Refuse incinerator - Google Patents

Refuse incinerator

Info

Publication number
JPH03207908A
JPH03207908A JP90990A JP99090A JPH03207908A JP H03207908 A JPH03207908 A JP H03207908A JP 90990 A JP90990 A JP 90990A JP 99090 A JP99090 A JP 99090A JP H03207908 A JPH03207908 A JP H03207908A
Authority
JP
Japan
Prior art keywords
exhaust gas
temperature
heat exchanger
bag filter
white smoke
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP90990A
Other languages
Japanese (ja)
Other versions
JPH0635888B2 (en
Inventor
Makoto Sasaki
信 佐々木
Isao Oba
大庭 功
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Ebara Corp
Original Assignee
Ebara Infilco Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Ebara Infilco Co Ltd filed Critical Ebara Infilco Co Ltd
Priority to JP2000990A priority Critical patent/JPH0635888B2/en
Publication of JPH03207908A publication Critical patent/JPH03207908A/en
Publication of JPH0635888B2 publication Critical patent/JPH0635888B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Abstract

PURPOSE:To improve the efficiency of denitrification, prevent white smoke generation and remove dioxin and mercury by a method wherein the high temperature exhaust gas discharged from a refuse incinerator is cooled down, passes through a reactor and a bag filter and is heated by a heat exchanger provided between the bag filter and a denitrofication apparatus. CONSTITUTION:The exhaust gas discharged from a refuse incinerator 1 is sent to a reactor after cooled, and alkaline absorbing agent is sprayed into the exhaust gas to neutralize hydrogen chloride and sulfur oxides. The exhaust gas is cooled down to a target temperature (120-180 deg.C) in the course of this process so that mercury compounds are removed when it passes through a bag filter 6, and dioxine generation control and removal take place. Before led to a denitrification apparatus 8, the exhaust gas is given heat from white smoke prevention heated air at an exhaust gas heating heat exchanger 7 and its temperature is raised. Then, the white smoke prevention air heated at the exhaust gas heating heat exchanger 7 and the exhaust gas after passing through the exhaust gas heating heat exchanger 7 are mixed together by a mixing device 10 and the exhaust gas (D point) is discharged into the atmosphere.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 この発明は、都市ごみ焼却炉等の焼却炉から排出された
排ガスを処理する排ガス処理装置を儂えたごみ焼却プラ
ントに関する. 〔従来の技術〕 近年、都市ごみ処理は焼却処理が主流となっている。焼
却によって排出される排ガスの中には、煤塵を始め、塩
化水素(HCI)、硫黄酸化物(So.)、窒素酸化物
(No)1 3などの有害物質が多量に含まれており、
ごみ焼却に伴う二次公害の発生を防止するために、これ
らの物質を効率的且つ効果的に除去することのできる排
ガス処理装置の開発が求められる一方で、大気汚染防止
対策としてこれらの物質の排出濃度が厳しく規制されて
いる。
DETAILED DESCRIPTION OF THE INVENTION [Field of Industrial Application] This invention relates to a waste incineration plant equipped with an exhaust gas treatment device for treating exhaust gas discharged from an incinerator such as a municipal waste incinerator. [Prior Art] In recent years, incineration has become the mainstream for municipal waste treatment. The exhaust gas emitted from incineration contains large amounts of harmful substances such as soot and dust, hydrogen chloride (HCI), sulfur oxides (So.), and nitrogen oxides (No. 13).
In order to prevent the occurrence of secondary pollution caused by waste incineration, there is a need to develop exhaust gas treatment equipment that can efficiently and effectively remove these substances. Emission concentrations are strictly regulated.

従来、都市ごみ焼却炉から排出された排ガスを処理する
排ガス処理装置を備えたごみ焼却プラントとしては、例
えば、第3図に示すようなものが知られている。
2. Description of the Related Art Conventionally, as a waste incineration plant equipped with an exhaust gas treatment device for treating exhaust gas discharged from a municipal waste incinerator, for example, one shown in FIG. 3 is known.

このごみ焼却プラントは、焼却炉1、該焼却炉1から排
出された高温の排ガスを冷却する冷却装置2、該冷却装
W2から導入された排ガスで熱交換して白煙防止用加熱
空気を排出する白煙防止用熱交換器3、熱交換された排
ガス中の酸性威分を中和反応させる反応塔5、該反応塔
5の下流側に設けられた集塵130,該集m器30から
の排ガスを還元脱硝する脱硝装置8、該脱硝装置8から
導入された排ガスと上記白煙防止用加熱空気とを混合す
る混合器10から構或されている。
This waste incineration plant consists of an incinerator 1, a cooling device 2 that cools the high-temperature exhaust gas discharged from the incinerator 1, and a cooling device W2 that exchanges heat with the exhaust gas introduced from the cooling device W2 and discharges heated air for preventing white smoke. A heat exchanger 3 for preventing white smoke, a reaction tower 5 that neutralizes acidic components in the heat-exchanged exhaust gas, a dust collector 130 provided on the downstream side of the reaction tower 5, and a dust collector 30. The denitrification device 8 reduces and denitrates the exhaust gas, and the mixer 10 mixes the exhaust gas introduced from the denitrification device 8 with the heated air for preventing white smoke.

