JPH03207490A - Method and device for cleaning acidic river - Google Patents

Method and device for cleaning acidic river

Info

Publication number
JPH03207490A
JPH03207490A JP2002699A JP269990A JPH03207490A JP H03207490 A JPH03207490 A JP H03207490A JP 2002699 A JP2002699 A JP 2002699A JP 269990 A JP269990 A JP 269990A JP H03207490 A JPH03207490 A JP H03207490A
Authority
JP
Japan
Prior art keywords
water
river
acidic
aluminum hydroxide
calcium carbonate
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2002699A
Other languages
Japanese (ja)
Inventor
Norihiro Kawashima
川島 紀宏
Takeshi Yasukuni
安国 健
Kouichi Tada
田太 弘一
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kawasaki Heavy Industries Ltd
Original Assignee
Kawasaki Heavy Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kawasaki Heavy Industries Ltd filed Critical Kawasaki Heavy Industries Ltd
Priority to JP2002699A priority Critical patent/JPH03207490A/en
Publication of JPH03207490A publication Critical patent/JPH03207490A/en
Pending legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02ATECHNOLOGIES FOR ADAPTATION TO CLIMATE CHANGE
    • Y02A20/00Water conservation; Efficient water supply; Efficient water use
    • Y02A20/124Water desalination
    • Y02A20/131Reverse-osmosis

Landscapes

  • Separation Using Semi-Permeable Membranes (AREA)
  • Physical Water Treatments (AREA)
  • Removal Of Specific Substances (AREA)

Abstract

PURPOSE:To efficiently and economically clean acidic river water by passing the acidic river water through a reverse osmosis membrane unit to separate the water to desalted water and concd. water, bringing the desalted water into contact with an alkali material to neutralize the water and discharging this water to the rivers. CONSTITUTION:The raw water taken from the acidic rivers is pressurized and is filtered by a pressure filter 4 and thereafter, the water is pressurized to a high pressure by a high-pressure pump 6 and is passed through the reverse osmosis membrane unit 7, by which the water is separated to the desalted water having the pH higher than the pH of the raw water and the concd. water. The desalted water is introduced into a neutralizing column 10 packed with the alkali material essentially consisting of calcium carbonate or lime by which the desalted water is neutralized. The neutralized and cleaned water is discharged to the rivers. On the other hand, the concd. water is introduced into an iron oxidizing column 11 where an oxidizing agent, such as ozone, is supplied to the water to oxidize the iron to tervalent iron ions. The water is thereafter treated in a neutralizing tank 13 and finally the supernatant liquid of a ferric hydroxide thickener 15 is discharged to the rivers.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明は、逆浸i3膜法と、鉄酸化・中和処理法を改良
した方法とを組み合わせて、効率よく、かつ経済的に、
酸性河川を浄化する方法及び装置に関するものである. 〔従来の技術〕 従来、酸性河川の浄化方法として、(1)地下注入法、
(2)分離導水法、(3)中和処理法がとられている.
以下、これらの従来法について説明する。
[Detailed Description of the Invention] [Field of Industrial Application] The present invention combines the reverse immersion i3 membrane method and an improved iron oxidation/neutralization treatment method to efficiently and economically
This article relates to a method and device for purifying acidic rivers. [Conventional technology] Conventionally, methods for purifying acidic rivers include (1) underground injection method;
(2) Water separation method and (3) Neutralization treatment method are used.
These conventional methods will be explained below.

(1)地下注入法 酸性河川水を地下注入し、地下の自然浄化作用にまかせ
る方法である.本法の欠点は、二次的自然破壊が生じる
恐れがあること、また、効果が明確に想定できないこと
である.なお、地下注入により、土中のアルミニウム分
を含む保水層が破壊され、農業用地として使用不可にな
った例がある。
(1) Underground injection method This is a method in which acidic river water is injected underground and left to the natural purification action underground. The disadvantages of this method are that there is a risk of secondary destruction of nature, and that the effects cannot be clearly predicted. In addition, there are cases where underground injection has destroyed the water retaining layer containing aluminum in the soil, making the land unusable for agriculture.

(2)分離導水法 本法は、酸性河川の原因となる湧水を集水し、河川とは
分離し別の大河川または下流の本流へ導水、合流せしめ
る方法である.本法の場合、合流側河川の汚染につなが
るし、また、導水溝工事に伴う費用、用地など問題が多
い。
(2) Separate water conveyance method This method is a method of collecting spring water, which is the cause of acidic rivers, separating it from the river and conveying it to another large river or the main stream downstream. In the case of this method, it leads to contamination of rivers on the confluence side, and there are also many problems such as the cost and land associated with construction of the water channel.

(3)中和処理法 ■ 通常中和処理法 生石灰、炭酸カルシウムを使用して、中和処理する方法
。本法では、石コウを含む大量の副生品が析出し、がっ
、この析出物の脱水性が悪いため、副生品用の貯泥ダム
などの大型付帯設備が必要となる.また、生石灰、炭酸
カルシウムで中和するため、浄化水は、カルシウム硬度
の高い硬水となり、飲料水はもとより、農工業用水とし
ても適さないことが多い。
(3) Neutralization method ■ Normal neutralization method A method of neutralization using quicklime and calcium carbonate. In this method, a large amount of by-products including gypsum are precipitated, and since the dewatering properties of this precipitate are poor, large-scale auxiliary equipment such as a mud storage dam for by-products is required. Furthermore, since purified water is neutralized with quicklime and calcium carbonate, it becomes hard water with high calcium hardness, and is often unsuitable not only for drinking water but also for agricultural and industrial purposes.

■ 鉄酸化・中和処理法 本法では、酸性水中に溶存する2価の鉄イオンを前もっ
て酸化窒素と共に空気を吹き込んで酸化し、3価の鉄イ
オンとしてから中和することを特徴としている.3価と
なった鉄イオンは中和用炭酸カルシウムの投入により、
比較的低いpHで脱水性の良い水酸化第2鉄〔Fe(O
}I)+)が単独で析出する.水酸化第2鉄の析出が終
わった所でさらに炭酸カルシウムを投入すると、pH5
付近で水酸化アルミニウム( Al(OH)3)が析出
する.このように、本法では石コウなどの副生品を析出
することなしに(処理原水中の804トイオンが非常に
多ければ石コウの析出は有り得る)、鉄、アルミニウム
などの有価金属を分離回収することができる。
■ Iron oxidation/neutralization treatment method This method is characterized in that divalent iron ions dissolved in acidic water are oxidized by blowing air with nitrogen oxide in advance to form trivalent iron ions, which are then neutralized. The trivalent iron ions are neutralized by adding calcium carbonate to neutralize them.
Ferric hydroxide [Fe(O
}I)+) precipitates alone. When calcium carbonate is further added after the precipitation of ferric hydroxide has finished, the pH reaches 5.
Aluminum hydroxide (Al(OH)3) precipitates nearby. In this way, this method can separate and recover valuable metals such as iron and aluminum without precipitating by-products such as gypsum (if the 804 ions in the treated raw water are very large, gypsum may precipitate). can do.

