JPH03204998A - Tv frequency band radio wave absorbent body - Google Patents

Tv frequency band radio wave absorbent body

Info

Publication number
JPH03204998A
JPH03204998A JP34341489A JP34341489A JPH03204998A JP H03204998 A JPH03204998 A JP H03204998A JP 34341489 A JP34341489 A JP 34341489A JP 34341489 A JP34341489 A JP 34341489A JP H03204998 A JPH03204998 A JP H03204998A
Authority
JP
Japan
Prior art keywords
radio wave
frequency band
magnetic
magnetic powder
magnetic particles
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP34341489A
Other languages
Japanese (ja)
Other versions
JP2735914B2 (en
Inventor
Takeshi Yamamoto
毅 山本
Shun Sato
駿 佐藤
Hideo Tanaka
秀男 田中
Kenji Sugimoto
賢司 杉本
Tetsuo Yamada
哲夫 山田
Tetsuzo Morita
森田 哲三
Yukio Kosaka
征雄 小坂
Tadashi Ito
正 伊藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Taisei Corp
DIC Corp
Nippon Steel Corp
Showa Kogyo KK
Original Assignee
Taisei Corp
Nippon Steel Corp
Dainippon Ink and Chemicals Co Ltd
Showa Kogyo KK
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Taisei Corp, Nippon Steel Corp, Dainippon Ink and Chemicals Co Ltd, Showa Kogyo KK filed Critical Taisei Corp
Priority to JP1343414A priority Critical patent/JP2735914B2/en
Publication of JPH03204998A publication Critical patent/JPH03204998A/en
Application granted granted Critical
Publication of JP2735914B2 publication Critical patent/JP2735914B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Shielding Devices Or Components To Electric Or Magnetic Fields (AREA)
  • Aerials With Secondary Devices (AREA)
  • Soft Magnetic Materials (AREA)

Abstract

PURPOSE:To enable an absorbent body to be easily provided and to absorb a TV frequency band radiowave of wide band by a method wherein the imaginary number component peak value of the complex magnetic permeability of a molded body, whose main material is composed of a binder and magnetic particles which are in a specified dry weight ratio, is so set as to be lower than a TV frequency band. CONSTITUTION:A binder and magnetic particles or a binder, magnetic particles, and carbon fiber are used as main materials, and the main components are set to be in the mixing ratio by dry weight 5-25% of binder: 75-95% of magnetic particles. If the magnetic particles are above 95% by weight, a molded body is hard to set, and if below 75%, the molded body is inferior in intrinsic performance. The reason why magnetic particles are set high in compounding ratio is that an imaginary number component mu'' of a magnetic permeability is enhanced and a real number component mum'/mum'' of a magnetic permeability is set small in value. By this setup, a large molded body can be easily formed, so that a radiowave absorbent body of this design can be prevented from deteriorating in radiowave absorbing property due to the gap between panels.

Description

【発明の詳細な説明】 (産業上の利用分野) 本発明は、粘結材と磁性粉粒物もしくは、粘結材と磁性
粉粒物とカーボンファイバーを主原料とした、TV周波
数帯域用電波吸収物に関するものである。
Detailed Description of the Invention (Field of Industrial Application) The present invention provides a radio wave for TV frequency band using a caking agent, magnetic powder, or a caking agent, magnetic powder, and carbon fiber as main raw materials. It concerns absorbents.

(従来の技術) TV電波は、100MHz近傍、波長約3mを使用周波
数にもつ、1 ch〜3 ch、 200MHz近傍、
波長約1.5mを使用周波数にもつ、4ch 〜12c
h0600MHz近傍、波長として約0.5mを使用周
波数にもつ、13ch〜62chまで、実に最大8倍強
の異なる周波数(波長)の電波が使用されている。
(Prior art) TV radio waves use frequencies around 100 MHz and a wavelength of about 3 meters, 1 ch to 3 ch, around 200 MHz,
4ch ~ 12c with a wavelength of approximately 1.5m as the operating frequency
Radio waves with frequencies (wavelengths) that are around 600 MHz and have wavelengths of about 0.5 m are used, and have frequencies (wavelengths) that differ by up to 8 times from channels 13 to 62.

