JPH03205882A - Tunnel junction elements using composite oxide superconductivity materials - Google Patents

Tunnel junction elements using composite oxide superconductivity materials

Info

Publication number
JPH03205882A
JPH03205882A JP2000311A JP31190A JPH03205882A JP H03205882 A JPH03205882 A JP H03205882A JP 2000311 A JP2000311 A JP 2000311A JP 31190 A JP31190 A JP 31190A JP H03205882 A JPH03205882 A JP H03205882A
Authority
JP
Japan
Prior art keywords
powder
superconducting layer
superconductivity
tunnel junction
superconducting
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2000311A
Other languages
Japanese (ja)
Inventor
Takashi Matsuura
尚 松浦
Hideo Itozaki
糸崎 秀夫
Saburo Tanaka
三郎 田中
Shuji Yatsu
矢津 修示
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sumitomo Electric Industries Ltd
Original Assignee
Sumitomo Electric Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sumitomo Electric Industries Ltd filed Critical Sumitomo Electric Industries Ltd
Priority to JP2000311A priority Critical patent/JPH03205882A/en
Publication of JPH03205882A publication Critical patent/JPH03205882A/en
Pending legal-status Critical Current

Links

Landscapes

  • Superconductor Devices And Manufacturing Methods Thereof (AREA)

Abstract

PURPOSE:To make it possible to produce effectively, enhance the quality of each superconductivity layer and hence exert excellent performances as a tunnel junction element by equalizing the composition of the superconductivity layers and non-superconductivity layers except for the content of oxygen. CONSTITUTION:With regards to Bi2O powder, SrCO3 powder, SrCO3 powder, and CaCO3 powder, which are available on the market, each powder Bi, Sr, Ca, and Cu are mixed so that the atomic ratio of Bi:Sr:Ca:Cu may be specified. The mixed powder is sintered and results in a composite oxide sintered body with Bi-Sr-Ca-Cu-O, which is used as a target. A film is formed on a substrate 1. High frequency electric powder is reduced when the thus formed film thickness of a superconductivity layer 2 has reached a specified value and the formation of the film is continued. When the thickness of a non-superconductivity layer 3 has reached a specified value, the high frequency electric power is returned to the original value again and the film formation of a superconductivity layer 4 is further continued.

Description

【発明の詳細な説明】 産業上の利用分野 本発明は、複合酸化物超電導材料を用いたトンネル接合
素子基材に関する。より詳細には、本発明は、複合酸化
物超電導材料を用いて形成されるトンネル接合を含む素
子またはそのトンネル接合素子を含む回路を形成するた
めの新規な基材の構成に関する。
DETAILED DESCRIPTION OF THE INVENTION Field of the Invention The present invention relates to a tunnel junction element substrate using a composite oxide superconducting material. More specifically, the present invention relates to the configuration of a novel base material for forming an element including a tunnel junction formed using a composite oxide superconducting material or a circuit including the tunnel junction element.

従来の技術 超電導の分野において、非常に薄い非超電導層を挟んだ
1対の超電導電層により形成されるトンネル接合を利用
する技術がある。このトンネル接合は、超電導材料の超
電導エネルギーギャップを反映した非線形の電流/電圧
特性を示し、SQUIDやジョセフソン素子としてセン
サやスイッチングに利用される。
BACKGROUND OF THE INVENTION In the field of superconductivity, there is a technique that utilizes a tunnel junction formed by a pair of superconducting layers sandwiching a very thin non-superconducting layer. This tunnel junction exhibits nonlinear current/voltage characteristics that reflect the superconducting energy gap of the superconducting material, and is used in sensors and switching as SQUIDs and Josephson devices.

第1図は、上述のような素子のトンネル接合部の構或を
模式的に示す断面図である。即ち、同図に示すように、
トンネル接合は、基板1土に、第1超電導層2、非超電
導層3および第2超電導層4を順次積層して構或される
FIG. 1 is a cross-sectional view schematically showing the structure of the tunnel junction of the device as described above. That is, as shown in the figure,
The tunnel junction is constructed by sequentially laminating a first superconducting layer 2, a non-superconducting layer 3, and a second superconducting layer 4 on a substrate 1.