この方法の欠点は、鉄酸化時に公害の原因となる窒素酸
化物の発生があること、アルミニウムの析出後、さらに
pHを上げるために炭酸カルシウムを投入すると、石コ
ウが析出する可能性があること、および浄化水のカルシ
ウム硬度が高く、飲料水、農工業用水として適さないこ
とである。
The disadvantages of this method are that nitrogen oxides, which cause pollution, are generated during iron oxidation, and if calcium carbonate is added to further raise the pH after aluminum has been precipitated, gypsum may precipitate. , and the purified water has high calcium hardness, making it unsuitable for drinking water or water for agricultural or industrial use.

一方、特開昭63−39696号公報には、海水を逆浸
i3膜装置に供給して透過水として淡水を得、これを石
灰石を主剤とするアルカリ物質充填塔を空気を送入しつ
つ通過させて中和する逆浸透法による海水淡水化におけ
る透過水中和法が開示されている。
On the other hand, JP-A No. 63-39696 discloses that seawater is supplied to a reverse immersion i3 membrane device to obtain fresh water as permeated water, and the fresh water is passed through an alkaline material-packed column mainly composed of limestone while introducing air. A permeated water hydration method for desalination of seawater using reverse osmosis is disclosed.

また、特開昭63〜252588号公報には、逆浸透膜
装Iのブライン排水を直接、総合排水処理装置の中和槽
へ流入させる系統を設けた排水処理装置が開示されてい
る. 〔発明が解決しようとする課題〕 上述のように、従来法では、 (1)二次的に自然破壊を起こす可能性がある(地下注
水法の場合). (2)対策費用が莫大であり、分離導水先河川の二次汚
染の恐れがある(分離導水法の場合〉。
Furthermore, Japanese Patent Application Laid-open No. 63-252588 discloses a wastewater treatment device that is provided with a system for directly flowing brine wastewater from a reverse osmosis membrane device I into a neutralization tank of a comprehensive wastewater treatment device. [Problems to be solved by the invention] As mentioned above, in the conventional method, (1) there is a possibility of secondary natural destruction (in the case of underground water injection method); (2) The cost of countermeasures is enormous, and there is a risk of secondary pollution of the river to which the separated water is directed (in the case of the separated water channel method).

(3)処理水のカルシウム硬度が高く、飲料水、農工業
用水としては不十分であり、水棲生物の生息に対しても
適当でない(通常中和処理法の場合)。
(3) The calcium hardness of the treated water is high, making it insufficient for drinking water, agricultural and industrial water, and unsuitable for the habitat of aquatic organisms (usually in the case of neutralization treatment).

(4)窒素酸化物が発生し、二次公害の原因となる(鉄
酸化・中和処理法の場合)。
(4) Nitrogen oxides are generated and cause secondary pollution (in the case of iron oxidation/neutralization treatment method).

等の問題点があった。There were problems such as.

また、海水淡水化などに広く適用されている逆漫透膜法
を用いて、酸性河川中の溶存イオンを除去することは、
容易に到達する考え方であるが、この場合、濃縮排水の
処理が大きな問題となる。
In addition, it is possible to remove dissolved ions in acidic rivers using the reverse permeable membrane method, which is widely applied to seawater desalination.
Although this is an easy concept to achieve, in this case, the treatment of concentrated wastewater becomes a major problem.

本発明は、逆浸透膜法と鉄酸化・中和処理法を改良した
方法とを組み合わせることにより、上記問題点の解決を
計るべく発明されたものである.なお、前述の特開昭6
3−39696号公報に示されるように従来海水淡水化
において逆浸透膜法を用い、かつ、その透過水の中和を
行っている例があるが、これは逆浸透膜の透過水をアル
カリ物質充填塔に空気を送入しつつ、通過させ中和、p
Htl整を行う方法であり、濃縮水についてはそのまま
海へ放流している。
The present invention was invented to solve the above problems by combining the reverse osmosis membrane method and an improved iron oxidation/neutralization treatment method. In addition, the above-mentioned Japanese Patent Application Publication No. 6
As shown in Publication No. 3-39696, there is a conventional example of using a reverse osmosis membrane method in seawater desalination and neutralizing the permeate water. While feeding air into the packed tower, it is passed through and neutralized, p
This is a method of conducting Htl control, and the concentrated water is discharged directly into the sea.

本発明は、環境汚染の原因となる.#1性河川水の逆浸
透膜法濃縮水についても、鉄酸化・中和処理法を改良し
た方法を適用することにより浄化しようとするものであ
り、既存例とは基本的に異なる。
The present invention causes environmental pollution. #1 Reverse osmosis membrane concentrated water from river water is also being purified by applying an improved iron oxidation/neutralization treatment method, which is fundamentally different from existing methods.

なお、前述の特開昭63 − 252588号公報には
、酸性河川水の逆浸透膜法?l′lM水を、鉄酸化・中
和処理するという技術思想については、何ら開示も示唆
もされていない。
In addition, the above-mentioned Japanese Patent Application Laid-Open No. 63-252588 describes a reverse osmosis membrane method for acidic river water. There is nothing disclosed or suggested about the technical idea of subjecting l'lM water to iron oxidation and neutralization treatment.