また、白煙防止用熱交換器3と集塵器30との間には燃
焼空気用熱交換4が設けられている。更に、脱硝装置8
からの排ガスを吸引して混合器10へ送る誘引送風機9
、混合器10へ導入された排ガスを大気中へ放出する煙
突11なども有する。
Further, a combustion air heat exchanger 4 is provided between the white smoke prevention heat exchanger 3 and the dust collector 30. Furthermore, a denitrification device 8
An induced blower 9 sucks exhaust gas from the air and sends it to the mixer 10
, a chimney 11 for releasing the exhaust gas introduced into the mixer 10 into the atmosphere.

このごみ焼却プラントの処理フローは以下のようになっ
ている. 焼却炉1から排出された高温の排ガスは、冷却装置2で
冷却され、更に、白煙防止用熱交換器3及び燃焼空気用
熱交換器4で熱交換される。次に、反応塔5内で消石灰
などのアルカリ剤が噴霧され、排ガス中に含まれている
塩化水素などの酸性戒分の有害物質は中和反応を起こし
、その反応生戒物は電気集塵器などの集塵器30を通過
する際に煤塵と共に除去される。その後、煙道中にNH
,ガスを噴霧し、その下i!i?L側に設けた脱硝装置
8で還元脱硝を行う.これにより、排ガスから窒素酸化
物が除去されて、清浄化された排ガスが、誘引送風II
II9で吸引されて混合器10へと送られる。混合器1
0では、白煙防止用熱交換器3で得た白煙防止用の加熱
空気を清浄化された排ガスと混合して、排ガスの温度を
上昇させる。このように、清浄化された排ガスを、一旦
加熱した上で煙突11より大気に放出するようにして、
白煙の発生防止が図られている。
The processing flow of this waste incineration plant is as follows. High-temperature exhaust gas discharged from the incinerator 1 is cooled by a cooling device 2, and further heat exchanged by a white smoke prevention heat exchanger 3 and a combustion air heat exchanger 4. Next, an alkaline agent such as slaked lime is sprayed in the reaction tower 5, and acidic harmful substances such as hydrogen chloride contained in the exhaust gas undergo a neutralization reaction, and the reaction substances are collected by electrostatic precipitate. When passing through a dust collector 30 such as a container, the dust is removed together with soot and dust. After that, NH in the flue
, Spray the gas and then i! i? Reductive denitrification is performed in the denitrification device 8 installed on the L side. As a result, nitrogen oxides are removed from the exhaust gas, and the purified exhaust gas is transferred to the induced draft II.
It is sucked in by II9 and sent to mixer 10. mixer 1
0, the white smoke prevention heated air obtained by the white smoke prevention heat exchanger 3 is mixed with the purified exhaust gas to increase the temperature of the exhaust gas. In this way, the purified exhaust gas is once heated and then released into the atmosphere from the chimney 11.
Efforts are being made to prevent the generation of white smoke.

ところで、有害物質の規制は近年ますます強化される傾
向にあり、ダイオキシンや水銀などもその対象物質とな
ることが予想される.ダイオキシンの生戒過程は明確に
は解明されていないが、300℃前後の温度で電気集塵
器30内で場威されることが確認されている。また、水
銀は300℃の温度では気化状態であるため電気集塵器
30で捕捉することができないのが現状である。
By the way, regulations on hazardous substances have been becoming increasingly strict in recent years, and it is expected that substances such as dioxins and mercury will also become subject to these regulations. Although the biological process of dioxin has not been clearly elucidated, it has been confirmed that it is present in the electrostatic precipitator 30 at a temperature of around 300°C. Additionally, mercury is in a vaporized state at a temperature of 300° C., and therefore cannot be captured by the electrostatic precipitator 30 at present.

そこで、ダイオキシンの生或を抑制し、且つ凝縮するた
め、及び水銀の気化を避けるために排ガスの温度を下げ
る(180℃)と共に、水銀を除去するために微粒子に
付着した水銀粒子を捕}足することのできるバグフィル
タを集!I器として採用することが考えられる。
Therefore, in order to suppress the production and condensation of dioxin and to avoid vaporization of mercury, the temperature of the exhaust gas is lowered (180°C), and in order to remove mercury, the mercury particles attached to fine particles are captured. A collection of bug filters that can be used! It is conceivable to adopt it as an I-device.

〔発明が解決しようとする課題〕[Problem to be solved by the invention]

しかしながら、排ガスの温度が低下すると、脱硝装置8
の脱硝触媒の活性が低下するため、脱硝効率が大きく低
下してしまうという問題がある。
However, when the temperature of the exhaust gas decreases, the denitrification device 8
Since the activity of the denitrification catalyst decreases, there is a problem that the denitrification efficiency decreases significantly.

例えば、排ガスの温度が210℃〜220℃における脱
硝率は約80%であるのに対して、排ガスの温度が約1
85℃における脱硝率は約65%に低下してしまうので
ある。一方、脱硝装置8を通遇する排ガスの温度が低下
すると、下流側の混合器10において、白煙防止用熱交
換H3で得た高温の加熱空気で排ガスの温度上昇を図っ
ても、排ガス中の水分率を低く抑えることができない。
For example, when the exhaust gas temperature is between 210°C and 220°C, the denitrification rate is approximately 80%, whereas when the exhaust gas temperature is approximately 1.
The denitrification rate at 85°C drops to about 65%. On the other hand, when the temperature of the exhaust gas flowing through the denitrification device 8 decreases, even if the temperature of the exhaust gas is increased in the downstream mixer 10 using the high-temperature heated air obtained from the white smoke prevention heat exchange H3, the exhaust gas remains in the exhaust gas. cannot keep the moisture content low.