この超電導トンネル接合において、第1および第2超電
導層2、4は任意の超電導材料によって形成され、非超
電導層2は、通常、他の材料によって形成される。超電
導トン不ル接合の場合は、非超電導層を常電導材料によ
って形成することもでき、実際、隣接する超電導層への
影響を配慮して、従来はAu層等によって非超電導層を
形成することが多かった。
In this superconducting tunnel junction, the first and second superconducting layers 2, 4 are formed of any superconducting material, and the non-superconducting layer 2 is usually formed of other materials. In the case of superconducting tonless junctions, the non-superconducting layer can also be formed of a normal-conducting material, and in fact, in consideration of the effect on the adjacent superconducting layer, conventionally the non-superconducting layer was formed of an Au layer, etc. There were many.

しかしながら、Auのように化学的に安定な材料を使用
しても、酸化物超電導材料のように微妙な構造を有する
超電導材料に対しては影響は皆無であるとは言えない。
However, even if a chemically stable material such as Au is used, it cannot be said that there is no effect on superconducting materials having delicate structures such as oxide superconducting materials.

即ち、非超電導層材料が隣接する超電導層に拡散するこ
とにより周囲の超電導層の超電導性が損なわれたり、ま
た、或膜過程において下地となる非超電導層と第2超電
導層とのミスマッチにより第2超電導層の特性が劣化す
る場合がある。
That is, the superconductivity of the surrounding superconducting layer may be impaired due to diffusion of the non-superconducting layer material into the adjacent superconducting layer, or the superconductivity of the surrounding superconducting layer may be impaired due to a mismatch between the underlying non-superconducting layer and the second superconducting layer during a certain film process. 2. The characteristics of the superconducting layer may deteriorate.

そこで、超電導層と同じ元素を含みながら超電導性のな
い材料、即ち、例えば超電導層をYBa2Cu307に
よって形成した場合は、Y,BaおよびCuの組成比を
2:2:3等と変えた複合酸化物によって非超電導層を
形成する方法が提案されている。しかしながら、上述の
例のように同じ元素を含む酸化物を非超電導層としたト
ンネル接合を作製する場合、実際には或膜操作が複雑な
ものになる。即ち、例えば、何らかのターゲットを使用
して蒸着法によって或膜しようとすると、超電導層に続
いて非超電導層を形戊するためにはターゲットを交換す
る必要が生じ、更に、第2超電導層を形成するためには
再びターゲットを交換する必要がある。従って、戊膜工
程の工数が増す上に、製造に要する時間も長くなる。
Therefore, if the superconducting layer is made of a material that contains the same elements as the superconducting layer but does not have superconductivity, for example, YBa2Cu307, a composite oxide with a different composition ratio of Y, Ba, and Cu such as 2:2:3 may be used. proposed a method for forming a non-superconducting layer. However, when producing a tunnel junction using an oxide containing the same element as a non-superconducting layer as in the above example, a certain film operation becomes actually complicated. That is, for example, if a film is to be formed by vapor deposition using a certain target, it becomes necessary to replace the target in order to form a non-superconducting layer following a superconducting layer, and it is also necessary to form a second superconducting layer. In order to do this, you need to change the target again. Therefore, not only the number of man-hours for the coating process increases, but also the time required for manufacturing.

発明が解決しようとする課題 そこで、本発明は、上記従来技術の問題点を解決し、よ
り簡便な方法で作製し得る新規なトンネル接合素子の構
戒を提供することをその目的としている。
Problems to be Solved by the Invention Therefore, an object of the present invention is to solve the problems of the above-mentioned prior art and to provide a new structure for a tunnel junction element that can be manufactured by a simpler method.

課題を解決するための手段 即ち、本発明に従うと、基板と、酸化物により該基板上
に形成された第l超電導層と、酸素の組成比以外は該第
1超電導層と同じ組成比で該第1超電導層と同じ元素を
含む酸化物により該第1超電導層上に形成された非超電
導層と、該第1超電導層と同じ組或を有する該非超電導
層上に形成された第2超電導層とを備えることを特徴と
するトンネル接合素子が提供される。
According to a means for solving the problem, that is, according to the present invention, a substrate, a first superconducting layer formed on the substrate using an oxide, and a first superconducting layer having the same composition ratio as the first superconducting layer except for the composition ratio of oxygen. A non-superconducting layer formed on the first superconducting layer using an oxide containing the same element as the first superconducting layer, and a second superconducting layer formed on the non-superconducting layer having the same composition as the first superconducting layer. Provided is a tunnel junction element comprising:

作用 本発明に係るトンネル接合素子は、その超電導層の組或
と非超電導層の組或とが、酸素の組成比以外の点では同
じであることをその主要な特徴としている。
Function The main feature of the tunnel junction device according to the present invention is that the set of superconducting layers and the set of non-superconducting layers are the same except for the oxygen composition ratio.

