JPH03206929A - Ic-temperature detecting apparatus - Google Patents

Ic-temperature detecting apparatus

Info

Publication number
JPH03206929A
JPH03206929A JP2001794A JP179490A JPH03206929A JP H03206929 A JPH03206929 A JP H03206929A JP 2001794 A JP2001794 A JP 2001794A JP 179490 A JP179490 A JP 179490A JP H03206929 A JPH03206929 A JP H03206929A
Authority
JP
Japan
Prior art keywords
transistor
circuit
input
voltage
emitter
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2001794A
Other languages
Japanese (ja)
Other versions
JP2810933B2 (en
Inventor
Takahiro Tsuji
辻 貴浩
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Ricoh Co Ltd
Original Assignee
Ricoh Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Ricoh Co Ltd filed Critical Ricoh Co Ltd
Priority to JP2001794A priority Critical patent/JP2810933B2/en
Publication of JPH03206929A publication Critical patent/JPH03206929A/en
Application granted granted Critical
Publication of JP2810933B2 publication Critical patent/JP2810933B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Abstract

PURPOSE:To suppress the effect of dispersion in characteristics of an element by inputting the output from a reference voltage circuit into at least one input transistor, and inputting a specified potential into the other input transistor. CONSTITUTION:One output of a reference voltage circuit 1 is connected to the base of a transistor Q2 of a voltage comparing circuit 2 and a resistor R2. The emitter of the transistor Q2 is connected to the emitter of a transistor Q4 and one end of a constant-current source Ir1. The sizes of the emitters of the transistors Q2 and Q4 are made to be m:n. Then the difference DELTAVBE between a voltage VBE2 between the base and the emitter of the transistor Q2 and a voltage VBE4 between the base and the emitter of the transistor Q4 is obtained by the expression. In this expression, K is a Boltzmann's constant, (q) is the charge of electrons, Is1 is the saturation current of a transistor Q1 in the reverse direction, Is2 is the saturation current of the transistor Q2 in the reverse direction and T is absolute temperature.

Description

【発明の詳細な説明】 (イ)産業上の利用分野 本発明は、半導体集積回路(以下、ICという)オーデ
ィオ用パワーIC、モータ制御用IC等のICチップの
温度を検出するIC温度検知装置に関する。
Detailed Description of the Invention (a) Industrial Application Field The present invention relates to an IC temperature detection device for detecting the temperature of an IC chip such as a semiconductor integrated circuit (hereinafter referred to as IC), an audio power IC, or a motor control IC. Regarding.

(口)従来の技術 第3図は従来のIC温度センサて、Ir+は定電流源、
D1はダイ才一ドてあり、この回路は、ダイオードD+
のアノード・カソード間電圧V.が約−2mV/’Cの
温度特性を有することを利用し、定電流源I r +と
ダイオードD1との接続点から温度に比例した電圧が検
出され、この電圧を差動増幅回路2の1方の入力端子に
入力し、差動増幅回路2の他方の入力端子にf源電圧V
 ccを抵抗R 1R zで分割された出力が入力され
る。そして、この差動増幅回路2から検出出力を得る構
成になっている。
(Example) Conventional technology Figure 3 shows a conventional IC temperature sensor, where Ir+ is a constant current source,
D1 is a diode, and this circuit consists of a diode D+
The anode-cathode voltage V. Utilizing the fact that has a temperature characteristic of approximately -2 mV/'C, a voltage proportional to temperature is detected from the connection point between the constant current source I r + and the diode D1, and this voltage is applied to the differential amplifier circuit 2. f source voltage V is input to one input terminal of the differential amplifier circuit 2, and the f source voltage V is input to the other input terminal of the differential amplifier circuit 2.
The output obtained by dividing cc by the resistor R 1R z is input. The configuration is such that a detection output is obtained from this differential amplifier circuit 2.

この回路は、極めて簡単に構成できるが、この回路構成
においては、素子特性のばらつきにより、最悪温度係数
が10%程度ばらつきが生じるという問題があった。
Although this circuit can be configured extremely easily, this circuit configuration has a problem in that the worst-case temperature coefficient varies by about 10% due to variations in element characteristics.

そこで、素子特性のばらつきを考慮した回路が特開昭6
1−118630号公報等に提案されている。この種の
回路は第4図に示す如く、ベース・コレクタ間を短絡し
たトランジスタQ,と、このトランジスタQ1のベース
と共通に接続されたトランジスタQ2とを備え、電圧V
−が夫々のトランジスタQ,Q.のコレクタに抵抗R。
Therefore, a circuit that takes into account variations in element characteristics was developed in Japanese Patent Application Laid-Open No. 6
This method has been proposed in, for example, Japanese Patent No. 1-118630. As shown in FIG. 4, this type of circuit includes a transistor Q whose base and collector are short-circuited, and a transistor Q2 which is commonly connected to the base of this transistor Q1.
- are the respective transistors Q, Q. resistor R to the collector of.