したがって、固有の厚みを有する電波吸収物で、広帯域
かつ波長差が2mを越えるTV電波を吸収し、偽像(ゴ
ースト)を防止する手段は、使用周波数の高いつまり波
長の短い、例えばレーダ帯域(9,4GHz、波長約0
.3m )の偽像対策に比べ、解決策としての電波吸収
物の種類は少ない。
Therefore, the means to prevent false images (ghosts) by absorbing TV radio waves in a wide band with a wavelength difference of more than 2 meters using a radio wave absorbing material having a specific thickness is to use a radio wave absorbing material having a high frequency, that is, a short wavelength, for example, in the radar band ( 9.4GHz, wavelength approximately 0
.. Compared to countermeasures against false images (3m), there are fewer types of radio wave absorbing materials as solutions.

現在知られている解決手段は、主に2つ存在し、焼結フ
ェライトタイル材を用いる方法と、カーボン粉と発泡ス
チロール複合体からなるピラミッド型ブロツク材を用い
る方法とがある。
There are two main solutions known at present: a method using sintered ferrite tiles and a method using pyramid-shaped block materials made of a carbon powder and expanded polystyrene composite.

しかしながら、焼結フェライトタイル材は、1000℃
以上の高温で焼成する工程が不可避であるため、焼きむ
らや焼成中のタイルのそり等の変形が生ずる。この焼成
条件の不均一さを軽減する目的上、タイルの形状には大
きさに制約があり、その寸法はl0C111XIOCI
I+程度となる。この値は、100MHzの波長の約1
/30であり、良好な吸収特性を獲得するためには、施
工に技術的また、特に経済的問題点が多く、広く一般建
築物に普及していない。
However, sintered ferrite tile material is
Since the process of firing at such high temperatures is unavoidable, deformations such as uneven firing and warpage of tiles during firing occur. In order to reduce the non-uniformity of firing conditions, there are restrictions on the size of the tile shape, and the dimensions are l0C111XIOCI
It will be about I+. This value is approximately 1 of the wavelength of 100MHz.
/30, and there are many technical and especially economical problems in construction in order to obtain good absorption properties, so it is not widely used in general buildings.

またピラミッド型ブロツク材の場合、現在知られている
TV電波吸収物の厚みは1〜2mであり、ビルの外壁に
採用するには、空間的な問題が多く、電波暗室等に使用
する場合にも、部屋の空間を大きく占有するといった問
題点がある。
In addition, in the case of pyramid-shaped block materials, the thickness of the currently known TV wave absorbing material is 1 to 2 meters, and there are many spatial problems when using it on the outer wall of a building, and when using it in an anechoic chamber etc. However, there is a problem that it occupies a large amount of space in the room.

また、コンクリートにカーボンファイバーカーボンビー
ズおよびスチールファイバーを混合した成形物(清水康
敬: E M C1988,8,8<Na2>88頁)
が知られている。しかしながら、上記成形均厚みの報告
値は、23.79cmと厚く、また吸収周波数帯域の報
告値も、100〜200MHz付近であることから、全
てのTV用周波数帯域に使用できないといった問題があ
る。
In addition, molded products made by mixing concrete with carbon fiber carbon beads and steel fibers (Yasutaka Shimizu: EMC 1988, 8, 8 <Na2> p. 88)
It has been known. However, the reported value of the molded uniform thickness is as thick as 23.79 cm, and the reported value of the absorption frequency band is around 100 to 200 MHz, so there is a problem that it cannot be used in all TV frequency bands.

さらに、セメント;フェライト;砂の体積比を1:4:
3(このうちフェライトlff1は全体の66%)とす
る電波吸収建材について、透過減衰量の値(単位:dB
/co+)が報告されている(特願昭47−11398
0公報)。しかしながら、上記公報の中には反射減衰量
の値(単位: dB)についての記載がなく、成形物表
面で直接反射する電波の量が、全く不明である。
Furthermore, the volume ratio of cement:ferrite:sand was 1:4:
3 (of which ferrite lff1 accounts for 66% of the total), the value of transmission attenuation (unit: dB)
/co+) has been reported (Japanese Patent Application No. 11398/1989).
0 Publication). However, the above-mentioned publication does not mention the value of return loss (unit: dB), and the amount of radio waves directly reflected on the surface of the molded product is completely unknown.