即ち、複合酸化物超電導材料を使用した従来のトンネル
接合素子を作製する場合は、非超電導層の組戒を超電導
の組成と異なったものとしていたので、基板上に第1超
電導層を戊膜した後、夕一ゲットを取り替えて非超電導
層を或膜し、更にターゲットを取り替えて第2超電導層
を或膜する等の操作が必要であった。
That is, when manufacturing a conventional tunnel junction device using a composite oxide superconducting material, the composition of the non-superconducting layer was different from that of the superconducting layer, so the first superconducting layer was deposited on the substrate. After that, it was necessary to perform operations such as replacing the Yuichi target and depositing a non-superconducting layer, and then replacing the target and depositing a second superconducting layer.

これに対して、本発明に係るトンネル接合素子は、酸素
の組成比のみを変更して非超電導層を構或しているので
、或膜条件を一部変更するだけで、超電導層と非超電導
層とを連続的に或膜することができる。また、各層間で
変化するのは酸素の組成比のみなので、界面のミスマッ
チも少ない。
On the other hand, the tunnel junction device according to the present invention constructs the non-superconducting layer by changing only the oxygen composition ratio, so by only partially changing the film conditions, the superconducting layer and the non-superconducting layer can be changed. The layers can be applied in succession. Furthermore, since only the oxygen composition ratio changes between each layer, there is little mismatch at the interface.

尚、酸素の含有量を制御するために利用できる成膜条件
としては、以下のようなものが挙げられる。
Note that the following film-forming conditions can be used to control the oxygen content.

■或膜時に印加するRF電力を変化させる。(2) Changing the RF power applied at certain membrane times.

■酸素の供給を変化させる。■Change oxygen supply.

■或膜雰囲気の酸素分圧を変化させる。■Changing the oxygen partial pressure in a certain membrane atmosphere.

■基板温度を変化させる。■Change the substrate temperature.

これらの制御は、いずれも或膜揉作を中断することなく
制御することができるので、トンネル接合素子の非超電
導層を形戊するために工数や処理時間が増大することが
ない。また、本発明に係るトンネル接合素子では、単に
非超電導層の或膜条件を変化するだけで、ターゲットあ
るいは蒸発2源を交換するわけではなく、非超電導層と
超電導層とが同じ元素によって構或されている。従って
、非超電導層と超電導層とのミスマッチも非常に小さい
Since all of these controls can be performed without interrupting a certain film ablation, the number of man-hours and processing time for forming the non-superconducting layer of the tunnel junction device do not increase. Furthermore, in the tunnel junction device according to the present invention, simply changing certain film conditions of the non-superconducting layer does not necessarily mean replacing the target or the two evaporation sources. has been done. Therefore, the mismatch between the non-superconducting layer and the superconducting layer is also very small.

尚、このような本発明に係るトンネル接合素子を形成し
得る材料としては、以下のようなものが好ましい例とし
て挙げられる。
In addition, as a material which can form such a tunnel junction element based on this invention, the following are mentioned as a preferable example.

まず、基板材料としては、、Mg○基板、AI203単
結晶基板、SrTiO+単結晶基板、LaAI○3単結
晶基板、zr02単結晶基板等を好ましい例として挙げ
ることができる。
First, preferred examples of the substrate material include a Mg◯ substrate, an AI203 single crystal substrate, a SrTiO+ single crystal substrate, a LaAI◯3 single crystal substrate, and a zr02 single crystal substrate.

また、超電導層としては、La−Ba−Cu, La 
−SrCu○、Y−Ba−Cu等の複合酸化物である4
元素系の酸化物超電導材料の他、Bi −Sr−Ca−
Cu, TIBa−Ca−Cu等の5元素系の複合酸化
物を、特に超電導臨界温度が高く液体窒素による冷却で
超電導化する酸化物超電導材料として例示することがで
きるが、これに限定されるものではない。
In addition, as the superconducting layer, La-Ba-Cu, La
-4 which is a composite oxide such as SrCu○, Y-Ba-Cu, etc.
In addition to elemental oxide superconducting materials, Bi-Sr-Ca-
Five-element complex oxides such as Cu and TIBa-Ca-Cu can be exemplified as oxide superconducting materials that have a particularly high superconducting critical temperature and become superconducting when cooled with liquid nitrogen, but are not limited thereto. isn't it.