.R2を介して印加され、またトランジスタQ2のエミ
ツタは抵抗R,を介して接地される。そして、トランジ
スタQ2のコレクタよりチップ温度に応した電圧が取り
出される。
.. It is applied through R2, and the emitter of transistor Q2 is grounded through resistor R. Then, a voltage corresponding to the chip temperature is taken out from the collector of the transistor Q2.

この第4図の回路は、 Vour= Vco−h−R 2・VcclVBE1−
VeE21Rz/R+  (1]となることを利用した
ちのである。
This circuit of FIG. 4 is as follows: Vour=Vco-h-R2・VcclVBE1-
This takes advantage of the fact that VeE21Rz/R+ (1).

ところで上述の(1)式は、 となる。By the way, the above equation (1) is becomes.

ここで、Kはポルツマン定数、qは電子の電荷、Isは
トランジスタの飽和電流である。
Here, K is Portzmann's constant, q is the electron charge, and Is is the saturation current of the transistor.

このように、第4図に示す回路構成では、回路の精度を
悪くしているIsの影響を受けない。
In this manner, the circuit configuration shown in FIG. 4 is not affected by Is, which degrades the accuracy of the circuit.

しかしながら、上述した第4図の回路においても、Vc
cが変動すると、VOUアも変動する欠点がある。
However, even in the circuit shown in FIG. 4 described above, Vc
There is a drawback that when c changes, VOUa also changes.

(ハ)発明が解決しようとする課題 前述したように、第4図の回路のものにおいては、V 
ccの変動により出力が変動するという問題があった。
(c) Problems to be solved by the invention As mentioned above, in the circuit shown in FIG.
There was a problem in that the output fluctuated due to fluctuations in cc.

本発明は上述した問題点に鑑みなされたものにして、素
子特性のばらつきによる影響を抑制し、精度の良好な温
度センサを提供することをその課題とする。
The present invention has been made in view of the above-mentioned problems, and an object of the present invention is to suppress the influence of variations in element characteristics and provide a temperature sensor with good accuracy.

(二)課題を解決するための手段 本発明は、基準電圧回路と、第1および第2の入力トラ
ンジスタを備えた電圧比較回路と、からなり、第1およ
び第2の入力トランジスタは、所定の比率に従って、エ
ミッタの大きさが設定され、基準電圧回路からの出力が
少なくとも一方の入力トランジスタに入力され、他方の
入力トランジスタは所定の電位が入力される。
(2) Means for Solving the Problems The present invention comprises a reference voltage circuit and a voltage comparator circuit having first and second input transistors, the first and second input transistors each having a predetermined value. The size of the emitter is set according to the ratio, the output from the reference voltage circuit is input to at least one input transistor, and a predetermined potential is input to the other input transistor.

(ホ)作用 本発明においては、基準電圧回路からの出力が入力され
てトランジスタの大きさにより、差電圧を得、その差電
圧を基に温度センサ出力が得られる。基準電圧回路から
の出力精度を保持することで、物理的に決まる値で素子
特性のばらつきに依存しない精度の良い温,度センサが
得られる。
(E) Function In the present invention, the output from the reference voltage circuit is input, a differential voltage is obtained depending on the size of the transistor, and a temperature sensor output is obtained based on the differential voltage. By maintaining the accuracy of the output from the reference voltage circuit, it is possible to obtain a highly accurate temperature sensor that is a physically determined value that does not depend on variations in element characteristics.

(へ)実施例 以下、本発明を第1図及び第2図に従い説明する。(f) Example The present invention will be explained below with reference to FIGS. 1 and 2.

第1図は本発明の基本的構成を示す回路図である。FIG. 1 is a circuit diagram showing the basic configuration of the present invention.