このため、排ガスが大気へ放出される際に、飽和水蒸気
に達して多量の水蒸気、即ち、白煙が発生してし,まう
という問題点がでてくる. そこで、ダイオキシン及び水銀を除去し、脱硝効率の低
下及び白煙の発生を防止するためには、排ガスの温度を
、バグフィルタi!過時には低く、脱硝装置への導入時
には高くするという課題を解決することにより、脱硝効
率の向上及び白煙発生防止を図ると共に、ダイオキシン
及び水銀を除去することのできるごみ焼却プラントを提
供することである. (fflaを解決するための手段〕 この発明は、上記目的を達或するため、次のように構威
されている. 即ち、この発明は、焼却炉から排出された高温の排ガス
を冷却する冷却装置、該冷却装置からの排ガスで加熱空
気を発生させる熱交換器、排ガス中の酸性戒分を中和反
咬させる反応塔、該反応塔の下流側に設けたバグフィル
タ、該バグフィルタからの排ガスを還元脱硝する脱硝装
置、前記バグフィルタと前記脱硝装置との間に配置した
前記加熱空気で前記排ガスを昇温する熱交換器、及び前
記脱硝装置からの排ガスと前記加熱空気とを混合する混
合器、を有するごみ焼却プラントに間する.〔作用〕 この発明は、上記のように構或されているので、次のよ
うに作用する。即ち、この焼却炉から排出された排ガス
は、冷却装置、白煙防止用熱交換器を経て冷却され、更
に、反応塔で中和反応されてバグフィルタに導入される
Therefore, when the exhaust gas is released into the atmosphere, it reaches saturated water vapor and generates a large amount of water vapor, that is, white smoke, which is a problem. Therefore, in order to remove dioxins and mercury and prevent a decrease in denitrification efficiency and the generation of white smoke, the temperature of the exhaust gas should be adjusted using the bag filter i! By solving the problem of having a low nitrification level at the time of denitrification and a high level when introduced into the denitrification equipment, we can improve the denitrification efficiency and prevent the generation of white smoke, as well as provide a waste incineration plant that can remove dioxins and mercury. be. (Means for solving ffla) In order to achieve the above object, the present invention is structured as follows. That is, the present invention provides a cooling method for cooling high-temperature exhaust gas discharged from an incinerator. A device, a heat exchanger that generates heated air with exhaust gas from the cooling device, a reaction tower that neutralizes acidic substances in the exhaust gas, a bag filter provided on the downstream side of the reaction tower, and exhaust gas from the bag filter. a denitrification device that reduces and denitrates the denitrification device; a heat exchanger that raises the temperature of the exhaust gas with the heated air disposed between the bag filter and the denitrification device; and a mixer that mixes the exhaust gas from the denitrification device and the heated air. [Operation] Since the present invention is constructed as described above, it operates as follows. That is, the exhaust gas discharged from this incinerator is It is cooled through a white smoke prevention heat exchanger, then neutralized in a reaction tower, and introduced into a bag filter.

該バグフィルタに導入される時には、排ガスの温度はか
なり低下(180℃以下〉しているので、ダイオキシン
の発生が抑制され、また、水銀も気化状態になっていな
いので、バグフィルタで煤塵や酸性或分の有害物質と共
に除去される。
By the time the exhaust gas is introduced into the bag filter, the temperature of the exhaust gas has dropped considerably (below 180 degrees Celsius), so the generation of dioxins is suppressed, and mercury is not in a vaporized state, so the bag filter removes soot and acid. It is removed along with some harmful substances.

そして、バグフィルタと脱硝装置との間に設けた排ガス
昇温用熱交換器の働きで、排ガスは所定温度まで上昇し
、脱硝装置へと送り込まれる。従って、脱硝装置の触媒
の活性が高められ、脱硝率は高くなる. 一方、排ガス昇濫用熱交換器で排ガスに熱量を与えた白
煙防止用加熱空気は混合器へ送られ、脱硝装置から送ら
れてきた排ガスと混合される。そして、排ガスは温度が
上昇し、排ガス中の水分率が低下するため、その排ガス
を煙突から大気へ放出した際に白煙が発生しない. 〔実施例〕 以下、図面を参照して、この発明によるごみ焼却プラン
トの実施例について説明する。
The exhaust gas is then raised to a predetermined temperature by the action of a heat exchanger for raising the temperature of the exhaust gas provided between the bag filter and the denitrification device, and then sent to the denitrification device. Therefore, the activity of the catalyst in the denitration equipment is increased, and the denitrification rate is increased. On the other hand, heated air for white smoke prevention, which has given heat to the exhaust gas in the exhaust gas elevating heat exchanger, is sent to the mixer and mixed with the exhaust gas sent from the denitrification device. As the temperature of the exhaust gas increases and the moisture content in the exhaust gas decreases, no white smoke is generated when the exhaust gas is released into the atmosphere from the chimney. [Example] Hereinafter, an example of a waste incineration plant according to the present invention will be described with reference to the drawings.