本発明は上記の諸点に鑑みなされたもので、逆浸透膜法
と鉄酸化・中和処理法を改良した方法とを有効に組み合
わせることにより、効率よく、かつ経済的に、酸性河川
を浄化する方法及び装直を提供することを目的とするも
のである.〔課題を解決するための手段〕 上記の目的を達威するために、請求項1の酸性河川の浄
化方法は、つぎのta+〜(diの工程、すなわち、 +8)  #性河川から取水した原水を加圧してろ通し
た後、高圧に昇圧し逆浸透膜ユニットを通過させて、原
水のpHより上昇したpHを有する脱塩水と、濃縮水と
に分離する工程、 (bl  (al工程の脱塩水を炭酸カルシウム又は石
灰を主成分とするアルカリ物質と接触させて中和し、こ
の中和浄化水を河川に放流する工程、fc)  (a+
工程の濃縮水をオゾン、次亜塩素酸等の酸化剤と接触さ
せて、濃縮水中の2価の鉄イオンを3価の鉄イオンに酸
化する工程、 (dl  (Cl工程の処理水に炭酸カルシウム又は石
灰を主或分とするアルカリ物質を加えて水酸化第2鉄を
析出させ、この水酸化第2鉄を含むスラリーを沈降濃縮
した後、濃縮スラリーから水酸化第2鉄の脱水ケーキを
分離し、沈降濃縮工程の上澄液を河川に放流する工程、 を包含することを特徴としている。
The present invention was made in view of the above points, and it purifies acidic rivers efficiently and economically by effectively combining the reverse osmosis membrane method and an improved iron oxidation/neutralization treatment method. The purpose is to provide methods and revisions. [Means for Solving the Problem] In order to achieve the above object, the method for purifying an acidic river according to claim 1 comprises the steps of ta+~(di, i.e., +8) # raw water taken from an acidic river. After pressurizing and filtering, the process of increasing the pressure to high pressure and passing it through a reverse osmosis membrane unit to separate it into demineralized water having a pH higher than that of the raw water and concentrated water, A process of neutralizing the water by contacting it with an alkaline substance whose main component is calcium carbonate or lime, and discharging this neutralized purified water into rivers, fc) (a+
A step in which the concentrated water of the process is brought into contact with an oxidizing agent such as ozone or hypochlorous acid to oxidize divalent iron ions in the concentrated water to trivalent iron ions. Alternatively, add an alkaline substance mainly composed of lime to precipitate ferric hydroxide, sediment and concentrate the slurry containing this ferric hydroxide, and then separate the dehydrated cake of ferric hydroxide from the concentrated slurry. The method is characterized in that it includes a step of discharging the supernatant liquid from the sedimentation concentration step into a river.

請求項2の方法は、請求項1の方法において、(dl工
程における沈降ms工程の上澄液に、炭酸カルシウム又
は石灰を主成分とするアルカリ物質を加えて水酸化アル
ミニウムを析出させ、この水酸化アルミニウムを含むス
ラリーを沈降濃縮した後、濃縮スラリーから水酸化アル
ミニウムの脱水ケーキを分離し、沈降ill縮工程の上
澄液を河川に放流することを特徴としている. 請求項3の方法は、請求項2の方法において、水酸化ア
ルミニウムを含むスラリーの沈降濃縮工程における上澄
液中に空気を吹き込んで、上澄液と空気とを接触させて
脱炭酸処理することによりpHを上昇させ、この脱炭酸
浄化水を河川に放流することを特徴としている。
The method of claim 2 is the method of claim 1, in which aluminum hydroxide is precipitated by adding an alkaline substance containing calcium carbonate or lime as a main component to the supernatant liquid of the sedimentation ms step in the dl step, and The method according to claim 3 is characterized in that after the slurry containing aluminum oxide is sedimented and concentrated, a dehydrated cake of aluminum hydroxide is separated from the concentrated slurry, and the supernatant liquid from the sedimentation and illumination condensation step is discharged into a river. In the method of claim 2, air is blown into the supernatant in the step of sedimentation and concentration of the slurry containing aluminum hydroxide, and the supernatant and air are brought into contact with each other to perform decarboxylation treatment, thereby increasing the pH of the slurry. It is characterized by discharging decarbonated purified water into rivers.

請求項4の方法は、請求項3の方法において、脱炭酸浄
化水をfa)工程の脱塩水とともに炭酸カルシウム又は
石灰を主成分とするアルカリ物質と接触させて中和する
ことを特徴としている.そして、請求項5の酸性河川の
浄化装置は、第1図に示すように、酸性河川から取水し
た原水をろ過する圧力ろ過器4と、ろ過された原水を高
圧に昇圧する高圧ボンプ6と、高圧原水を脱塩水と濃縮
水とに分離する逆浸透膜ユニット7と、脱塩水を中和す
るために炭酸カルシウム又は石灰を主成分とする塊状の
アルカリ物質を充填した中和塔10と、濃縮水をオゾン
、次亜塩素酸等の酸化剤と接触させて、濃縮水中の2価
の鉄イオンを3価の鉄イオンに酸化する鉄酸化塔11と
、この鉄酸化塔からの処理水に炭酸カルシウム又は石灰
を主成分とするアルカリ物質を加えて水酸化第2鉄を析
出させる第1中和槽13と、この水酸化第2鉄を含むス
ラリーを沈降濃縮する水酸化第2鉄シックナー15と、
濃縮スラリーから水酸化第2鉄の脱水ケーキを分離する
水酸化第2鉄分#s17とを包含することを特徴として
いる. 請求項乙の装置は、請求項5の装置において、水酸化第
2鉄シフクナ−15の上澄液を導入し、炭酸カルシウム
又は石灰を主成分とするアルカリ物賞を加えて水酸化ア
ルミニウムを析出させ、この水酸化アルミニウムを含む
スラリーを沈降濃縮する水酸化アルミニウムシックナー
18と、濃縮スラリーから水酸化アルくニウムの脱水ケ
ーキを分離する水酸化アルミニウム分離機22とを、水
酸化第2鉄シソクナ−15の後流側に設けたことを特徴
としている. 請求項7の装置は、請求項6の装置において、水酸化ア
ルミニウムシックナー18の上澄液を導入し、空気を吹
き込んで上澄液と空気とを接触させることにより脱炭酸
する脱炭酸塔25を、水酸化アルミニウムシフクナー1
8の後流側に設けたことを特徴としている。
The method according to claim 4 is characterized in that in the method according to claim 3, the decarbonated purified water is brought into contact with the desalinated water of step fa) and an alkaline substance containing calcium carbonate or lime as a main component to neutralize the water. The acidic river purification device according to claim 5, as shown in FIG. 1, includes a pressure filter 4 that filters raw water taken from an acidic river, a high-pressure pump 6 that increases the pressure of the filtered raw water to high pressure, A reverse osmosis membrane unit 7 that separates high-pressure raw water into desalinated water and concentrated water, a neutralization tower 10 filled with a lumpy alkaline material mainly composed of calcium carbonate or lime to neutralize the desalted water, and a concentrated water An iron oxidation tower 11 that oxidizes divalent iron ions in concentrated water to trivalent iron ions by bringing water into contact with an oxidizing agent such as ozone or hypochlorous acid, and carbonate the treated water from this iron oxidation tower. A first neutralization tank 13 that adds an alkaline substance mainly composed of calcium or lime to precipitate ferric hydroxide, and a ferric hydroxide thickener 15 that sediments and concentrates the slurry containing this ferric hydroxide. ,
The method is characterized in that it includes a ferric hydroxide component #s17 that separates a dehydrated cake of ferric hydroxide from a concentrated slurry. The apparatus of Claim B is the apparatus of Claim 5, in which the supernatant liquid of ferric hydroxide Schifukuna-15 is introduced, and an alkali containing calcium carbonate or lime as a main component is added to precipitate aluminum hydroxide. An aluminum hydroxide thickener 18 that sediments and concentrates this slurry containing aluminum hydroxide, and an aluminum hydroxide separator 22 that separates a dehydrated cake of aluminum hydroxide from the concentrated slurry are connected to a ferric hydroxide thickener. It is characterized by being installed on the downstream side of the 15. The apparatus according to claim 7 is the apparatus according to claim 6, which further includes a decarboxylation tower 25 which decarbonates by introducing the supernatant liquid of the aluminum hydroxide thickener 18 and bringing the supernatant liquid into contact with air by blowing air into the apparatus. , aluminum hydroxide Schiffner 1
It is characterized by being provided on the downstream side of the 8.