まず、本実施例においては、二出力の基準電圧回路1を
備える。この基準電圧回路1の一方の出力0、は、電圧
比較回路2の第1の入力トランジスタとしてのトランジ
スタQ2のベースと抵抗R2に接続される。そして、ト
ランジスタQ2のエミッタは、第2の入力トランジスタ
としてのトランジスタQ4のエミッタと定電流源1r+
のー端に接続され、定電流源Ir+の他端は最低電位V
 1)に接続される。また、トランジスタQ2のコレク
タは、トランジスタQ1のコレクタ、ベース及びトラン
ジスタQ3のベースに接続され、ト′ランジスタQ3の
コレクタはトランジスタQ4のコレクタとトランシスタ
Q5のベースに接続される。 更に、各トランジスタQ
1、Q3、Q5のエミッタは電源電圧V ccに接続さ
れる。トランジスタQ,のコレクタは定電流源I r 
2に接続されるこれを出力とする。Irzの他端はV 
EEにつながっている。また、基準電圧回路1の他方の
出力は、トランジスタQ4のベースに接続されている。
First, in this embodiment, a two-output reference voltage circuit 1 is provided. One output 0 of this reference voltage circuit 1 is connected to the base of a transistor Q2 as a first input transistor of a voltage comparison circuit 2 and a resistor R2. The emitter of the transistor Q2 is connected to the emitter of the transistor Q4 as the second input transistor and the constant current source 1r+
- end of the constant current source Ir+, and the other end of the constant current source Ir+ is connected to the lowest potential V
1). Further, the collector of transistor Q2 is connected to the collector and base of transistor Q1 and the base of transistor Q3, and the collector of transistor Q3 is connected to the collector of transistor Q4 and the base of transistor Q5. Furthermore, each transistor Q
The emitters of Q1, Q3, and Q5 are connected to the power supply voltage Vcc. The collector of the transistor Q is a constant current source I r
This is connected to 2 as the output. The other end of Irz is V
Connected to EE. Further, the other output of the reference voltage circuit 1 is connected to the base of the transistor Q4.

ここで、トランジスタQ,と03はカレントミラーを構
成しており、そのコレクタ電流のI,とI2は等しい。
Here, transistors Q and 03 constitute a current mirror, and their collector currents I and I2 are equal.

又、トランジスタQ2と04は、そのエミッタの大きさ
をmanにしておけば、トランジスタQ2のベース・エ
ミッタ間電圧V6E2とトランジスタQ4のベース・エ
ミッタ間電圧V st<の差△vsEは、 ?なる。
Also, if the size of the emitters of transistors Q2 and 04 is man, then the difference △vsE between the base-emitter voltage V6E2 of transistor Q2 and the base-emitter voltage Vst< of transistor Q4 is ? Become.

ここで、Kはポルツマン定数、qは電子の電荷、Is+
はQlトランジスタの逆方向飽和電流、Is2はQ21
−ランジスタの逆方向飽和電流、Tは絶対温度である。
Here, K is Portzmann's constant, q is the electron charge, Is+
is the reverse saturation current of Ql transistor, Is2 is Q21
- the reverse saturation current of the transistor, T is the absolute temperature;

又、IC内部ではI .,: I .■どなる。Also, inside the IC, I. , : I . ■I yell.

従って、この△VBEの温度変化は、 と表せる。Therefore, the temperature change of this △VBE is It can be expressed as

この式に用いられるk.q.n.mは物理的に決まる値
で、素子特性のばらつきにほとんど依存しない。従って
、精度のよい温度センサが得られる。
k used in this formula. q. n. m is a physically determined value and is hardly dependent on variations in device characteristics. Therefore, a highly accurate temperature sensor can be obtained.

また、トランジスタのm:nの比率を目的番こよって変
化させられることができるという自由度の高さも有し、
電源電圧の影響もほとんど受けない。
It also has a high degree of freedom in that the m:n ratio of the transistor can be changed depending on the target number.
It is hardly affected by the power supply voltage.

更に、上述の定数はそれ自体温度特性をほとんど持たな
いので、V OUTは温度に対してリニアに?化し、そ
の傾きは正となる。第2図は上述した回路の温度とV。
Furthermore, since the above-mentioned constants themselves have almost no temperature characteristics, is V OUT linear with temperature? , and its slope is positive. Figure 2 shows the temperature and V of the circuit described above.

U■の関係を示した特性図である。It is a characteristic diagram showing the relationship between U■.

また、V1+△VBE=V2 となる温度T1で本実施例の回路の出力は反転する。Also, V1+△VBE=V2 The output of the circuit of this embodiment is inverted at the temperature T1.

尚、上述した実施例においては、基準電圧回路2は2出
力のものについて説明したが、基4t圧回路1の出力は
1出力のものでのよく、この場合第2の入力トランジス
タに入力する電圧はグランド電位などで良い。
In the above-mentioned embodiment, the reference voltage circuit 2 was explained as having two outputs, but the output of the base 4t voltage circuit 1 may be one output. In this case, the voltage input to the second input transistor may be ground potential, etc.

