JPH03206302A - Radial ceramic turbine rotor - Google Patents

Radial ceramic turbine rotor

Info

Publication number
JPH03206302A
JPH03206302A JP19911390A JP19911390A JPH03206302A JP H03206302 A JPH03206302 A JP H03206302A JP 19911390 A JP19911390 A JP 19911390A JP 19911390 A JP19911390 A JP 19911390A JP H03206302 A JPH03206302 A JP H03206302A
Authority
JP
Japan
Prior art keywords
shaft
ceramic
blade part
turbine rotor
shaft hole
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP19911390A
Other languages
Japanese (ja)
Other versions
JPH0735721B2 (en
Inventor
Shingo Sasaki
佐々木 眞悟
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
NGK Insulators Ltd
Original Assignee
NGK Insulators Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NGK Insulators Ltd filed Critical NGK Insulators Ltd
Priority to JP2199113A priority Critical patent/JPH0735721B2/en
Publication of JPH03206302A publication Critical patent/JPH03206302A/en
Publication of JPH0735721B2 publication Critical patent/JPH0735721B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Landscapes

  • Turbine Rotor Nozzle Sealing (AREA)
  • Ceramic Products (AREA)

Abstract

PURPOSE:To prevent a degreased crack in a blade part so as to improve connecting strength by forming a shaft hole less tapered than a fitting hole, from a blade part front surface over to a shaft part point end, in the case of a turbine rotor in which a blade part is connected to a shaft part through a cone-shaped fitting hole. CONSTITUTION:In a rotor main unit, a blade part 1 and a shaft part 2, which are respectively formed of ceramic, are connected by the center part 3 of the blade part 1 through ceramic paste. Here a shaft hole 6 is formed from the front surface 4 of the blade part 1 over to the point end 5 of the shaft part 2. Then connection of the rotor main unit is a connection by substantially mutual fitting of cone-shaped irregularities. A taper smaller than the taper of a cone in a connection surface 7 is provided on the shaft hole 6. Thus a degreased crack in the blade part 1 is prevented so that connecting strength is improved, while improper connection between the blade part 1 and the shaft part 2 is reduced.

Description

【発明の詳細な説明】 本発明は、ラジアル型セラくツクタービンローターに関
するものである。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a radial type ceramic turbine rotor.

窒化珪素、炭化珪素、サイアロン等のシリコンセラミッ
クスは、金属よりも高温で安定で、酸化腐食やクリープ
変形を受けにくいのでエンジン部品として利用する研究
が活発に行なわれている。
Silicon ceramics such as silicon nitride, silicon carbide, and sialon are more stable at high temperatures than metals and are less susceptible to oxidative corrosion and creep deformation, so active research is being conducted on their use as engine parts.

とりわけ、これらセラミック材料から或るラジアル型タ
ービンローターは、金属製ローターに比べ軽量でエンジ
ンの作動温度を高めることができ、熱効率に優れている
ため、自動車用ターボチャージャーローターあるいはガ
スタービンローター等として注目を集めている。
In particular, radial turbine rotors made from these ceramic materials are lighter than metal rotors, can raise engine operating temperatures, and have excellent thermal efficiency, so they are attracting attention as automotive turbocharger rotors or gas turbine rotors. are collecting.