アルカリ物質としては、石灰石、ドロマイト等のCaC
O3を主成分とする物質、石灰その他広範囲なアルカリ
物質が適用可能である。
Alkaline substances include CaC such as limestone and dolomite.
A wide range of alkaline substances such as O3-based substances, lime, and others can be applied.

また、逆浸透膜法ユニットとしては、円管型逆浸透膜装
置、スバイラル型逆浸透膜装置、中空糸型逆浸透膜装置
、平膜型逆浸透膜装置等が用いられる. 〔作用〕 酸性河川から取水した原水を加圧して圧力ろ過器4でろ
過した後、高圧ボンプ6で高圧に昇圧し、逆浸透膜ユニ
ット7を通過させて、原水のpHより上昇したpHを有
する透過水(脱塩水)と、濃縮水とに分離する.なお、
原水の水質によっては、圧力ろ過器に凝集剤を注入する
ことも有り得る。
Further, as the reverse osmosis membrane method unit, a circular tube type reverse osmosis membrane device, a spiral type reverse osmosis membrane device, a hollow fiber type reverse osmosis membrane device, a flat membrane type reverse osmosis membrane device, etc. are used. [Operation] After pressurizing raw water taken from an acidic river and filtering it with a pressure filter 4, the pressure is raised to high pressure with a high-pressure pump 6, and passed through a reverse osmosis membrane unit 7, which has a pH higher than that of the raw water. Separate into permeate water (desalinated water) and concentrated water. In addition,
Depending on the quality of the raw water, a flocculant may be injected into the pressure filter.

脱塩水を炭酸カルシウム又は石灰を主成分とするアルカ
リ物質を充填した中和塔10に導入して中和し、この中
和浄化水を河川に放流する.一方、濃縮水を鉄酸化塔1
1に導入し、オゾン、次亜塩素酸等の酸化剤を供給して
、濃縮水中の2価の鉄イオンを3価の鉄イオンに酸化す
る.鉄酸化塔11からの処理水を第1中和槽13に導入
し、炭酸カルシウム又は石灰を主成分とするアルカリ物
質を加えて水酸化第2鉄を析出させ、この水酸化第2鉄
を含むスラリーを水酸化第2鉄シックナー15に導入し
て沈降濃縮する.ついで、濃縮スラリーを水酸化第2鉄
分離機17に導入して、水酸化第2鉄の脱水ケーキを分
離する.そして、水酸化第2鉄シソクナー15の上澄液
は河川に放流されるか、又は後続の水酸化アルミニウム
シックナー18へ送られる. 水酸化アルミニウムシフクナ−18において、炭酸カル
シウム又は石灰を主成分とするアルカリ物質を加えて水
酸化アルミニウムを析出させ、この水酸化アルミニウム
を含むスラリーを沈am縮する。ついで濃縮スラリーを
水酸化アルミニウム分離機22に導入して、水酸化アル
ミニウムの脱水ケーキを分離する。そして、水酸化アル
ミニウムンノクナ−18の上澄液は河川に放流されるか
、又は後続の脱炭酸塔25へ送られる. 脱炭酸塔25において、空気を吹き込んで上澄液と空気
とを接触させて脱炭酸処理することにより、pHを上昇
させる。この脱炭酸浄化水は河川に放流されるか、又は
逆浸透膜ユニソト7下流の中和塔1口に送られて中和さ
れた後、河川に放流される. 〔実施例〕 以下、図面を参照して本発明の好通な実施例を詳細に説
明する.ただしこの実施例に記載されている構威機器の
形状、その相対配買などは、とくに特定的な記載がない
限りは、本発明の範囲をそれらのみに限定する趣旨のも
のではなく、単なる説明例にすぎない. 第1図は本発明の酸性河川の浄化装直の一実施例を示し
ている.本例では、アルカリ物質として炭酸カルシウム
を使用する場合について説明する.また、本発明は、強
酸性の河川水に対して適用することを目的としているが
、本発明では、一例としてpH2〜3の酸性河川の場合
について説明する。
Desalinated water is introduced into a neutralization tower 10 filled with an alkaline substance containing calcium carbonate or lime as a main component to be neutralized, and this neutralized purified water is discharged into a river. Meanwhile, the concentrated water is transferred to the iron oxidation tower 1.
1 and supply an oxidizing agent such as ozone or hypochlorous acid to oxidize the divalent iron ions in the concentrated water to trivalent iron ions. The treated water from the iron oxidation tower 11 is introduced into the first neutralization tank 13, and an alkaline substance containing calcium carbonate or lime as a main component is added to precipitate ferric hydroxide, which contains the ferric hydroxide. The slurry is introduced into a ferric hydroxide thickener 15 for sedimentation and concentration. The concentrated slurry is then introduced into a ferric hydroxide separator 17 to separate a dehydrated cake of ferric hydroxide. The supernatant liquid of the ferric hydroxide thickener 15 is then discharged into a river or sent to the subsequent aluminum hydroxide thickener 18. In the aluminum hydroxide Schifukuner 18, an alkaline substance containing calcium carbonate or lime as a main component is added to precipitate aluminum hydroxide, and the slurry containing this aluminum hydroxide is precipitated. The concentrated slurry is then introduced into an aluminum hydroxide separator 22 to separate a dehydrated cake of aluminum hydroxide. The supernatant liquid of the aluminum hydroxide solution 18 is then discharged into a river or sent to the subsequent decarboxylation tower 25. In the decarboxylation tower 25, the pH is increased by blowing air to bring the supernatant liquid into contact with the air for decarboxylation treatment. This decarboxylated purified water is either discharged into the river, or sent to one port of the neutralization tower downstream of the reverse osmosis membrane Unisoto 7, where it is neutralized and then discharged into the river. [Embodiments] Hereinafter, preferred embodiments of the present invention will be described in detail with reference to the drawings. However, unless there is a specific description, the shapes of the structural equipment described in this example, their relative distribution, etc. are not intended to limit the scope of the present invention to these, but are merely illustrative. Just an example. Figure 1 shows an embodiment of the present invention for purifying acidic rivers. In this example, we will explain the case where calcium carbonate is used as the alkaline substance. Moreover, although the present invention is intended to be applied to strongly acidic river water, the present invention will be described with reference to the case of an acidic river with a pH of 2 to 3 as an example.