これらの複合酸化物系超電導材料は、上記特定の組成て
、且つ、特定の作製条件の下で、有効な超電導特性を発
揮する特定の結晶構造を形成する。
These composite oxide-based superconducting materials form a specific crystal structure that exhibits effective superconducting properties when they have the above-mentioned specific composition and under specific manufacturing conditions.

一方、酸素含有量が上記の組成比からずれると、超電導
特性を失うか、または、超電導臨界温度が著しく低下す
る。従って、そのような超電導特性の劣化した複合酸化
物は、トンネル接合素子における非超電導層の材料とし
て使用することができる。
On the other hand, if the oxygen content deviates from the above composition ratio, the superconducting properties will be lost or the superconducting critical temperature will drop significantly. Therefore, such a composite oxide with deteriorated superconducting properties can be used as a material for a non-superconducting layer in a tunnel junction element.

尚、本発明に係るトンネル接合素子に適用できる超電導
材料は、これらの複合酸化物に限定されるものではなく
、酸素の含有量によって超電導特性が変化するような酸
化物超電導体であれば、いかなるものでも使用すること
ができる。
The superconducting material that can be applied to the tunnel junction element according to the present invention is not limited to these composite oxides, but any oxide superconductor whose superconducting properties change depending on the oxygen content can be used. It can also be used with anything.

以下、具体例を挙げて本発明をより具体的に説明するが
、以下の開示は本発明の一実施例に過ぎず、本発明の技
術的範囲を何ら限定するものではない。
Hereinafter, the present invention will be described in more detail by giving specific examples, but the following disclosure is only one example of the present invention, and does not limit the technical scope of the present invention in any way.

実施例 RFマグネトロンスパッタリング法により、BISr 
−Ca−Cu系複合酸化物超電導体を使用したトンネル
接合素子を作製した。
EXAMPLE By RF magnetron sputtering method, BISr
A tunnel junction device using a -Ca-Cu-based composite oxide superconductor was fabricated.

市販のBi203粉末、SrC○3粉末、CaC○3粉
末、Cu○粉末をB1と、Srと、Caと、Cuとの各
粉末を、原子比B+ :Sr :Ca :Cuが2.6
 :2.O :2.0 :3.0となるように混合した
混合粉末を820℃で8時間焼結して得たBi −Sr
 −Ci−Cu一〇複合酸化物焼結体をターゲントとし
て用いた。
Commercially available Bi203 powder, SrC○3 powder, CaC○3 powder, and Cu○ powder were used as B1, and each powder of Sr, Ca, and Cu was used in an atomic ratio of B+:Sr:Ca:Cu of 2.6.
:2. Bi-Sr obtained by sintering mixed powder at 820°C for 8 hours in a ratio of O:2.0:3.0.
-Ci-Cu10 composite oxide sintered body was used as a target.

尚、超電導層の或膜条件は下記の通りである基板   
    :  MgO単結晶{110}面スパソタリン
グガス:Arと02の混合気体〔02/(Ar−!−0
2)F    C0.2(体積比)〕スパッタリング圧
力:  2 X 10−2Torr基板温度     
:750℃ 高周波電力    :  50’vV (0.64’v
V/aIIi)或膜速度     :  0.3  C
人/秒〕上記のような戊膜条件で、基板上に60分間或
膜し、超電導層の膜厚が約1000人となったところで
高周波電力をIQWまて減少させた。この状態で10分
間戊膜を続行し、非超電導層となる層の厚さが約100
Aになったところで、高周波電力を再び50Wに戻し、
更に、超電導層の厚さが1000人になるまて或膜を続
けた。尚、得された薄膜の表面付近テノ組或は、原子比
B+ : Sr :Ca:Cuが2:2:2:3てある
ような複合酸化物であった。
The film conditions for the superconducting layer are as follows:
: MgO single crystal {110} surface spasotering gas: Mixed gas of Ar and 02 [02/(Ar-!-0
2) F C0.2 (volume ratio) Sputtering pressure: 2 x 10-2Torr substrate temperature
:750℃ High frequency power: 50'vV (0.64'v
V/aIIi) Film speed: 0.3C
Under the above-mentioned film forming conditions, a film was formed on the substrate for 60 minutes, and when the thickness of the superconducting layer reached about 1000 nanometers, the high frequency power was reduced to IQW. Filming was continued for 10 minutes in this state, and the thickness of the non-superconducting layer was approximately 100%.
When it reached A, the high frequency power was returned to 50W,
Furthermore, one film was continued until the thickness of the superconducting layer reached 1,000 layers. The thin film thus obtained was a complex oxide with an atomic ratio of B+:Sr:Ca:Cu of 2:2:2:3 near the surface.