従来のこのようなラジアル型タービンローターとしては
、特開昭57 − 88201号公報に開示されたもの
が知られており、第2図に見られるように、複雑な三次
元形状を有する翼部1を例えば射出戒形にて形威し、軸
部2を例えば金型プレスで戒形後ラバープレスにて形威
し、両者を例えば円錐状の嵌め合わせ形状として接合、
焼威して一体のセラミックタービンローターとしていた
。しかし、この方法によるものは、 (1)射出戒形後の翼部肉厚部に脱脂クランクを生じや
すく、 (2)接合時に翼部及び軸部の形状を正確に合わせる必
要があり、形状不一致の場合接合面に空隙等の接合不良
を生じやすく、また接合界面に塗布したペーストの厚さ
が不均一となり接合強度が低下しやすく、 (3)焼戒後の精密加工時にローターのセンター孔を求
めることが困難で作業性に劣る、 等の欠点があった。
As a conventional radial type turbine rotor, one disclosed in Japanese Patent Application Laid-Open No. 57-88201 is known, and as shown in FIG. 2, a blade portion 1 having a complicated three-dimensional shape is For example, the shaft part 2 is shaped by injection molding, for example, by mold press, and then molded by rubber press, and the two are joined into, for example, a conical fitting shape.
It was burnt down and made into a one-piece ceramic turbine rotor. However, with this method, (1) degreasing cranks tend to occur in the thick part of the wing after injection molding, and (2) it is necessary to precisely match the shapes of the wing and shaft at the time of joining, resulting in shape mismatch. In this case, bonding defects such as voids are likely to occur on the bonding surface, and the thickness of the paste applied to the bonding interface becomes uneven, which tends to reduce the bonding strength. There were drawbacks such as difficulty in determining and poor workability.

本発明の目的は、従来のものに見られた前記の諸欠点を
解消することであり、翼部と軸部とで構威されるセラ旦
ンクタービンローターの製造の際の脱脂工程に発生しや
すい翼部肉厚部の脱脂クラックを防止することである。
The purpose of the present invention is to eliminate the above-mentioned drawbacks found in conventional products, which occur in the degreasing process during the manufacture of ceramic cylinder rotors, which consist of blades and shafts. This is to prevent degreasing cracks in the thick parts of the wing parts, which are easy to occur.

また本発明の別の目的は、翼部と軸部の接合を容易にし
、接合部の空隙等の接合不良を防止し、セラミックペー
ストの接合層を均一にし、接合強度を増大させることで
ある。
Another object of the present invention is to facilitate the joining of the wing portion and the shaft portion, to prevent joint defects such as voids in the joint portion, to make the joining layer of the ceramic paste uniform, and to increase the joining strength.

さらに本発明の他の目的は、焼戒後の最終加工時に翼部
前面に設けた軸孔をセンター孔として利用し、作業性の
向上を図ることである。
Still another object of the present invention is to improve workability by utilizing the shaft hole provided in the front surface of the wing part as a center hole during final processing after firing.

すなわち、本発明の特徴とする要旨はセラミックス製翼
部とセラミックス製軸部とがセラ嵩ツクペーストを介し
て翼部内に設けた実質的に円錐状の嵌合孔により接合さ
れたものにおいて、翼部前面から軸部先端方向に該嵌合
孔よりテーパーが小さく、かつ、翼部前面に開孔した軸
孔を有することを特徴とするラジアル型セラ≧ツクター
ビンローターである。
That is, the gist of the features of the present invention is that a ceramic wing section and a ceramic shaft section are joined by a substantially conical fitting hole provided in the wing section via a ceramic bulk paste. This is a radial type cylinder rotor characterized by having a shaft hole which has a smaller taper than the fitting hole from the front surface of the blade toward the tip of the shaft, and which is opened in the front surface of the blade.

本発明のさらに詳しい横或を以下に詳細に説明する。Further details of the present invention will be explained in detail below.

本発明のラジアル型セラミックタービンローターは、第
1図に示すように、翼部lと軸部2とがセラξツクペー
ストを介して翼部1の中心部3で接合されており、翼部
前面4から軸部先端5方向に軸孔6を有するものである
。本発明のラジアル型セラミソクタービンローターは、
接合が実質的に円錐状凹凸の嵌め合わせによる接合であ
り、好ましくは軸孔6が接合面7の円錐のテーパーより
小さいテーパーを有し、翼部前面4における軸孔6の径
が2〜5mmであり、ローター中心軸8に対し軸孔のテ
ーパーが最大5゜、好ましくは2゜以下である。
In the radial ceramic turbine rotor of the present invention, as shown in FIG. It has a shaft hole 6 in the direction from 4 to the tip 5 of the shaft portion. The radial type ceramic turbine rotor of the present invention includes:
The joining is substantially by fitting conical projections and recesses, preferably the shaft hole 6 has a smaller taper than the conical taper of the joint surface 7, and the diameter of the shaft hole 6 in the front surface 4 of the wing section is 2 to 5 mm. The taper of the shaft hole relative to the rotor central axis 8 is at most 5 degrees, preferably 2 degrees or less.