(発明が解決しようとする課題) 本発明は、既存電波吸収物の経済的・形状的・空間的欠
点を克服し、施工が容易で、しかも広帯域にわたるTV
周波数帯域電波の吸収を可能とする、成形物の開発を目
的としている。
(Problems to be Solved by the Invention) The present invention overcomes the economical, geometrical, and spatial disadvantages of existing radio wave absorbers, is easy to install, and can be used for TVs that cover a wide band.
The aim is to develop molded products that can absorb frequency band radio waves.

(課題を解決するための手段) 本発明は、乾燥重量比で粘結材5〜25%、磁性粉粒物
75〜95%を主原料とした成形物の複素透磁率の虚数
成分ピーク値が、TV電波周波数帯域以下であることを
特徴とするTV周波数帯域用電波吸収物、または、乾燥
重量比で粘結材5〜25%、磁性粉粒物75〜95%、
カーボンファイバー0.01〜1%を主原料とした成形
物の複素透磁率の虚数成分ピーク値が、TV電波周波数
帯域以下であることを特徴とするTV周波数帯域用電波
吸収物を要旨とするものである。
(Means for Solving the Problems) The present invention provides that the peak value of the imaginary component of the complex magnetic permeability of a molded product whose main raw materials are 5 to 25% of the binder and 75 to 95% of the magnetic powder and granules in dry weight ratio is , a radio wave absorber for the TV frequency band characterized by being below the TV radio wave frequency band, or a dry weight ratio of caking agent 5 to 25% and magnetic powder and granules 75 to 95%,
A radio wave absorber for the TV frequency band, characterized in that the peak value of the imaginary component of the complex magnetic permeability of a molded product made from 0.01 to 1% of carbon fiber as the main raw material is below the TV radio wave frequency band. It is.

更に望ましくは、乾燥重量比で粘結物5〜17%、磁性
粉粒物83〜95%を主原料とした、成形物の複素透磁
率の虚数成分ピーク値が、TV電波周波数帯域以下であ
ることを特徴とするTV周波数帯域用電波吸収物、また
は、乾燥重量比で粘結材5〜17%、磁性粉粒物83〜
95%、カーボンファイバー0.01〜1%を主原料と
した成形物の複素透磁率の虚数成分ピーク値が、TV電
波周波数帯域以下であることを特徴とするTV周波数帯
域用電波吸収物である。また、粒径分布の異なる少なく
とも2種類以上の磁性粉粒物を用いることをも特徴の一
つとする。
More preferably, the peak value of the imaginary component of the complex magnetic permeability of the molded product, which is made mainly from 5 to 17% of caking and 83 to 95% of magnetic powder in terms of dry weight, is below the TV radio wave frequency band. A radio wave absorber for TV frequency bands, or a dry weight ratio of caking agent 5 to 17% and magnetic powder and granule material 83 to 17%.
This is a radio wave absorber for the TV frequency band, characterized in that the peak value of the imaginary component of the complex magnetic permeability of the molded product made mainly of 95% and 0.01 to 1% carbon fiber is below the TV radio frequency band. . Another feature is that at least two types of magnetic powder particles having different particle size distributions are used.

(作  用) 以下に本発明の詳細な説明する。(for production) The present invention will be explained in detail below.

本発明でいう粘結材とは、ポリ酢酸ビニル溶液、ポリ酢
酸ビニルエマルジョン、ポリビニルアルコール、アクリ
ルエマルジョン、シアノアクリレート、クロロブレーン
ゴム、天然ゴム、ユリア樹脂、フェノール樹脂、エポキ
シ、ポリウレタン、デンプンならびにセメントを総称す
るものであるが、特に以下に述べるセメントと上述した
1種類もしくは多種類粘結材との複合物を指す場合が多
く、セメント単独では用いない。
The binder used in the present invention includes polyvinyl acetate solution, polyvinyl acetate emulsion, polyvinyl alcohol, acrylic emulsion, cyanoacrylate, chlorobrane rubber, natural rubber, urea resin, phenolic resin, epoxy, polyurethane, starch, and cement. Although it is a general term, it often refers to a composite of the cement described below and one or more types of caking agents mentioned above, and the cement is not used alone.