以上のようにして作製された酸化物多層膜を備えた試料
を40Kまで冷却し、9GHzのマイクロ波を印加して
電流一電圧特性を測定したところ、第2図に示すように
、明瞭なンヤピロステンプが観測された。従って、この
試料には、有効なジョセフソン接合が形成されているも
のと考えられる。
When the sample with the oxide multilayer film prepared as described above was cooled to 40K and the current-voltage characteristics were measured by applying 9 GHz microwave, a clear Nyapirotemperature was observed as shown in Figure 2. was observed. Therefore, it is considered that an effective Josephson junction is formed in this sample.

実施例2 同時真空蒸着法により、Bi −Sr−Ca−Cu系複
合酸化物超電導体を使用してトンネル接合素子を作製し
た。
Example 2 A tunnel junction element was fabricated using a Bi-Sr-Ca-Cu based composite oxide superconductor by simultaneous vacuum evaporation.

市販の金属B1、金属Ca,金属CuおよびSrF2を
蒸発源として用い、金属B1、金属Caおよび金属Cu
はKセルを用いて、また、SrF2は電子銃を用いてそ
れぞれ蒸発させた。その他の或膜条件は下記の通りであ
る: 基板       :Mg○単結晶{110}面酸素分
圧     :  2 X 10−6Torr基板温度
     :750℃ 或膜速度     : 5人/秒 上記のような或膜条件で、基板上に10分間或膜した後
、加熱温度を一旦600℃まで低下させ、基板温度が6
00℃に到達したところで直ぐにもとの温度まで基板を
加熱して、基板温度が750℃に到達したときから更に
3分間或膜を続行した。これらの操作の間、他の或膜条
件は一定で、連続して或膜を行った。
Using commercially available metal B1, metal Ca, metal Cu and SrF2 as evaporation sources, metal B1, metal Ca and metal Cu
was evaporated using a K cell, and SrF2 was evaporated using an electron gun. Other film conditions are as follows: Substrate: Mg○ single crystal {110} plane Oxygen partial pressure: 2 x 10-6 Torr Substrate temperature: 750°C Film speed: 5 people/sec Film as above After forming a film on the substrate for 10 minutes under the following conditions, the heating temperature was once lowered to 600°C, and the substrate temperature was 600°C.
Immediately after reaching 00°C, the substrate was heated to the original temperature, and from when the substrate temperature reached 750°C, a certain film was continued for an additional 3 minutes. During these operations, one membrane was run in succession, with other membrane conditions constant.

尚、得られた薄膜の表面付近での組或は、原子比Bi 
:Sr :Ca :Cuが2:2:2:3であるような
複合酸化物であった。
In addition, the composition near the surface of the obtained thin film or the atomic ratio Bi
It was a composite oxide in which the ratio of :Sr:Ca:Cu was 2:2:2:3.

以上のようにして作製された酸化物多層膜をf脂えた試
料を50Kまで冷却し、実施例1と同様に、9GHzの
マイクロ波を印加して電流一電圧特性を測定したところ
、明瞭なシャピロステップが観測された。従って、この
試料には、有効なジョセフソン接合が形戊されているも
のと考えられる。
The sample of the oxide multilayer film prepared as described above was cooled to 50K, and as in Example 1, 9GHz microwave was applied to measure the current-voltage characteristics. steps were observed. Therefore, it is considered that an effective Josephson junction is formed in this sample.

発明の効果 以上説明したように、本発明に係るトンネル接合素子は
、超電導層と非超電導層との組或が酸素の含有量を除い
て同じであり、製造時に連続して各層を或膜できる他、
各層間のミスマッチが非常に少ない。従って、効率良く
生産できると共に、各超電導層の品質が高く、トンネル
接合素子として優れた性能を発揮することが期待される
Effects of the Invention As explained above, in the tunnel junction device according to the present invention, the composition of the superconducting layer and the non-superconducting layer is the same except for the oxygen content, and each layer can be formed into a film in succession during manufacturing. other,
There is very little mismatch between each layer. Therefore, it is expected that efficient production can be achieved, that each superconducting layer has high quality, and that it exhibits excellent performance as a tunnel junction element.