本発明のラジアル型セラミックタービンローターについ
て説明する。
The radial ceramic turbine rotor of the present invention will be explained.

まず、窒化珪素、炭化珪素、サイアロン等のセラミック
粉末にY203,Mg○,CeO,SrO,Bed,B
,C等の焼結助剤を加えて充分に混練して均質な混合物
を調整する。次いでこの混合物に樹脂、ワックス等のバ
インダーを加熱混練し、射出戒形用のセラミック原料を
調整する。そして、第1図に示すように翼部前面4から
軸部先端5方向にかけて焼或後の径が2〜5mmで、ロ
ーターの中心軸8に対し最大5゜、好ましくは2゜以下
のテーバーの軸孔6を有するように調整された金型を用
いて射出或形することにより翼部lを得る。
First, Y203, Mg○, CeO, SrO, Bed, B
, C, etc. are added and sufficiently kneaded to prepare a homogeneous mixture. Next, a binder such as a resin or wax is heated and kneaded into this mixture to prepare a ceramic raw material for injection molding. As shown in FIG. 1, the diameter after firing is 2 to 5 mm from the front surface 4 of the blade toward the tip 5 of the shaft, and the diameter is at most 5 degrees with respect to the central axis 8 of the rotor, preferably 2 degrees or less. The wing portion 1 is obtained by injection molding using a mold adjusted to have the shaft hole 6.

あるいは、射出或形後の戒形体に超硬ドリル等を用いて
前記軸孔6を形戊した翼部1を得る。次いで射出戒形に
よって得られた戒形体中に含まれる樹脂およびワックス
等のバインダーを電気炉中で加熱除去することにより脱
脂を行う。加熱条件は、樹脂およびワックス等の種類、
含有量によって異なるが、500゜Cの温度まで100
゜C/h以下、好ましくは300゜Cの温度まで10゜
c/h以下の昇温速度とする。一方、これとは別に軸部
或形体を前記セラミック原料を用いて射出戒形法あるい
はスリップキャスト法、金型ブレス法、ラバープレス法
等のセラミック或形の常法により戊形する。この場合、
翼部或形体と軸部或形体とは必ずしも同じ材料である必
要はないが、同じ材料である方が熱膨張差が小さいため
好ましい。その後、翼部或形体および軸部或形体を80
0〜12000゜Cで仮焼後、接合面7が円錐状凹凸の
嵌め合わせとなるように機械加工する。この時、軸部先
端5は軸孔6内にはまりこむことが好ましいため円錐状
先端のままでよいが、軸孔6の直径すなわち2〜5mm
程度の丸みをおびたものとしてもよい。そして、翼部l
と軸部2の接合面7に好ましくは翼部1、軸部2と同材
質の耐熱性セラミックペーストを塗布したのち、両或形
体を密接する。両威形体の接合は接合面7を構或するテ
ーパ一部のみで行われ、軸部先端5は軸孔6内にはまり
こむ。この時、接合面7の過剰ペーストは軸孔6内に流
入するので、接合面7のペースト層は均一となり、接合
強度は増大する。軸孔6に流入したペーストはその後の
工程に何等支障を与えない。また、軸孔6をセンター孔
として利用する時も充分にその役目を果たす。
Alternatively, the wing portion 1 is obtained by forming the shaft hole 6 in the molded body after injection molding using a carbide drill or the like. Next, binders such as resin and wax contained in the molded body obtained by injection molding are removed by heating in an electric furnace to perform degreasing. The heating conditions depend on the type of resin and wax, etc.
It varies depending on the content, but up to a temperature of 500°C.
The rate of temperature increase is 10°C/h or less, preferably 10°C/h or less, to a temperature of 300°C. Separately from this, a shaft portion or a shaped body is formed using the ceramic raw material by a conventional ceramic shaping method such as an injection molding method, a slip casting method, a mold pressing method, a rubber pressing method, or the like. in this case,
Although the wing portion or shaped body and the shaft portion or shaped body do not necessarily need to be made of the same material, it is preferable that they be made of the same material because the difference in thermal expansion is small. After that, the wing part or shape body and the shaft part or shape body were
After calcining at 0 to 12,000°C, the bonding surface 7 is machined to form conical concave and convex fittings. At this time, it is preferable for the shaft tip 5 to fit into the shaft hole 6, so the conical tip may remain, but the diameter of the shaft hole 6, that is, 2 to 5 mm.
It may also be somewhat rounded. And the wing l
After applying a heat-resistant ceramic paste preferably made of the same material as the wing portion 1 and the shaft portion 2 to the joint surface 7 of the wing portion 1 and the shaft portion 2, the two shapes are brought into close contact with each other. The joining of the double-sided bodies is performed only at a part of the taper forming the joint surface 7, and the shaft end 5 fits into the shaft hole 6. At this time, excess paste on the joint surface 7 flows into the shaft hole 6, so that the paste layer on the joint surface 7 becomes uniform and the joint strength increases. The paste that has flowed into the shaft hole 6 does not interfere with subsequent processes. Further, when the shaft hole 6 is used as a center hole, it also satisfactorily fulfills its role.