第1図はこの発明によるごみ焼却プラントの一実施例を
示す概略図である。
FIG. 1 is a schematic diagram showing an embodiment of a waste incineration plant according to the present invention.

第1図に示すように、この発明によるごみ焼却プラント
は、焼却炉l、冷却装置2、白煙防止用熱交換器3、燃
焼空気用熱交換器4、反応塔5、バグフィルタ6、排ガ
ス昇温用熱交換器7、脱硝装置8、誘引送風119、混
合器10、煙突11などから構威される. 焼却炉1は乾燥ストーカ、燃焼ストーカ、後燃焼ストー
カを有するストーカ式の焼却炉1である.冷却装置2は
、焼却炉1でごみを燃焼する時に発生する排ガスを冷却
する装置である.焼却炉1から排出される排ガスは非常
に高温(750℃〜950℃)になっているので、バグ
フィルタ6の濾布を高温による損傷から守るために、排
ガスは一旦、冷却装置2に導入されて冷却される。
As shown in FIG. 1, the waste incineration plant according to the present invention includes an incinerator 1, a cooling device 2, a white smoke prevention heat exchanger 3, a combustion air heat exchanger 4, a reaction tower 5, a bag filter 6, an exhaust gas It consists of a heating heat exchanger 7, a denitrification device 8, an induced draft 119, a mixer 10, a chimney 11, etc. The incinerator 1 is a stoker-type incinerator 1 having a drying stoker, a combustion stoker, and an after-combustion stoker. The cooling device 2 is a device that cools the exhaust gas generated when garbage is burned in the incinerator 1. Since the exhaust gas discharged from the incinerator 1 has a very high temperature (750°C to 950°C), the exhaust gas is first introduced into the cooling device 2 in order to protect the filter cloth of the bag filter 6 from being damaged by the high temperature. and cooled down.

冷却装置2としては、水噴射ノズルから水を噴射するこ
とにより排ガスを冷却する、いわゆる、水噴射式ガス冷
却装置2が一般に使用されている。
As the cooling device 2, a so-called water injection type gas cooling device 2 that cools exhaust gas by injecting water from a water injection nozzle is generally used.

なお、ガス冷却装M2の代わりにa熟ボイラーを使用し
て冷却してもよく、その場合には、排ガスは廃熱ボイラ
ーに直接誘導されて、水と熱交換することにより冷却さ
れる. 白煙防止用熱交換器3は、白煙防止用送ffll111
2から送風された空気を排ガスで熱交換する.熱量を得
た加熱空気は排ガス昇温用熱交換器7に送り込まれる. 燃焼空気用熱交換84は、燃焼用押込送風機13から送
凰された空気を排ガスで熱交換する.熱量を得た加熱空
気は焼却炉1に送られて、焼却炉1における燃焼効率を
向上させるために利用される. これらの白煙防止用熱交換器3及び燃焼空気用熱交換器
4によって、排ガスは更に冷却される.反応塔5は、消
石灰(Ca (OH)t )粕末を相当量噴霧して、排
ガス中の酸性或分である塩化水素、硫黄酸化物を酸アル
カリの固一気反応により中和する装置である。
Note that an A boiler may be used instead of the gas cooling system M2 for cooling, and in that case, the exhaust gas is directly guided to the waste heat boiler and cooled by exchanging heat with water. The white smoke prevention heat exchanger 3 is the white smoke prevention heat exchanger ffll111.
Heat exchanges the air blown from 2 with exhaust gas. The heated air that has gained heat is sent to the heat exchanger 7 for raising the exhaust gas temperature. The combustion air heat exchanger 84 heat-exchanges the air sent from the combustion forced air blower 13 with exhaust gas. The heated air that has gained heat is sent to the incinerator 1 and used to improve the combustion efficiency in the incinerator 1. The exhaust gas is further cooled by the white smoke prevention heat exchanger 3 and the combustion air heat exchanger 4. The reaction tower 5 is a device that sprays a considerable amount of slaked lime (Ca(OH)t) lees powder to neutralize hydrogen chloride and sulfur oxides, which are acidic components in the exhaust gas, by a solid-at-once reaction of acid and alkali. .

バグフィルタ6は、反応塔5内で中和した後の反応生戒
物(CaC1z .CaSO4) 、煤塵などを、内蔵
された濾布の表面によって捕捉する装置である.バグフ
ィルタ6に導入される排ガスの温度を約120〜180
℃に制御するために、バグフィルタ6の前方には温度検
出器が設けられていて、検出した排ガス温度を設定温度
と比較することによりガス冷却装置2の水噴射量調節バ
ルブを操作して、水噴射ノズルより噴射される水の量を
制御している.このように、バグフィルタ6における排
ガスの温度は低く維持されているので、サブミクロンの
微粒子に濃縮しているダイオキシン類や水銀等の重金属
類もこのバグフィルタ6で除去することができる。
The bag filter 6 is a device that traps reaction products (CaC1z.CaSO4), soot dust, etc. after being neutralized in the reaction tower 5 using the surface of a built-in filter cloth. The temperature of the exhaust gas introduced into the bag filter 6 is set to about 120 to 180.
℃, a temperature detector is provided in front of the bag filter 6, and by comparing the detected exhaust gas temperature with a set temperature, the water injection amount control valve of the gas cooling device 2 is operated. It controls the amount of water sprayed from the water spray nozzle. In this way, the temperature of the exhaust gas in the bag filter 6 is maintained low, so that heavy metals such as dioxins and mercury that are concentrated in submicron particles can also be removed by the bag filter 6.