本発明の装置は、逆浸透膜処理部1と鉄酸化・中和処理
部2とからなっている. 以下、逆浸透膜処理部1について説明する。pH2〜3
の酸性河川より取水した原水は、原水ポンブ3により3
〜4kg/cdGに加圧され、圧力ろ過器4で濁質が除
去され、保安フィルター5を経て、高圧ポンプ乙により
7〜1 0kg/cdG (原水塩濃度に依存する)に
昇圧され、逆浸透膜ユニフト7へ送られる。逆浸透膜ユ
ニット7を通過した透過水(脱塩水)は、溶存イオンは
殆ど除去されており、また、pi{も4〜5程度まで上
昇しているので、塊状炭酸カルシウム8を充填した中和
塔10を通すことにより、簡単にp}16〜7程度とす
ることができる.中和塔10を出た浄化水は元の河川に
放流される. つぎに鉄酸化・中和処理部2について説明する.逆浸透
膜ユニット7からの濃縮水は、鉄酸化塔11へ送られ、
オゾン、次亜塩素酸等の酸化剤により、2価の鉄イオン
が3価の鉄イオンに酸化される(Fe”−=Fe”” 
)。つぎに、この液をボンブ12により第l中和槽13
へ送り、炭酸カルシウムを加えpHを上げることにより
、水酸化第2鉄(Fe(OH)3 )が析出する.水酸
化第2鉄を含むスラリーはボンブ14により水酸化第2
鉄シソクナ−15へ送られて沈降濃縮され、濃縮スラリ
ーはボンブ16により水酸化第2鉄分離機17へ送られ
て分離・脱水され、Fe(OR)iの脱水ケーキが分離
・回収される.分離氷は水酸化第2鉄シンクナ−15へ
戻される. 水酸化第2鉄シンクナ−15のオーバーフロー上澄液は
、アルミニウム化合物等を含んでいない場合はそのまま
河川に放流することも可能であるが、通常は、アルミニ
ウム化合物等を含んでいるので、次の水酸化アルミニウ
ムシックナー18へボンプ20により送られ、ここでさ
らに炭酸カルシウムを投入しpHを上げることにより、
水酸化ア/L/ミニ’yム(Al(OH)3 )を析出
させる.このスラリーはボンブ21により水酸化アルミ
ニウム分離機22へ送られ、分離・脱水されて水酸化ア
ルe票ウムの脱水ケーキが分離・回収される.分離水は
水酸化アルミニウムシックナー18へ戻される.水酸化
アルミニウムシックナー18のオーバーフロー上澄液は
、そのまま河川に放流することも可能であるが、通常は
、次の脱炭酸塔へ送られる.すなわち、オーバーフロー
上澄液は中和済液槽23を経て、ボンブ24により脱炭
酸塔25に送られ、空気ブロワ26からの空気と接触さ
せて脱炭酸され、pHが上昇する.この場合、脱炭酸す
ることにより、薬剤を加えなくてもpHは上昇する.脱
炭酸塔25からの浄化水は、ボンブ27により糸外に排
出される。
The apparatus of the present invention consists of a reverse osmosis membrane treatment section 1 and an iron oxidation/neutralization treatment section 2. The reverse osmosis membrane processing section 1 will be explained below. pH2-3
The raw water taken from the acidic river is pumped through the raw water pump 3.
It is pressurized to ~4 kg/cdG, suspended solids are removed by a pressure filter 4, passed through a safety filter 5, and the pressure is increased to 7 to 10 kg/cdG (depending on the salt concentration of the raw water) by a high-pressure pump B, and reverse osmosis is carried out. It is sent to the membrane unit 7. In the permeated water (desalinated water) that has passed through the reverse osmosis membrane unit 7, most of the dissolved ions have been removed, and the pi value has increased to about 4 to 5. By passing it through the column 10, p} can be easily set to about 16 to 7. The purified water leaving the neutralization tower 10 is discharged back into the river. Next, the iron oxidation/neutralization processing section 2 will be explained. The concentrated water from the reverse osmosis membrane unit 7 is sent to the iron oxidation tower 11,
Divalent iron ions are oxidized to trivalent iron ions by oxidizing agents such as ozone and hypochlorous acid (Fe"-=Fe""
). Next, this liquid is transferred to the first neutralization tank 13 using the bomb 12.
By adding calcium carbonate to raise the pH, ferric hydroxide (Fe(OH)3) precipitates. The slurry containing ferric hydroxide is transferred to the ferric hydroxide by bomb 14.
The concentrated slurry is sent to the iron hydroxide separator 15 for sedimentation and concentration, and the concentrated slurry is sent to the ferric hydroxide separator 17 by the bomb 16 for separation and dehydration, and a dehydrated cake of Fe(OR)i is separated and recovered. The separated ice is returned to the ferric hydroxide sinker 15. If the overflow supernatant of ferric hydroxide sinker 15 does not contain aluminum compounds, it can be discharged directly into rivers, but since it usually contains aluminum compounds, the following The aluminum hydroxide thickener 18 is sent to the pump 20, where calcium carbonate is further added to raise the pH.
Precipitate aluminum hydroxide/L/mini'yme (Al(OH)3). This slurry is sent to an aluminum hydroxide separator 22 by a bomb 21, where it is separated and dehydrated, and a dehydrated cake of aluminum hydroxide is separated and recovered. The separated water is returned to the aluminum hydroxide thickener 18. The overflow supernatant liquid from the aluminum hydroxide thickener 18 can be discharged directly into a river, but it is usually sent to the next decarboxylation tower. That is, the overflow supernatant liquid passes through the neutralized liquid tank 23, is sent to the decarboxylation tower 25 by the bomb 24, is brought into contact with air from the air blower 26, is decarboxylated, and the pH is increased. In this case, decarboxylation increases the pH without adding any chemicals. Purified water from the decarboxylation tower 25 is discharged to the outside of the thread by a bomb 27.