密接した戒形体はラテックスゴム等の弾性体で覆って、
5 ton /cmz以下の圧力でラバープレスを行う
。その後、翼部1、軸部2あるいはセラ旦ンクペースト
に最適な焼戊温度および雰囲気で焼威し、強固に結合し
た一体のセラミックタービンローターを得る。さらに最
終製品の形状とするため、前記軸孔6をセンター孔に利
用し、翼部1および軸部2を精密に機械加工し、第1図
に示すようにラジアル型セラミックタービンローターを
得る。
Cover the closely spaced precepts with an elastic material such as latex rubber,
Rubber press is performed at a pressure of 5 ton/cmz or less. Thereafter, the blade portion 1, the shaft portion 2, or the ceramic tank paste is fired at an optimal firing temperature and atmosphere to obtain a strongly bonded integral ceramic turbine rotor. Further, in order to obtain the final product shape, the shaft hole 6 is used as a center hole, and the blade portion 1 and shaft portion 2 are precisely machined to obtain a radial type ceramic turbine rotor as shown in FIG.

なお、本発明で軸孔6の径を2〜5mmとした理由は、
2mm以下では翼部1の戒形時あるいは戒形後に軸孔6
をこれに設けるのが困難であり、かつ脱脂時のバインダ
ー放出孔として充分に機能しないためである。また、軸
孔6の径が5mm以上であると翼部と軸部の接触面積が
減少し軸部先端5から破壊が生じる恐れがある。2〜5
mm程度であれば、ローターの高速回転時に破壊の原因
となるものではない。
The reason why the diameter of the shaft hole 6 is set to 2 to 5 mm in the present invention is as follows.
If the diameter is less than 2 mm, the shaft hole 6 should be removed when or after the wing part 1 is shaped.
This is because it is difficult to provide holes therein and does not function sufficiently as binder release holes during degreasing. Further, if the diameter of the shaft hole 6 is 5 mm or more, the contact area between the wing portion and the shaft portion will be reduced, and there is a possibility that breakage may occur from the shaft portion tip 5. 2-5
If it is about mm, it will not cause damage when the rotor rotates at high speed.

タービンローターは、翼部1にはまりこむ軸部2の部分
に最大応力がかかるが、この部分は翼部lよりも肉厚が
大きいので高速回転による大きな引張応力に充分耐えら
れる。
In the turbine rotor, the maximum stress is applied to the portion of the shaft portion 2 that fits into the blade portion 1, but since this portion has a wall thickness greater than that of the blade portion 1, it can sufficiently withstand the large tensile stress caused by high-speed rotation.