ここで言うセメントとは、水硬性セメント(例えば、ポ
ルトランドセメント、白色ポルトランドセメント、アル
ミナセメント、ポゾランセメント、トラスセメント、サ
ントリンセメント、石灰スラグセメント、ポゾランポル
トランドセメント、シリカセメント、トラスポルトラン
ドセメント、高炉セメント、鉄ポルトランドセメント、
フライアッシュセメント、ソリジットセメント、頁岩圧
ポルトランドセメント)、気硬性セメント(マグネシア
セメント)、特殊セメント(耐火セメント、耐酸セメン
ト、水ガラスセメント、高硫酸塩スラグセメント)等、
一般にセメントと呼ばれているセメント類であれば特に
限定されない。
Cement here refers to hydraulic cement (e.g., portland cement, white portland cement, alumina cement, pozzolan cement, truss cement, santolin cement, lime slag cement, pozzolan portland cement, silica cement, trass portland cement, blast furnace cement) , iron portland cement,
fly ash cement, solidit cement, shale pressure portland cement), air hard cement (magnesia cement), special cement (fire resistant cement, acid resistant cement, water glass cement, high sulfate slag cement), etc.
There is no particular limitation as long as it is a type of cement that is generally called cement.

これらの配合比は、乾燥重量比で全体の5wt%以上よ
り25wt%以下の範囲であり、5wt%未満の範囲で
は成形物が凝結しにくく、また、25vt%を越える範
囲では、電波吸収物としての本来の機能が劣る。
The blending ratio of these is in the range of 5wt% or more to 25wt% or less of the total dry weight ratio.If it is less than 5wt%, the molded product is difficult to aggregate, and if it exceeds 25wt%, it will not work as a radio wave absorber. The original function of is inferior.

磁性粉粒物とは、酸化物磁性体ならびに金属磁性体であ
り、例えば(Fed−Fe203 。
Magnetic particles include oxide magnetic materials and metal magnetic materials, such as (Fed-Fe203).

7−Fe2O,、Mn0−Fe、O,、Mn0−ZnO
−Fe2O3,CuO−ZnO−Fe20q 。
7-Fe2O,, Mn0-Fe, O,, Mn0-ZnO
-Fe2O3,CuO-ZnO-Fe20q.

CuO−Mn0−Fe2O3,NtO−ZnO−Fe2
03.N1O−CuO−ZnO−Fe20.。
CuO-Mn0-Fe2O3, NtO-ZnO-Fe2
03. N1O-CuO-ZnO-Fe20. .

MgO−Fe2O,、MgO−ZnO−Fe2O,。MgO-Fe2O, , MgO-ZnO-Fe2O,.

MgO−Mn0−Fe20.、Li0−ZnO−Fe2
O,、などの酸化物磁性体と、鉄粉、ケイ素鋼粉、パー
マロイ粉、センダスト粉などの金属磁性体とがある。こ
のうち、酸化物磁性体に限定すれば、磁気特性の改善、
焼結反応の促進、結晶粒内・粒界抵抗の制御などを目的
として微量元素(例えば、CaO,5i02等)を焼成
前に添加することが望ましい。
MgO-Mn0-Fe20. , Li0-ZnO-Fe2
There are oxide magnetic materials such as O, etc., and metal magnetic materials such as iron powder, silicon steel powder, permalloy powder, and sendust powder. Among these, if limited to oxide magnetic materials, improvement of magnetic properties,
It is desirable to add trace elements (for example, CaO, 5i02, etc.) before firing for the purpose of promoting the sintering reaction and controlling intra-grain/grain boundary resistance.