この場合、脱炭酸塔25からの浄化水の排出・処理につ
いて、 +11  逆浸透膜処理部1の透過水(脱塩水)と合流
させて中和塔10に送り中和処理した後、元の河川に放
流する方法. (2)逆浸透膜処理部1の透過水(脱塩水)と合流させ
ず、他の河川に放流する方法. 等が考えられるが、透過水(脱塩水)を農工業上に有効
に利用するには、(2)法の方が有利である。
In this case, regarding the discharge and treatment of purified water from the decarboxylation tower 25, +11 It is combined with the permeated water (desalinated water) from the reverse osmosis membrane treatment section 1 and sent to the neutralization tower 10 for neutralization treatment, and then returned to the original river. Method of discharging water into (2) A method in which the permeated water (desalinated water) of the reverse osmosis membrane processing unit 1 is not combined with the water and is discharged into another river. However, method (2) is more advantageous in order to effectively utilize permeated water (desalinated water) for agricultural and industrial purposes.

また、逆浸透膜処理部1と鉄酸化・中和処理部2とを同
一場所に一体に設Iする場合、及びこれらの処理部1、
2を別の場所に分離して設置する場合がある. 第2図は、pH3.0、全溶解塩濃度440ppIl、
カルシウム硬度25ppm(CaCOsとして)の酸性
河川水を、第1図のフローに従って処理した結果を実際
規模の流量にスケールアップした場合の逆浸透膜処理部
および鉄酸化・中和処理部の物質収支および各部の測定
値を示している. 第2図から、pH 3.0の原水を逆浸透膜処理するこ
とにより、脱塩水は薬品を使用しなくても、pHが5.
0に上昇していることがわかる。また、透過水(脱塩水
)を炭酸カルシウムと接触させることにより、pH 7
.0〜8.01全溶解塩濃度23ppm,カルシウム硬
度15ppm(CaCOsとして)の浄化水が得られ、
飲料用、農工業用水用として十分使用できることがわか
る. さらに、逆浸透膜処理のt濃縮水を酸化した後、中和す
ることにより、水酸化第2鉄及び水酸化アルミニウムが
効率よく分離されていることがわかる. 〔発明の効果〕 本発明は上記のように構威されているので、つぎのよう
な効果を奏する。
In addition, when the reverse osmosis membrane processing section 1 and the iron oxidation/neutralization processing section 2 are installed in the same place, and when these processing sections 1,
2 may be installed separately in a different location. Figure 2 shows pH 3.0, total dissolved salt concentration 440 ppIl,
The material balance and balance of the reverse osmosis membrane treatment section and the iron oxidation/neutralization treatment section when acidic river water with a calcium hardness of 25 ppm (as CaCOs) is treated according to the flow shown in Figure 1, and the results are scaled up to an actual flow rate. It shows the measured values of each part. From Figure 2, by treating raw water with a pH of 3.0 with a reverse osmosis membrane, desalinated water can be reduced to a pH of 5.0 without the use of chemicals.
It can be seen that the value has increased to 0. In addition, by contacting permeated water (desalinated water) with calcium carbonate, pH 7.
.. Purified water with a total dissolved salt concentration of 23 ppm and a calcium hardness of 15 ppm (as CaCOs) was obtained,
It can be seen that the water can be fully used for drinking and agricultural and industrial purposes. Furthermore, it can be seen that ferric hydroxide and aluminum hydroxide can be efficiently separated by oxidizing and then neutralizing the t-concentrated water from reverse osmosis membrane treatment. [Effects of the Invention] Since the present invention is structured as described above, it has the following effects.

fil  低p}I、たとえばpH2〜3の酸性水を逆
浸透膜を透過させることにより、中和用薬品を使用する
ことな<pH4〜5に上げることが可能である.また、
逆浸透膜法による透過水(脱塩水)は、溶解塩濃度が低
く、かつ硬度も低いため、簡単なpHtl整のみで、農
工業用水への適用はもちろん、飲料水への通用も可能で
ある.(2)逆浸透膜法での濃縮水に対してのみ、鉄酸
化・中和処理を行うため、中和処理施設の取扱い水量が
少なく施設規模が小さくなる(たとえば、濃縮率5倍と
すると取扱水量は、1/5となる). (3)逆浸i3#法による濃縮水は、鉄酸化・中和処理
法(オゾンまたは次亜塩素酸などの強酸化剤による鉄酸
化、又は鉄酸化+脱炭酸法)を使用し、段階的なp H
 till JBを行うことにより、石コウを析出しな
い範囲で鉄、アルミニウムなどの有価金属を分離・回収
することができる。したがって、石コウなどの副生品の
ための貯泥ダムなどの大型付帯設備が不要となる.
fil Low p}I, for example, by passing acidic water with a pH of 2 to 3 through a reverse osmosis membrane, it is possible to raise the pH to <4 to 5 without using neutralizing chemicals. Also,
Permeated water (desalinated water) produced by the reverse osmosis membrane method has a low concentration of dissolved salts and low hardness, so it can be used not only for agricultural and industrial purposes but also for drinking water with just a simple pH adjustment. .. (2) Since iron oxidation and neutralization treatment is performed only on concentrated water using the reverse osmosis membrane method, the amount of water handled by the neutralization treatment facility is small and the scale of the facility is small (for example, if the concentration rate is 5 times, the handling The amount of water will be 1/5). (3) Concentrated water obtained by the reverse immersion i3# method is processed in stages by using an iron oxidation/neutralization treatment method (iron oxidation using ozone or a strong oxidizing agent such as hypochlorous acid, or iron oxidation + decarboxylation method). pH
By performing till JB, valuable metals such as iron and aluminum can be separated and recovered without precipitating gypsum. Therefore, large auxiliary facilities such as mud storage dams for by-products such as gypsum are not required.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は本発明の酸性河川の浄化装置の一実施例を示す
フローシート、第2図は本発明の方法による実験データ
を実際規模にスケールアップした説明図である。 1・・・逆浸透膜処理部、2・・・鉄酸化・中和処理部
、3・・・原水ポンプ、4・・・圧力ろ過器、5・・・
保安フィルター、6・・・高圧ボンブ、7・・・逆浸透
膜ユニント、8・・・塊状炭酸カルシウム、10・・・
中和塔、11・・・鉄酸化塔、12・・・ポンプ、13
・・・第1中和槽、14・・・ボンブ、15・・・水酸
化第2鉄シックナー、16・・・ポンプ、17・・・水
酸化第2鉄分離機、18・・・水酸化アルミニウムシッ
クナー、2ロ・・・ポンプ、21・・・ポンプ、22・
・・水酸化アルミニウム分離機、23・・・中和済液槽
、24・・・ポンプ、25・・・脱炭酸塔、26・・・
空気ブロワ、27・・・ポンプ出 願 人  川崎重工
業株式会社
FIG. 1 is a flow sheet showing an embodiment of the acidic river purification device of the present invention, and FIG. 2 is an explanatory diagram in which experimental data obtained by the method of the present invention is scaled up to an actual scale. 1... Reverse osmosis membrane processing section, 2... Iron oxidation/neutralization processing section, 3... Raw water pump, 4... Pressure filter, 5...
Safety filter, 6... High pressure bomb, 7... Reverse osmosis membrane unit, 8... Block calcium carbonate, 10...
Neutralization tower, 11... Iron oxidation tower, 12... Pump, 13
... 1st neutralization tank, 14 ... Bomb, 15 ... Ferric hydroxide thickener, 16 ... Pump, 17 ... Ferric hydroxide separator, 18 ... Hydroxylation Aluminum thickener, 2ro...pump, 21...pump, 22.
... Aluminum hydroxide separator, 23 ... Neutralized liquid tank, 24 ... Pump, 25 ... Decarbonation tower, 26 ...
Air blower, 27...Pump application person Kawasaki Heavy Industries, Ltd.