なお、この温度は、バグフィルタ6の濾布材として使用
されるガラス繊維の耐熱温度(250〜280℃)をか
なり下回るので、濾布の寿命を長くすることができる. 排ガス昇温用熱交換器7は、白煙防止用熱交換器3から
導入された加熱空気(300〜350’c)によって、
バグフィルタ6から導入された排ガスの温度を所定温度
、例えば、190〜220℃まで上昇させる装置である
。排ガスの温度が上昇するのに対し、加熱空気は220
〜250℃に下がる。
In addition, since this temperature is considerably lower than the heat resistance temperature (250 to 280° C.) of the glass fiber used as the filter cloth material of the bag filter 6, the life of the filter cloth can be extended. The exhaust gas heating heat exchanger 7 is heated by the heated air (300 to 350'c) introduced from the white smoke prevention heat exchanger 3.
This device raises the temperature of the exhaust gas introduced from the bag filter 6 to a predetermined temperature, for example, 190 to 220°C. While the temperature of the exhaust gas rises, the temperature of the heated air rises to 220
The temperature drops to ~250°C.

脱硝装置8は窒素酸化物を除去する装置である.排ガス
は、脱硝装置8へ導入される前に脱硝装置8の入口で、
アンモニアガスがNH,/NOXで0.4〜1.2程度
のモル比で噴霧される。
The denitrification device 8 is a device that removes nitrogen oxides. Before being introduced into the denitrification device 8, the exhaust gas is passed through the inlet of the denitrification device 8,
Ammonia gas is sprayed at a molar ratio of NH,/NOX of about 0.4 to 1.2.

アンモニアガスを伴う排ガスは、脱硝装置8の脱硝触媒
ζこ接触し、窒素酸化物の濃度はW滅さ力,る。窒素酸
化物の濃度が低滅される割合、即ち、脱硝率は、排ガス
の温度が白煙防止用熱交換器3から導入された加熱空気
によって190〜220℃に上昇しているので、約80
%という高率を得ることができる。
The exhaust gas containing ammonia gas comes into contact with the denitrification catalyst ζ of the denitrification device 8, and the concentration of nitrogen oxides is reduced. The rate at which the concentration of nitrogen oxides is reduced, that is, the denitrification rate, is approximately 80°C because the temperature of the exhaust gas is raised to 190 to 220°C by the heated air introduced from the white smoke prevention heat exchanger 3.
% can be obtained.

誘引送風機9は、燃焼熱から得た蕉気でタービン駆動さ
れ、バグフィルタ5及び脱硝装置8で清浄化されたクリ
ーンガスを吸引して混合器10へ送り出す。
The induced blower 9 is driven by a turbine using air obtained from combustion heat, sucks clean gas purified by the bag filter 5 and the denitrification device 8, and sends it to the mixer 10.

混合器10は、脱硝装置8から導入されたクリーンガス
と排ガス昇温用執交換器7から導入された加熱空気を混
合する。
The mixer 10 mixes the clean gas introduced from the denitrification device 8 and the heated air introduced from the exhaust gas temperature raising exchanger 7.

煙突11は、混合されたガスを大気へ放出する。Chimney 11 releases the mixed gas to the atmosphere.

次Cこ、このごみ焼却プラントにおける処理フローにつ
いて説明する。
Next, the processing flow in this waste incineration plant will be explained.

焼却炉lから排出された排ガスは、ガス冷却装置2で冷
却され、更に白煙防止用熱交換器3及び燃焼空気用熱交
換器4を通過する際に熱交換によって冷却されて反応塔
5へ送られる。反応塔5内ではアルカリ吸収剤が噴霧さ
れ、排ガス中の酸性或分である塩化水素、硫黄酸化物を
酸アルカリの固一気反応により中和する。この反応の過
程で排ガス温度は目的温度(120〜180℃)まで低
下する。その後、排ガスがバグフィルタ6を通過するこ
とにより、排ガス中の煤塵、塩化水素、硫黄酸化物が除
去されると共に、水銀も除去され、且つダイオキシンの
生或抑制と除去が行われる。
The exhaust gas discharged from the incinerator 1 is cooled by a gas cooling device 2, and further cooled by heat exchange as it passes through a white smoke prevention heat exchanger 3 and a combustion air heat exchanger 4, and is then sent to a reaction tower 5. Sent. In the reaction tower 5, an alkali absorbent is sprayed to neutralize hydrogen chloride and sulfur oxide, which are acidic components in the exhaust gas, by a solid reaction of acid and alkali. During the course of this reaction, the exhaust gas temperature decreases to the target temperature (120 to 180°C). After that, the exhaust gas passes through the bag filter 6, so that soot, hydrogen chloride, and sulfur oxides in the exhaust gas are removed, mercury is also removed, and the production or suppression of dioxins is suppressed and removed.