さらに、現在入手が比較的容易で、大量、安価に市場に
出回っている磁性体で、しかも吸収特性にも優れている
材料としては、Mn−Zn系ならびにMn−Mg系など
のMn基フェライトが適当である。
Furthermore, Mn-based ferrites such as Mn-Zn and Mn-Mg systems are magnetic materials that are relatively easy to obtain, are available in large quantities at low prices, and have excellent absorption properties. Appropriate.

磁性粉粒物の大きさや粒径分布については、第7図・印
)に示すように、磁性粉粒物の充填密度を上昇させる目
的から、第2図(b)ならびに第4図(a) 、(b)
に示したように、粒径分布ピークの異なる同一もしくは
異なる成分の粉粒物を混ぜて使用すると良く、磁性粉粒
物の直径比にして、粒径分布ピークの違いが2倍以上離
れていることが望ましい。なお、磁性粉粒物の配合範囲
については後述する。
Regarding the size and particle size distribution of the magnetic powder particles, as shown in Fig. 7 (marked), for the purpose of increasing the packing density of the magnetic powder particles, Fig. 2 (b) and Fig. 4 (a) ,(b)
As shown in , it is best to use a mixture of powders of the same or different components with different particle size distribution peaks, and the difference in particle size distribution peaks should be at least twice as far apart in terms of the diameter ratio of the magnetic powders. This is desirable. The blending range of the magnetic powder will be described later.

カーボンファイバーについては、レーヨン系、アクリロ
ニトリル系、リグニン・ボ1<−ル系、ピッチ系ならび
にタール系材料等を総称するものであり、1種類以上混
練することにより成形体の電波吸収特性を微調整する。
Carbon fiber is a general term for rayon-based, acrylonitrile-based, lignin ball-based, pitch-based, and tar-based materials, and by kneading one or more types, the radio wave absorption characteristics of the molded product can be finely adjusted. do.

その配合比率Yは、0もしくは、0,01≦Y≦1であ
り、1νt%を越える多量のカーボンファイバーの混線
は、技術的に困難であるばかりでなく、特に磁性粉粒物
の配合比率の高い本発明においては、むしろ好ましくな
い。また、微調整を必要としない場合には、配合する必
要はない。
The blending ratio Y is 0 or 0,01≦Y≦1, and the cross-talk of a large amount of carbon fiber exceeding 1vt% is not only technically difficult, but also especially when the blending ratio of magnetic particles is In the present invention, this is rather undesirable. Further, if fine adjustment is not required, there is no need to mix it.

カーボンファイバーの形状について、カール状もしくは
ストレート状の長繊維または短繊維を使用すればよく、
強いて言えば混線・分散の容易さより短繊維の形状が望
ましい。
Regarding the shape of carbon fiber, curled or straight long fibers or short fibers may be used.
To put it bluntly, a short fiber shape is preferable for ease of cross-crossing and dispersion.

以上、本文で述べた材料すなわち、粘結材、磁性粉粒物
、または、粘結材、磁性粉粒物、カーボンファイバーを
本発明では主原料と呼び、成形にあたっては水分や混和
材料(例えば、AE材、分散材、凝結・硬化促進材、防
水材、防凍材、発泡材、着色材、混合材、耐火性促進材
等)を適宜添加する。
In the present invention, the materials mentioned above, that is, caking agents, magnetic powders, or caking agents, magnetic particles, and carbon fibers, are referred to as main raw materials in the present invention. AE material, dispersion material, setting/hardening accelerator, waterproofing material, antifreeze material, foaming material, coloring material, mixed material, fire resistance accelerator, etc.) are added as appropriate.

第1図には、本発明の概略図を示す。電波吸収物の裏面
には、短絡板とよばれる導電体が施行される。この板は
、鉄板、銅板などの金属製板の他、金網や鉄筋などでも
代用が可能であり、本発明に述べる電波吸収物の厚みを
薄くするはたらきがある。
FIG. 1 shows a schematic diagram of the invention. A conductor called a shorting plate is installed on the back side of the radio wave absorber. This plate can be replaced by a metal plate such as an iron plate or a copper plate, as well as a wire mesh or a reinforcing bar, and has the function of reducing the thickness of the radio wave absorbing material described in the present invention.