また、軸孔6のテーパーとして最大5゜を好ましいとす
る理由は、5゜あれば充分に本発明の目的が達せられる
からであり、軸部先端5での軸孔の直径を大きくし過ぎ
ないためである。
Furthermore, the reason why a maximum taper of 5 degrees is preferred as the taper of the shaft hole 6 is that the purpose of the present invention can be sufficiently achieved with a taper of 5 degrees, and the diameter of the shaft hole at the tip 5 of the shaft portion should not be made too large. It's for a reason.

以下、実施例により本発明をさらに詳細に説明するが、
本発明はこの実施例に限定されるものではない。
Hereinafter, the present invention will be explained in more detail with reference to Examples.
The invention is not limited to this example.

実114L 平均粒径1μmのSi:+N4粉末100重量部(以下
同じ)に対し、焼結助剤としてSr02部、Mg03部
、CeOz3部を添加した常圧焼結用S i 3 N 
a混合物を調整した。この混合物の一部にポリエチレン
ワックス15重量%(以下同し)、ステアリン酸2%を
加えて加熱混練し、射出成形用セラミック原料を調整し
た。そして、翼部1の最大直径が50mmで、翼部前面
4に直径2mmで、ローターの中心軸に対するテーパー
が5゜の軸孔6を有するラジアル型タービンローターを
得るように調整された金型を用いて、前記セラミック原
料を射出戒形し、翼部lを作製した。次いで、電気炉中
で3゜C/hで400゜Cまで加熱し5時間保持して脱
脂した。脱脂後戒形体各部を観察したところ、クラック
は全く認められなかった。
Actual 114L Si3N for pressureless sintering with 100 parts by weight of Si:+N4 powder with an average particle size of 1 μm (the same applies hereinafter) and 2 parts of Sr, 3 parts of Mg, and 3 parts of CeOz added as sintering aids.
A mixture was prepared. 15% by weight of polyethylene wax (hereinafter the same) and 2% of stearic acid were added to a portion of this mixture and heated and kneaded to prepare a ceramic raw material for injection molding. Then, a mold was prepared so as to obtain a radial turbine rotor in which the maximum diameter of the blade part 1 was 50 mm, and the blade part front face 4 had a shaft hole 6 with a diameter of 2 mm and a taper of 5 degrees with respect to the center axis of the rotor. The ceramic raw material was injection-molded using the injection molding method, and the wing portion 1 was produced. Next, it was heated to 400°C at 3°C/h in an electric furnace and held for 5 hours to degrease it. After degreasing, each part of the molded body was observed, and no cracks were observed at all.

一方、前記混合物にポリビニールアルコール2%を加え
て充分に混練した原料を用いて金型プレス後、ラバープ
レス機で等方圧縮し、軸部戒形体を得た。そして、旋盤
加工にて先端を円錐状に加工した軸部2を作製した。
On the other hand, a raw material prepared by adding 2% polyvinyl alcohol to the mixture and thoroughly kneading the mixture was pressed into a mold, and then wasostatically compressed using a rubber press to obtain a shaped shaft body. Then, a shaft portion 2 whose tip was machined into a conical shape was manufactured using a lathe.

得られた翼部1と軸部2の接合面7を旋盤加工にて平滑
にした後、接合面にMg04部、SrO3部、Ce○2
4.5部を含むSi:+N4粉末のペーストを焼或後1
00 μmの厚さとなるように塗布し、翼部1と軸部2
を密接した後、全体をラテソクスゴムで覆い、2ton
 /cm2の圧力でラバープレスを行い、翼部1および
軸部2が強固に接合一体化した成形体を得た。次いで窒
素雰囲気中、1720゜Cで30分間焼威した。その後
翼部1前面の軸孔6をセンター孔として、旋盤加工にて
精密に仕上げ第1図に示すラジアル型セラミックタービ
ンローターを得た。
After smoothing the joint surface 7 of the obtained blade part 1 and shaft part 2 by lathe processing, the joint surface was coated with 4 parts of Mg0, 3 parts of SrO, and 2 parts of Ce○2.
After baking a paste of Si:+N4 powder containing 4.5 parts 1
Apply the coating to a thickness of 00 μm, and apply it to the wing part 1 and shaft part 2.
After applying it closely, cover the whole thing with latex rubber and 2 tons.
Rubber pressing was performed at a pressure of /cm2 to obtain a molded body in which the wing portion 1 and the shaft portion 2 were firmly joined and integrated. It was then incinerated at 1720°C for 30 minutes in a nitrogen atmosphere. Thereafter, the shaft hole 6 on the front surface of the blade section 1 was used as a center hole, and the rotor was precisely finished using a lathe to obtain the radial type ceramic turbine rotor shown in FIG. 1.