清浄化された排ガス(凱量Q,)は、下流側の脱硝装置
8に導入される前に、排ガス昇温用熱交換器7で白煙防
止用加熱空気(熱量Q)から艶量(Q,)を得て、温度
が上昇する(190〜220℃〉。このため、排ガス昇
温用軌交換器7を通過した後の排ガスの熱量は(QG”
Ql )となり、一方、白煙防止用加熱空気の熱量は(
Q−Q,)となる.脱硝装W8で窒素酸化物を分解した
後に、排ガス(熱量QG 十〇l )は、排ガス昇温用
熱交換器7で熱を奪われた白煙防止用加熱空気(熱量Q
−Q.)と一緒に混合器10に混入され、煙突11から
排出される.その時の排出熱量は、(QG +Q,)+
 (Q−Ql )=QG +Qとなる。
The purified exhaust gas (heat amount Q,) is converted into gloss amount (Q, ,), and the temperature rises (190 to 220°C>. Therefore, the amount of heat of the exhaust gas after passing through the exhaust gas temperature raising rail exchanger 7 is (QG").
Ql), and on the other hand, the amount of heat of the heated air for white smoke prevention is (
Q-Q, ). After decomposing nitrogen oxides in the denitrification unit W8, the exhaust gas (calorific value QG 100 l) is converted into white smoke prevention heated air (calorific value Q
-Q. ) is mixed into the mixer 10 and discharged from the chimney 11. The amount of heat released at that time is (QG +Q,)+
(Q-Ql)=QG+Q.

この熱量は、排ガス昇温用熱交換器7を設けない従来の
場合の排出熱量( Q r,↓Q〉と同一熱量である. 従って、大気中に放出される熱量の大きさは従来と変わ
らない. 次に、白煙発生防止の原理について説明する。
This amount of heat is the same as the amount of emitted heat (Q r,↓Q〉) in the conventional case where the heat exchanger 7 for raising the exhaust gas temperature is not installed. Therefore, the amount of heat released into the atmosphere is different from the conventional case. No. Next, the principle of preventing white smoke generation will be explained.

第2図は、塩度と該温度における空気又は排ガス中に含
まれる水分との関係を示すグラフである。
FIG. 2 is a graph showing the relationship between salinity and moisture contained in air or exhaust gas at the temperature.

A点はハグフィルタ6通過後の排ガスの状態、B点は排
ガス昇温用熱交換器7で加熱された排ガスの状態、C点
は排ガス昇温用勢交換器7通3F4後の白煙防止用加熱
空気の状態、D点は混合器10で白煙防止用加熱空気が
混入された排ガスの状態、E点は大気の状態である。
Point A is the state of the exhaust gas after passing through the Hag filter 6, point B is the state of the exhaust gas heated by the heat exchanger 7 for heating the exhaust gas, and point C is the state of the exhaust gas after passing through the heat exchanger 7 for heating the exhaust gas, white smoke prevention after 3F4. Point D is the state of the exhaust gas mixed with heated air for white smoke prevention in the mixer 10, and Point E is the state of the atmosphere.

また、曲線Fは飽和水蒸気曲線Fを表している。Moreover, the curve F represents the saturated water vapor curve F.

仮に、バグフィルタ6の通過後の排ガス(A点)を煙突
11から大気(E点)中に放出するとすれば、放出直後
の排ガスはA点とE点を結ぶ直線上の点の状態になる.
A点とE点を結ぶ直線は、飽和水蒸気曲線と2点で交わ
るため、放出直後の排ガスの状態がこの2点間にある場
合には白煙が発生する。
If the exhaust gas after passing through the bag filter 6 (point A) is released from the chimney 11 into the atmosphere (point E), the exhaust gas immediately after being released will be in the state of a point on the straight line connecting points A and E. ..
Since the straight line connecting points A and E intersects the saturated steam curve at two points, white smoke will be generated if the state of the exhaust gas immediately after release is between these two points.

このように、E点とを結ぶ直線が飽和水蒸気曲線Fと2
点で交わるような状態の排ガスを大気中に放出すれば、
白煙が発生する。
In this way, the straight line connecting point E is the saturated water vapor curve F and 2
If exhaust gases that intersect at a point are released into the atmosphere,
White smoke is generated.

ところが、この発明におけるごみ焼却プラントは、排ガ
ス昇温用熱交換器7で加熱された白煙防止用加熱空気(
C点)と排ガス昇温用艶交換器7iil過後の排ガス(
B点)を混合器10で混合して、混合した排ガス(D点
)を大気(E点)中へ放出するようにしているので、グ
ラフから明らかなように、D点とE点を結ぶ直線は飽和
水草気曲線Fと交わらない。従って、大気中に排ガスを
放出しても白煙を発生しない。
However, the waste incineration plant according to the present invention uses heated air for preventing white smoke (
point C) and the exhaust gas after passing through the exhaust gas temperature increasing gloss exchanger 7iil (
Since the mixture (point B) is mixed in the mixer 10 and the mixed exhaust gas (point D) is released into the atmosphere (point E), as is clear from the graph, the straight line connecting points D and E is does not intersect with the saturated aquatic plants curve F. Therefore, no white smoke is generated even if the exhaust gas is released into the atmosphere.