Claims (1)

【特許請求の範囲】 1 つぎの(a)〜(d)の工程、すなわち、 (a)酸性河川から取水した原水を加圧してろ過した後
、高圧に昇圧し逆浸透膜ユニットを通過させて、原水の
pHより上昇したpHを有する脱塩水と、濃縮水とに分
離する工程、 (b)(a)工程の脱塩水を炭酸カルシウム又は石灰を
主成分とするアルカリ物質と接触させて中和し、この中
和浄化水を河川に放流する工程、 (c)(a)工程の濃縮水をオゾン、次亜塩素酸等の酸
化剤と接触させて、濃縮水中の2価の鉄イオンを3価の
鉄イオンに酸化する工程、 (d)(c)工程の処理水に炭酸カルシウム又は石灰を
主成分とするアルカリ物質を加えて水酸化第2鉄を析出
させ、この水酸化第2鉄を含むスラリーを沈降濃縮した
後、濃縮スラリーから水酸化第2鉄の脱水ケーキを分離
し、沈降濃縮工程の上澄液を河川に放流する工程、を包
含することを特徴とする酸性河川の浄化方法。 2 (d)工程における沈降濃縮工程の上澄液に、炭酸
カルシウム又は石灰を主成分とするアルカリ物質を加え
て水酸化アルミニウムを析出させ、この水酸化アルミニ
ウムを含むスラリーを沈降濃縮した後、濃縮スラリーか
ら水酸化アルミニウムの脱水ケーキを分離し、沈降濃縮
工程の上澄液を河川に放流することを特徴とする請求項
1記載の酸性河川の浄化方法。 3 水酸化アルミニウムを含むスラリーの沈降濃縮工程
における上澄液中に空気を吹き込んで、上澄液と空気と
を接触させて脱炭酸処理することによりpHを上昇させ
、この脱炭酸浄化水を河川に放流することを特徴とする
請求項2記載の酸性河川の浄化方法。 4 脱炭酸浄化水を(a)工程の脱塩水とともに炭酸カ
ルシウム又は石灰を主成分とするアルカリ物質と接触さ
せて中和することを特徴とする請求項3記載の酸性河川
の浄化方法。 5 酸性河川から取水した原水をろ過する圧力ろ過器(
4)と、ろ過された原水を高圧に昇圧する高圧ポンプ(
6)と、高圧原水を脱塩水と濃縮水とに分離する逆浸透
膜ユニット (7)と、脱塩水を中和するために炭酸カ
ルシウム又は石灰を主成分とする塊状のアルカリ物質を
充填した中和塔(10)と、濃縮水をオゾン、次亜塩素
酸等の酸化剤と接触させて、濃縮水中の2価の鉄イオン
を3価の鉄イオンに酸化する鉄酸化塔(11)と、この
鉄酸化塔からの処理水に炭酸カルシウム又は石灰を主成
分とするアルカリ物質を加えて水酸化第2鉄を析出させ
る第1中和槽(13)と、この水酸化第2鉄を含むスラ
リーを沈降濃縮する水酸化第2鉄シックナー(15)と
、濃縮スラリーから水酸化第2鉄の脱水ケーキを分離す
る水酸化第2鉄分離機(17)とを包含することを特徴
とする酸性河川の浄化装置。 6 水酸化第2鉄シックナー(15)の上澄液を導入し
、炭酸カルシウム又は石灰を主成分とするアルカリ物質
を加えて水酸化アルミニウムを析出させ、この水酸化ア
ルミニウムを含むスラリーを沈降濃縮する水酸化アルミ
ニウムシックナー(18)と、濃縮スラリーから水酸化
アルミニウムの脱水ケーキを分離する水酸化アルミニウ
ム分離機(22)とを、水酸化第2鉄シックナー(15
)の後流側に設けたことを特徴とする請求項5記載の酸
性河川の浄化装置。 7 水酸化アルミニウムシックナー(18)の上澄液を
導入し、空気を吹き込んで上澄液と空気とを接触させる
ことにより脱炭酸する脱炭酸塔(25)を、水酸化アル
ミニウムシックナー(18)の後流側に設けたことを特
徴とする請求項6記載の酸性河川の浄化装置。
[Claims] 1. The following steps (a) to (d): (a) Raw water taken from an acidic river is pressurized and filtered, then raised to high pressure and passed through a reverse osmosis membrane unit. , a step of separating demineralized water having a pH higher than the pH of the raw water and concentrated water; (b) neutralizing the demineralized water of step (a) by contacting it with an alkaline substance containing calcium carbonate or lime as a main component; (c) The concentrated water from step (a) is brought into contact with an oxidizing agent such as ozone or hypochlorous acid to remove divalent iron ions in the concentrated water. (d) Adding an alkaline substance containing calcium carbonate or lime as a main component to the treated water in step (c) to precipitate ferric hydroxide; A method for purifying an acidic river, comprising the steps of sedimentation and concentration of the slurry, separating a dehydrated cake of ferric hydroxide from the concentrated slurry, and discharging the supernatant of the sedimentation and concentration process into a river. . 2. Add an alkaline substance containing calcium carbonate or lime as a main component to the supernatant liquid of the precipitation and concentration step in step 2 (d) to precipitate aluminum hydroxide, and after settling and concentrating the slurry containing this aluminum hydroxide, concentrate. 2. The method for purifying an acidic river according to claim 1, further comprising separating a dehydrated cake of aluminum hydroxide from the slurry and discharging the supernatant liquid of the sedimentation and concentration process into the river. 3 Air is blown into the supernatant liquid in the sedimentation concentration process of the slurry containing aluminum hydroxide, and the supernatant liquid and air are brought into contact to perform decarboxylation treatment to increase the pH, and this decarboxylated purified water is sent to rivers. 3. The method for purifying an acidic river according to claim 2, wherein the acidic river is discharged into a river. 4. The method for purifying an acidic river according to claim 3, characterized in that the decarboxylated purified water is neutralized by contacting the demineralized water in step (a) with an alkaline substance containing calcium carbonate or lime as a main component. 5 Pressure filter that filters raw water taken from acidic rivers (
4) and a high-pressure pump that boosts the filtered raw water to high pressure (
6), a reverse osmosis membrane unit (7) that separates high-pressure raw water into desalinated water and concentrated water, and a medium filled with bulk alkaline material mainly composed of calcium carbonate or lime to neutralize the desalted water. an iron oxidation tower (11) that oxidizes divalent iron ions in the concentrated water to trivalent iron ions by bringing the concentrated water into contact with an oxidizing agent such as ozone or hypochlorous acid; A first neutralization tank (13) that adds an alkaline substance mainly composed of calcium carbonate or lime to the treated water from the iron oxidation tower to precipitate ferric hydroxide, and a slurry containing the ferric hydroxide. and a ferric hydroxide separator (17) that separates a dehydrated cake of ferric hydroxide from the concentrated slurry. purification equipment. 6. Introduce the supernatant liquid of the ferric hydroxide thickener (15), add an alkaline substance containing calcium carbonate or lime as a main component to precipitate aluminum hydroxide, and precipitate and concentrate the slurry containing this aluminum hydroxide. The aluminum hydroxide thickener (18) and the aluminum hydroxide separator (22) that separates the dehydrated cake of aluminum hydroxide from the concentrated slurry are connected to the ferric hydroxide thickener (15).
6. The acidic river purification device according to claim 5, wherein the device is provided on the downstream side of the acid river purification device. 7. A decarboxylation tower (25) is introduced into which the supernatant liquid of the aluminum hydroxide thickener (18) is decarboxylated by blowing air into it to bring the supernatant liquid into contact with air. 7. The acidic river purification device according to claim 6, wherein the device is provided on the downstream side.
JP2002699A 1990-01-10 1990-01-10 Method and device for cleaning acidic river Pending JPH03207490A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2002699A JPH03207490A (en) 1990-01-10 1990-01-10 Method and device for cleaning acidic river