(ト)発明の効果 本発明は、電源電圧変動,素子特性のばらつきよる影響
を押え、且つ、電源電圧の変動に影響を受けないので、
精度のよい温度検知装置を実現することができる。また
、全てICに内蔵でき、外付回路が必要なくなり、シス
テムとしてもスペースを有効利用できる。
(G) Effects of the Invention The present invention suppresses the effects of power supply voltage fluctuations and variations in element characteristics, and is not affected by power supply voltage fluctuations.
A highly accurate temperature detection device can be realized. In addition, everything can be built into the IC, eliminating the need for external circuits and allowing efficient use of space as a system.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は本発明の基本的構成を示す回路図、第2図はそ
の回路の温度と電圧との関係を示す特性図である。 第3図及び第4図は夫々従来暮置を示す回路図である。 l・・・基4電圧回路、2・・・電圧比較回路、Q2・
・・第lの入力トランジスタ、Q4・・一第2の入力ト
ランシスタ。
FIG. 1 is a circuit diagram showing the basic configuration of the present invention, and FIG. 2 is a characteristic diagram showing the relationship between temperature and voltage of the circuit. FIGS. 3 and 4 are circuit diagrams showing conventional storage devices, respectively. l... Base 4 voltage circuit, 2... Voltage comparison circuit, Q2.
. . . 1st input transistor, Q4 . . . 1st input transistor.

Claims (1)

【特許請求の範囲】[Claims] (1)基準電圧回路と、第1および第2の入力トランジ
スタを備えた電圧比較回路と、からなり、前記第1およ
び第2の入力トランジスタは、所定の比率に従って、エ
ミッタの大きさが設定され、前記基準電圧回路からの出
力が少なくとも一方の入力トランジスタに入力され、他
方の入力トランジスタは所定の電位が入力され、前記ト
ランジスタサイズの差に応じた差電圧により温度変化に
応じた信号が出力されることを特徴とするIC温度検知
装置。
(1) Consisting of a reference voltage circuit and a voltage comparator circuit including first and second input transistors, the first and second input transistors have emitter sizes set according to a predetermined ratio. , an output from the reference voltage circuit is input to at least one input transistor, a predetermined potential is input to the other input transistor, and a signal corresponding to temperature change is outputted by a differential voltage according to the difference in transistor size. An IC temperature detection device characterized by:
JP2001794A 1990-01-09 1990-01-09 IC temperature detector Expired - Fee Related JP2810933B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2001794A JP2810933B2 (en) 1990-01-09 1990-01-09 IC temperature detector

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2001794A JP2810933B2 (en) 1990-01-09 1990-01-09 IC temperature detector

Publications (2)

Publication Number Publication Date
JPH03206929A true JPH03206929A (en) 1991-09-10
JP2810933B2 JP2810933B2 (en) 1998-10-15

Family

ID=11511476

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2001794A Expired - Fee Related JP2810933B2 (en) 1990-01-09 1990-01-09 IC temperature detector

Country Status (1)

Country Link
JP (1) JP2810933B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2007013790A1 (en) * 2005-07-27 2007-02-01 Centro De Investigación Y De Estudios Avanzados Del Instituto Politécnico Nacional Method of using a bipolar transistor as a self-calibrated thermometer and/or temperature sensor

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS63243729A (en) * 1987-03-31 1988-10-11 Toshiba Corp Temperature detection circuit

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS63243729A (en) * 1987-03-31 1988-10-11 Toshiba Corp Temperature detection circuit

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2007013790A1 (en) * 2005-07-27 2007-02-01 Centro De Investigación Y De Estudios Avanzados Del Instituto Politécnico Nacional Method of using a bipolar transistor as a self-calibrated thermometer and/or temperature sensor

Also Published As

Publication number Publication date
JP2810933B2 (en) 1998-10-15

Similar Documents

Publication Publication Date Title
US4004462A (en) Temperature transducer
US5229711A (en) Reference voltage generating circuit
JP2749925B2 (en) IC temperature sensor
JP3337079B2 (en) Power circuit
US4475077A (en) Current control circuit
US5266852A (en) Filter circuit for integrated circuit
US4485313A (en) Low-value current source circuit
JPH0548352A (en) Integrated circuit generating current depending upon no temperature in proportional to difference between signalvoltage and reference voltage
JPH03206929A (en) Ic-temperature detecting apparatus
US5155429A (en) Threshold voltage generating circuit
CA1301862C (en) Logarithmic amplification circuit for obtaining output voltage corresponding to difference between logarithmically amplified values of two input currents
JP2729001B2 (en) Reference voltage generation circuit
JPH0444407A (en) Gain control circuit
JPH0232644B2 (en)
JPS62102612A (en) Gain control circuit
JPH05306958A (en) Temperature detection circuit
JPS61118630A (en) Apparatus for detecting temperature of ic chip
US3944370A (en) Exposure time indication apparatus
JP2988858B2 (en) Temperature detection circuit
JPS6035303Y2 (en) Waveform shaping circuit
JPS6131644B2 (en)
JPS61117613A (en) Constant voltage power supply circuit with current limit
JPH09264796A (en) Temperature detection circuit
JPS6080307A (en) Current inverting circuit
JPS60181658A (en) Voltage detection circuit

Legal Events

Date Code Title Description
LAPS Cancellation because of no payment of annual fees