このように、排ガスに加熱空気を混入して、排ガスの温
度を上昇させると共に、水分含有率を低く抑えることに
より、グラフにおいてD点を右側かつ下側に移動させる
ことにより、E点とD点を結ぶ直線が飽和水草気曲uF
に交わらないようにすれば、白煙を防止することができ
る。
In this way, by mixing heated air into the exhaust gas to raise the temperature of the exhaust gas and keeping the moisture content low, point D can be moved to the right and lower side in the graph, and points E and D can be changed. The straight line that connects the saturated water plants and air curve uF
White smoke can be prevented by ensuring that the two do not intersect with each other.

〔発明の効果〕〔Effect of the invention〕

この発明によるごみ焼却プラントは、上記のように構威
されているので、次のような効果を有する。
Since the waste incineration plant according to the present invention is configured as described above, it has the following effects.

白煙防止用の加熱空気の熱量を2工程即ち排ガス消音用
熱交換器とボ合器の2つに分けて排ガスに与えることが
でき、バグフィルタの下流に配置した熱交換器によって
排ガス量を変化させることな<、熱量だけを排ガスに与
えるので、脱硝装置における温度を高くすることができ
る。従って、脱硝装置の触媒の活性が高められ、高い脱
硝率を得ることができる。
The amount of heat from heated air for white smoke prevention can be divided into two processes: a heat exchanger for exhaust gas silencing and a combiner. Since only the amount of heat is given to the exhaust gas without changing it, the temperature in the denitrification device can be increased. Therefore, the activity of the catalyst in the denitrification device is increased, and a high denitrification rate can be obtained.

また、脱硝装置に導入する直前で排ガスの温度を上昇さ
せるので、その前段階のバグフィルタでの温度は180
℃以下というかなり低い温度に抑えることができる。こ
のため、ダイオキシンの生或を抑制し、水銀を捕捉する
ことができるだけでなく、バグフィルタの濾布の耐熱温
度よりも排ガスの温度がかなり低いので、濾布の寿命を
長くすることができる。
In addition, the temperature of the exhaust gas is raised just before it is introduced into the denitrification equipment, so the temperature at the bag filter in the previous stage is 180℃.
The temperature can be kept very low, below ℃. Therefore, not only can the production of dioxins be suppressed and mercury be captured, but also the life of the filter cloth can be extended because the temperature of the exhaust gas is considerably lower than the heat resistance temperature of the filter cloth of the bag filter.

更に、脱硝装置から送られてきた清浄化された排ガスは
、混合器で白煙防止用加熱空気を混入した上で煙突から
大気へ放出されるので、排ガスの温度は上昇し、かつ排
ガス中の水分の含有率の低下が図られ、白煙の発生を防
止することができる.
Furthermore, the purified exhaust gas sent from the denitrification equipment is mixed with heated air to prevent white smoke in the mixer and then released from the chimney into the atmosphere, so the temperature of the exhaust gas increases and the This reduces the moisture content and prevents the generation of white smoke.

【図面の簡単な説明】[Brief explanation of drawings]

第1図はこの発明によるごみ焼却プラントの一実施例を
示す概略図、第2図は温度と該温度にむける空気又は排
ガス中に含まれる水分との関係を示すグラフ、及び第3
図は従来のごみ焼却プラントを示す概略図である。 1へ−−−一焼却炉、2−−−−ガス冷却装置、3−−
−−−白煙防止用熱交換器、4 −−−−一燃焼空気用
熱交換器、5−−−一反応塔、6−−−−バグフィルタ
、7−−−一排ガス昇温用熱交換器、8−一一一脱硝装
置、9 −−−−−誘弓送風機、1 (1−一一−混合
器、1 1−−−−−一煙突、12白煙防止用送風機、
1 3−−−−一燃焼用押込送風機。
FIG. 1 is a schematic diagram showing an embodiment of a waste incineration plant according to the present invention, FIG. 2 is a graph showing the relationship between temperature and moisture contained in air or exhaust gas toward the temperature, and FIG.
The figure is a schematic diagram showing a conventional waste incineration plant. To 1---1 incinerator, 2---gas cooling device, 3---
--- Heat exchanger for preventing white smoke, 4 --- Heat exchanger for combustion air, 5 --- Reaction tower, 6 --- Bag filter, 7 --- Heat for raising exhaust gas temperature exchanger, 8-111 denitrification device, 9 ---- bow blower, 1 (1-11- mixer, 1 1----1 chimney, 12 white smoke prevention blower,
1 3 - - Forced blower for combustion.