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2002699A JPH03207490A (en) 1990-01-10 1990-01-10 Method and device for cleaning acidic river

Publications (1)

Publication Number Publication Date
JPH03207490A true JPH03207490A (en) 1991-09-10

Family

ID=11536529

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2002699A Pending JPH03207490A (en) 1990-01-10 1990-01-10 Method and device for cleaning acidic river

Country Status (1)

Country Link
JP (1) JPH03207490A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2010042982A1 (en) * 2008-10-14 2010-04-22 Armtech Holdings Pty Ltd Treatment of water containing dissolved mineral species

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS55109486A (en) * 1979-02-14 1980-08-22 Ebara Infilco Co Ltd Processing method of waste water
JPS6339696A (en) * 1986-08-05 1988-02-20 Jgc Corp Penetrating water neutralizing method in seawater desalination by means of reverse osmosis

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS55109486A (en) * 1979-02-14 1980-08-22 Ebara Infilco Co Ltd Processing method of waste water
JPS6339696A (en) * 1986-08-05 1988-02-20 Jgc Corp Penetrating water neutralizing method in seawater desalination by means of reverse osmosis

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2010042982A1 (en) * 2008-10-14 2010-04-22 Armtech Holdings Pty Ltd Treatment of water containing dissolved mineral species

Similar Documents

Publication Publication Date Title
Kartinen Jr et al. An overview of arsenic removal processes
JP3909793B2 (en) Method and apparatus for treating organic wastewater containing high-concentration salts
US9567249B2 (en) Integrated selenium removal system for waste water
US7981295B2 (en) Enhanced high water recovery membrane process
JP3842907B2 (en) Treatment of metal-containing wastewater and method for recovering valuable metals
US8119008B2 (en) Fluid purification methods and devices
CN106745981A (en) A kind of system and method for high-salt wastewater treatment for reuse
EP1094884B1 (en) Spent brine reclamation
KR20180011482A (en) Apparatus, systems, and methods for fluid filtration
TW201505973A (en) Method and device for treating boron-containing water
WO2000000273A1 (en) Method of removing sulfate and/or metal ions from waters or wastewaters
JPS62294484A (en) Reverse osmosis treatment of water containing silica at high concentration
CN206437968U (en) A kind of system of high-salt wastewater treatment for reuse
JPH10272494A (en) Treatment of organic waste water containing salts of high concentration
RU2222371C1 (en) The improvements brought in filtration using membranes
CN100427410C (en) Method for treating fluids by coagulation on membranes
Sato et al. RO applications in wastewater reclamation for re-use
JPH03207490A (en) Method and device for cleaning acidic river
Moulin et al. Design and performance of membrane filtration installations: Capacity and product quality for drinking water applications
JPH11221579A (en) Treatment of fluorine-containing water
JP3012553B2 (en) Method and apparatus for removing heavy metals from contaminated water
Pontié et al. Seawater, Brackish Waters, and Natural Waters Treatment with Hybrid Membrane Processes
RU2225369C1 (en) Natural water treatment process
López-Ramírez et al. Comparison studies of feedwater pre-treatment in a reverse osmosis pilot plant
Kaliappan et al. Recovery and reuse of water from effluents of cooling tower