得られたセラミックタービンローターの回転試験を行う
ためロータ一部のアンハランスを0.005g’cmと
した後、金属製シャフトを取りつけた。
In order to perform a rotation test on the obtained ceramic turbine rotor, a metal shaft was attached after the unharness of a part of the rotor was set to 0.005 g'cm.

これにより増大したアンバランスを除去し、全体のアン
バランスが0.005 g −cmとなるようにバラン
ス調整した。その後、回転試験機により徐々に回転数を
増しながら試験を行ったところ、22000Orpmの
回転数でも破壊はしなかった。
This increased unbalance was removed, and the balance was adjusted so that the overall unbalance was 0.005 g-cm. Thereafter, a test was conducted using a rotating tester while gradually increasing the number of rotations, and no damage occurred even at a number of rotations of 22,000 rpm.

実遣班l 平均粒径0.5μmの種としてβ層からなるSiC粉末
100部に対し、焼結助剤としてB4C3部、02部を
添加した常圧焼結用SiC混合物を得た。
Practical Team 1 A SiC mixture for pressureless sintering was obtained by adding 3 parts of B4C and 2 parts of B4C as sintering aids to 100 parts of SiC powder consisting of a β layer as a seed with an average particle size of 0.5 μm.

この混合物の一部にEVA樹脂5%、ポリエチレンワノ
クス15%を加えて加熱混練し、射出威形用セラミック
原料を調整した。その後、焼戒後の翼部1の最大直径が
90mmのラジアル型タービンローターを得るように調
整された金型を用いて、前記セラミック原料を射出戒形
し翼部1を得た後、その翼部前面4から中心部に超硬ド
リルを用いて5mmの軸孔6をあけた。次いで、戒形体
を3゜C/hの昇温速度で500 ’Cまで昇温し、5
00 ’Cで10h保持してバインダーを除去した。脱
脂後の翼部を観察したところ、クラックは全く認められ
なかった。
5% of EVA resin and 15% of polyethylene wanox were added to a portion of this mixture and heated and kneaded to prepare a ceramic raw material for injection molding. Thereafter, the ceramic raw material is injected into a mold to obtain a radial turbine rotor in which the maximum diameter of the blade 1 after burning is 90 mm, and the blade 1 is obtained. A 5 mm shaft hole 6 was drilled from the front surface 4 to the center using a carbide drill. Next, the temperature of the shaped body was raised to 500'C at a heating rate of 3°C/h, and the temperature was increased to 500'C.
The binder was removed by holding at 00'C for 10 hours. When the wing portion was observed after degreasing, no cracks were observed.

一方、前記混合物にポリビニールアルコール2%を加え
て充分に混練した原料を用いて金型プレス後、ラハープ
レス機で等方圧縮し、軸部或形体を得た。そして、旋盤
加工にて先端を円錐状に加工した軸部2を作製した。
On the other hand, a raw material prepared by adding 2% polyvinyl alcohol to the mixture and thoroughly kneading the mixture was pressed into a die and then wasostatically compressed using a Lahar press to obtain a shaped body. Then, a shaft portion 2 whose tip was machined into a conical shape was manufactured using a lathe.