Claims (1)

【特許請求の範囲】[Claims] 焼却炉から排出された高温の排ガスを冷却する冷却装置
、該冷却装置からの排ガスで加熱空気を発生させる熱交
換器、排ガス中の酸性成分を中和反応させる反応塔、該
反応塔の下流側に設けたバグフィルタ、該バグフィルタ
からの排ガスを還元脱硝する脱硝装置、前記バグフィル
タと前記脱硝装置との間に配置した前記加熱空気で前記
排ガスを昇温する熱交換器、及び前記脱硝装置からの排
ガスと前記加熱空気とを混合する混合器、を有するごみ
焼却プラント。
A cooling device that cools high-temperature exhaust gas discharged from the incinerator, a heat exchanger that generates heated air with the exhaust gas from the cooling device, a reaction tower that neutralizes acidic components in the exhaust gas, and a downstream side of the reaction tower. a bag filter provided in the bag filter, a denitrification device that reduces and denitrates the exhaust gas from the bag filter, a heat exchanger that raises the temperature of the exhaust gas with the heated air arranged between the bag filter and the denitrification device, and the denitrification device a mixer for mixing the heated air with exhaust gas from the waste incineration plant.
JP2000990A 1990-01-09 1990-01-09 Garbage incineration plant Expired - Lifetime JPH0635888B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2000990A JPH0635888B2 (en) 1990-01-09 1990-01-09 Garbage incineration plant

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2000990A JPH0635888B2 (en) 1990-01-09 1990-01-09 Garbage incineration plant

Publications (2)

Publication Number Publication Date
JPH03207908A true JPH03207908A (en) 1991-09-11
JPH0635888B2 JPH0635888B2 (en) 1994-05-11

Family

ID=11489037

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2000990A Expired - Lifetime JPH0635888B2 (en) 1990-01-09 1990-01-09 Garbage incineration plant

Country Status (1)

Country Link
JP (1) JPH0635888B2 (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0796134A (en) * 1993-09-30 1995-04-11 Ngk Insulators Ltd Device for treating waste combustion gas and treating method therefor
JPH0821617A (en) * 1994-07-07 1996-01-23 Plantec:Kk White smoke preventing air heating device
JP2006075764A (en) * 2004-09-10 2006-03-23 Babcock Hitachi Kk Glass melting furnace-exhaust gas treatment method and treatment apparatus
JP2008200631A (en) * 2007-02-21 2008-09-04 Takuma Co Ltd Method and apparatus for treating combustion exhaust gas
WO2020174730A1 (en) * 2019-02-28 2020-09-03 月島機械株式会社 Apparatus and method for treating combustion exhaust gas

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0796134A (en) * 1993-09-30 1995-04-11 Ngk Insulators Ltd Device for treating waste combustion gas and treating method therefor
JPH0821617A (en) * 1994-07-07 1996-01-23 Plantec:Kk White smoke preventing air heating device
JP2006075764A (en) * 2004-09-10 2006-03-23 Babcock Hitachi Kk Glass melting furnace-exhaust gas treatment method and treatment apparatus
JP4647960B2 (en) * 2004-09-10 2011-03-09 バブコック日立株式会社 Glass melting furnace exhaust gas treatment method and treatment apparatus
JP2008200631A (en) * 2007-02-21 2008-09-04 Takuma Co Ltd Method and apparatus for treating combustion exhaust gas
WO2020174730A1 (en) * 2019-02-28 2020-09-03 月島機械株式会社 Apparatus and method for treating combustion exhaust gas
JP2020139696A (en) * 2019-02-28 2020-09-03 月島機械株式会社 Device and method of processing combustion exhaust

Also Published As

Publication number Publication date
JPH0635888B2 (en) 1994-05-11

Similar Documents

Publication Publication Date Title
CN109569228A (en) The exhaust system and technique of flue gas of garbage furnace
JP5961514B2 (en) Fly ash circulation type exhaust gas treatment method
EP1870155B1 (en) Regeneration of NT-SCR catalysts
KR100287634B1 (en) Flue Gas Treatment Facility
CN207486806U (en) Hazardous waste three-stage is burned and exhaust treatment system
EP1399695B1 (en) Flue gas purification device for an incinerator
JPWO2004023040A1 (en) Smoke treatment system
CN108452663B (en) Solid waste incineration flue gas purification treatment method
JP2010058067A (en) Method for regenerating denitration catalyst, unit for regenerating denitration catalyst and apparatus for treating exhaust gas by using the unit
CN210814562U (en) SCR flue gas denitration system for garbage incineration kiln
CN108458351A (en) Solid waste incineration flue gas processing method and its system
CN208542022U (en) Incineration flue gas non-catalytic reduction denitrating system based on high concentration reducing agent
JPH03207908A (en) Refuse incinerator
JP2013072571A (en) Exhaust gas treating system
JP2702662B2 (en) Combustion exhaust gas treatment apparatus and treatment method
KR100227211B1 (en) Semi-dry/back-filter apparatus and treating process thereof
CN109012123A (en) A kind of flue gas purifying method
KR100418810B1 (en) Super Performance Cremator by Oxygen Enriched Gas
JP2788997B2 (en) Method for simultaneous reduction of nitrogen oxides, sulfur oxides and hydrogen chloride in flue gas
JP2002224532A (en) Flue gas treatment method and system therefor
CN108671736A (en) Incineration flue gas non-catalytic reduction denitrating technique and system based on high concentration reducing agent
JP4020708B2 (en) Exhaust gas treatment method, exhaust gas treatment equipment and stoker-type incinerator
JP2014151239A (en) Exhaust gas treating apparatus and treating method using the same
CN203764065U (en) Small intelligent garbage disposal device applied to small towns
CN220878330U (en) Treatment system for tail gas containing carbon monoxide, hydrogen chloride and nitrogen oxide

Legal Events

Date Code Title Description
FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090511

Year of fee payment: 15

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100511

Year of fee payment: 16

EXPY Cancellation because of completion of term
FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100511

Year of fee payment: 16