尚、本発明に係るトンネル接合素子は、それ自体をトン
ネル効果素子として利用できる他、更に、これを公知の
方法で加工することによって、他の素子あるいは集積回
路等を作製するための基材として使用することもできる
The tunnel junction device according to the present invention can be used by itself as a tunnel effect device, and can also be used as a base material for manufacturing other devices or integrated circuits by processing it by a known method. You can also use

【図面の簡単な説明】[Brief explanation of drawings]

第1図は、トンネル接合素子の基本的な構或を模式的に
示す断面図であり、 第2図は、本発明に従って作製したトンネル接合素子の
電流一電圧特性を示すグラフである。 〔主な参照番号〕 1・・・基 板、 2.4・・・超電導層、3・・・・
・非超電導層
FIG. 1 is a cross-sectional view schematically showing the basic structure of a tunnel junction element, and FIG. 2 is a graph showing the current-voltage characteristics of the tunnel junction element manufactured according to the present invention. [Main reference numbers] 1...Substrate, 2.4...Superconducting layer, 3...
・Non-superconducting layer

Claims (1)

【特許請求の範囲】[Claims] 基板と、酸化物により該基板上に形成された第1超電導
層と、酸素の組成比以外は該第1超電導層と同じ組成比
で該第1超電導層と同じ元素を含む酸化物により該第1
超電導層上に形成された非超電導層と、該第1超電導層
と同じ組成を有する該非超電導層上に形成された第2超
電導層とを備えることを特徴とするトンネル接合素子。
a first superconducting layer formed on the substrate by an oxide; 1
A tunnel junction element comprising: a non-superconducting layer formed on a superconducting layer; and a second superconducting layer formed on the non-superconducting layer having the same composition as the first superconducting layer.
JP2000311A 1990-01-05 1990-01-05 Tunnel junction elements using composite oxide superconductivity materials Pending JPH03205882A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2000311A JPH03205882A (en) 1990-01-05 1990-01-05 Tunnel junction elements using composite oxide superconductivity materials

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2000311A JPH03205882A (en) 1990-01-05 1990-01-05 Tunnel junction elements using composite oxide superconductivity materials

Publications (1)

Publication Number Publication Date
JPH03205882A true JPH03205882A (en) 1991-09-09

Family

ID=11470368

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2000311A Pending JPH03205882A (en) 1990-01-05 1990-01-05 Tunnel junction elements using composite oxide superconductivity materials

Country Status (1)

Country Link
JP (1) JPH03205882A (en)

Similar Documents

Publication Publication Date Title
US6157044A (en) Tunnel junction type josephson device
JPH10507590A (en) Multilayer composite and method of manufacture
JPH03153089A (en) Tunnel junction element wherein compound oxide superconductive material is used
US5219834A (en) Process for producing a superconducting transistor
JPH03205882A (en) Tunnel junction elements using composite oxide superconductivity materials
JPH0358488A (en) Planar josephson element and manufacturing method of the same
US5565415A (en) Method for manufacturing tunnel junction type josephson device composed of compound oxide superconductor material
JPS63225599A (en) Preparation of oxide superconductive thin film
JPH03166776A (en) Tunnel junction element and manufacture thereof
JP2899287B2 (en) Josephson element
JP3473201B2 (en) Superconducting element
JP2976427B2 (en) Method of manufacturing Josephson device
JP3058515B2 (en) Superconducting Josephson device and its manufacturing method
JP3212141B2 (en) Superconducting element
JPH02186681A (en) Superconductive junction device
JPH0561787B2 (en)
JPH05114755A (en) Josephson junction device and manufacture thereof
JP2647245B2 (en) Superconducting element and manufacturing method thereof
JP3085492B2 (en) Micro-bridge type Josephson device and stacked type Josephson device
JPH05160452A (en) Fixed film thickness josephson device and manufacture thereof
JPS63318176A (en) Manufacture of oxide superconductive junction
JPH05160448A (en) Abrupt josephson device
JPH04320074A (en) Tunnel junction element
JPH02264486A (en) Superconductive film weakly coupled element
JPH04118978A (en) Superconducting element and manufacture thereof