得られた翼部lと軸部2の接合面7を旋盤加工にて平滑
にした後、接合面に焼結助剤を含んだSiC粉末のペー
ストを焼威後100 mmの厚さとなるように塗布し、
翼部1と軸部2を密接した後、全体をラテックスゴムで
覆い、3 ton /cm2の圧力でラバープレスを行
い、翼部1および軸部2が強固に接合一体化した戒形体
を得た。次いで、アルゴン雰囲気中、常圧下で2150
゜Cで30分間焼戒した。その後翼部1の前面の軸孔6
をセンター孔として、旋盤加工にて精密に仕上げ第1図
に示すラジアル型セラごツクターピンローターを得た。
After smoothing the joint surface 7 of the obtained wing part 1 and shaft part 2 by lathe processing, a paste of SiC powder containing a sintering aid was applied to the joint surface to a thickness of 100 mm after firing. Apply,
After the wing part 1 and the shaft part 2 were brought into close contact, the entire body was covered with latex rubber, and a rubber press was performed at a pressure of 3 ton/cm2 to obtain a precept-shaped body in which the wing part 1 and the shaft part 2 were firmly joined and integrated. . Then, under normal pressure in an argon atmosphere,
It was burned at °C for 30 minutes. The shaft hole 6 in the front of the rear wing part 1
The center hole was precisely finished using a lathe to obtain the radial type ceramic rotor pin rotor shown in Fig. 1.

得られたセラミックタービンローターの回転試験を行う
ためロータ一部のアンバランスを0.02g−cmとし
た後、金属製品シャフトを取りつけた。これにより増加
したアンバランスを除去し、全体のアンバランスが0.
02g−cmとなるようにバランス言周整した。その後
、回転試験機により徐々に回転数を増しながら試験を行
ったところ、100.00O rpmの回転数でも破壊
しなかった。
In order to perform a rotation test on the obtained ceramic turbine rotor, the unbalance of a part of the rotor was set to 0.02 g-cm, and then a metal product shaft was attached. This removes the increased unbalance and reduces the overall unbalance to 0.
The balance was adjusted so that the weight was 0.02 g-cm. Thereafter, a test was carried out using a rotation tester while gradually increasing the number of rotations, and the product did not break even at a number of rotations of 100.00 O rpm.

以上、述べたように本発明のラジアル型セラミックター
ビンローターは翼部と軸部とを実質的に円錐状凹凸の嵌
め合わせとし、翼部前面から軸部先端方向に軸孔を設け
ることにより、翼部の脱脂クランクを防止し、翼部と軸
部の接合不良を減少させ、接合強度を高めることができ
た。さらには、翼部前面の軸孔は最終形状の機械加工時
にセンター孔として利用し、作業性の向上を図ることが
できた。このように本発明のセラミックタービンロ一タ
ーは従来のセラ旦ツクターピンローターに比べて極めて
効率よく製造することができ、産業上極めて有用である
As described above, in the radial ceramic turbine rotor of the present invention, the blade portion and the shaft portion are fitted with substantially conical irregularities, and the shaft hole is provided from the front surface of the blade portion toward the tip of the shaft portion. We were able to prevent the crank from degreasing the parts, reduce joint failures between the wing parts and the shaft parts, and increase joint strength. Furthermore, the shaft hole on the front surface of the wing can be used as a center hole during machining of the final shape, improving work efficiency. As described above, the ceramic turbine rotor of the present invention can be manufactured much more efficiently than the conventional ceramic turbine rotor, and is extremely useful industrially.

【図面の簡単な説明】[Brief explanation of drawings]

第l図は本発明のラジアル型セラミックタービンロータ
ーの一例の断面図、 第2図は、従来のラジアル型セラミックタービンロータ
ーの断面図である。 1・・・翼部 2・・・軸部 3・・・中心部 4・・・翼部前面 5・・・軸部先端 6・・・軸孔 7・・・接合面 8・・・ローターの中心軸
FIG. 1 is a sectional view of an example of a radial ceramic turbine rotor of the present invention, and FIG. 2 is a sectional view of a conventional radial ceramic turbine rotor. 1... Wing part 2... Shaft part 3... Center part 4... Wing front face 5... Shaft tip 6... Shaft hole 7... Joint surface 8... Rotor central axis

Claims (1)

【特許請求の範囲】[Claims] 1、セラミックス製翼部とセラミックス製軸部とがセラ
ミックペーストを介して翼部内に設けた実質的に円錐状
の嵌合孔により接合されたものにおいて、翼部前面から
軸部先端方向に該嵌合孔よりテーパーが小さく、かつ、
翼部前面に開孔した軸孔を有することを特徴とするラジ
アル型セラミックタービンローター。
1. In a ceramic wing section and a ceramic shaft section that are joined through a substantially conical fitting hole provided in the wing section via a ceramic paste, the fitting is performed from the front surface of the wing section toward the tip of the shaft section. The taper is smaller than the matching hole, and
A radial ceramic turbine rotor characterized by having a shaft hole opened in the front surface of a blade part.
JP2199113A 1990-07-30 1990-07-30 Radial type ceramic turbine rotor Expired - Lifetime JPH0735721B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2199113A JPH0735721B2 (en) 1990-07-30 1990-07-30 Radial type ceramic turbine rotor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2199113A JPH0735721B2 (en) 1990-07-30 1990-07-30 Radial type ceramic turbine rotor

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
JP58251881A Division JPH0627482B2 (en) 1983-12-27 1983-12-27 Manufacturing method of radial type ceramic turbine rotor

Publications (2)

Publication Number Publication Date
JPH03206302A true JPH03206302A (en) 1991-09-09
JPH0735721B2 JPH0735721B2 (en) 1995-04-19

Family

ID=16402348

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2199113A Expired - Lifetime JPH0735721B2 (en) 1990-07-30 1990-07-30 Radial type ceramic turbine rotor

Country Status (1)

Country Link
JP (1) JPH0735721B2 (en)

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5757201U (en) * 1980-09-19 1982-04-03
JPS5788201A (en) * 1980-11-20 1982-06-02 Ngk Insulators Ltd Ceramic rotor and manufacture thereof
JPS58126401A (en) * 1982-01-22 1983-07-27 Ngk Spark Plug Co Ltd Manufacturing method for ceramic turbine rotor

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5757201U (en) * 1980-09-19 1982-04-03
JPS5788201A (en) * 1980-11-20 1982-06-02 Ngk Insulators Ltd Ceramic rotor and manufacture thereof
JPS58126401A (en) * 1982-01-22 1983-07-27 Ngk Spark Plug Co Ltd Manufacturing method for ceramic turbine rotor

Also Published As

Publication number Publication date
JPH0735721B2 (en) 1995-04-19

Similar Documents

Publication Publication Date Title
EP0052913B1 (en) Ceramic rotor
JPS6224603B2 (en)
US4552510A (en) Radial type ceramic turbine rotor and method of producing the same
US4701106A (en) Radial-type ceramic turbine rotor and a method for producing the same
JPS6411444B2 (en)
JPH0446205B2 (en)
US4544327A (en) Ceramic rotor and manufacturing process therefor
JPH03206302A (en) Radial ceramic turbine rotor
EP0112146B1 (en) Radial blade type ceramic rotor and method of producing the same
JPS5893992A (en) Axial-flow rotary device and its manufacturing method
JPS60169601A (en) Manufacture of radial ceramic turbine rotor
Carlsson The shaping of engineering ceramics
JPS61111975A (en) Manufacture of ceramic structural material
JPS58124003A (en) Manufacture of ceramic turbine rotor
JPH057353B2 (en)
JP2508157B2 (en) Method for joining silicon carbide ceramics
JPH03281902A (en) Radial type ceramic rotor
JPS61111976A (en) Ceramic turbine rotor and manufacture
JPS6255498A (en) Ceramic impeller
JPS59223272A (en) Ceramics structure and manufacture
JPS62288302A (en) Rotary body for thermal engine
JP2739342B2 (en) Multilayer ceramic rotor, molded product thereof and method of manufacturing the same
JPS62228602A (en) Rotation body for heat engine
JPH0763001A (en) Ceramic turbine rotor
JP2739343B2 (en) Hybrid turbine rotor