主原料の混合比率は、乾燥重量比で粘結材5%以上ない
し25%以下、磁性粉粒物75%以上ないし95%以下
、または粘結材5%以上ないし25%以下、磁性粉粒物
75%ないし95%以下、カーボンファイバー0.01
%以上ないし1%以下の範囲である。磁性粉粒物が95
%を越える範囲では成形体が凝結しにくく、また75%
未満の範囲では成形体としての本来の性能が劣る。この
ように、磁性粉粒物の配合比率を高くした理由は、透磁
率の虚数成分μ(第3図O印)を高め、しかも透磁率の
実数成分μ′ (第3図・印)/μ′ (第3図Q印)
の値を小さくする目的による。
The mixing ratio of the main raw materials is 5% or more and 25% or less of a binder, 75% or more and 95% or less of a magnetic powder, or 5% or more and 25% or less of a binder, and a magnetic powder or granule based on dry weight. 75% to 95% or less, carbon fiber 0.01
% or more to 1% or less. Magnetic powder is 95
If it exceeds 75%, the molded product will be difficult to solidify, and if it exceeds 75%
In the range below, the original performance as a molded product is poor. The reason for increasing the blending ratio of magnetic particles is to increase the imaginary component μ of magnetic permeability (marked O in Figure 3), and to increase the real component μ' (marked in Figure 3)/μ of magnetic permeability. ’ (Mark Q in Figure 3)
Depends on the purpose of reducing the value of.

電波吸収機構の詳細については、内藤善之著:電波吸収
体、オーム社(1987) 8B頁に記載されているの
で、近似式のみにとどめ誘電率の効果は省略する。第1
図に示すように裏面に短絡板とよばれる導電体が施工さ
れた磁性損失型電波吸収物において、反射減衰1tdB
は dB−20・Nog l 1− (4π(、cz″+j
μ’)d/λ)・・・・・・・・・・・・・・・(1)
d:電波吸収物の厚み、λ:電波の波長で近似できる。
Details of the radio wave absorption mechanism are described in Yoshiyuki Naito: Radio Wave Absorber, Ohmsha (1987), page 8B, so only an approximate expression will be used and the effect of the dielectric constant will be omitted. 1st
As shown in the figure, in a magnetic loss type radio wave absorber with a conductor called a shorting plate installed on the back side, the reflection loss is 1tdB.
is dB-20・Nog l 1- (4π(, cz″+j
μ')d/λ)・・・・・・・・・・・・・・・(1)
It can be approximated by d: thickness of radio wave absorber, λ: wavelength of radio wave.

第(1)式より、電波を完全に吸収する無反射条件は、
複素透磁率の実数成分がなるべく小さく、また虚数成分
が、次に述べる第(3)式を満足することが理想と考え
られる。
From equation (1), the no-reflection condition for completely absorbing radio waves is:
It is considered ideal that the real component of the complex magnetic permeability is as small as possible, and the imaginary component satisfies the following equation (3).

μ′/μ’<<l      ・旧・・・旧・・・・・
(2)μ′−λ/4πd    ・・・・・・・・・・
・・・・・(3)すなわち、電波吸収物の厚みを薄(し
たい場合にはμ′が大きく、吸収特性を良好にしたい場
合にはμ′/μ′の値を小さく、広帯域としたい場合に
は、吸収波長全域で上記第(2)式ならびに第(3)式
の条件を満足すると良い。
μ'/μ'<<l ・Old...Old...
(2) μ′−λ/4πd ・・・・・・・・・・・・
...(3) In other words, if you want to make the radio wave absorbing material thinner, μ' is large, and if you want good absorption characteristics, you can reduce the value of μ'/μ', and if you want to have a wide band. For this purpose, it is preferable that the conditions of the above equations (2) and (3) be satisfied over the entire absorption wavelength range.

これらの条件は、第3図(a)ならびに(b)において
は、マ印で示す複素透磁率の虚数成分ピーク値近傍の周
波数(共鳴周波数)と、マ印近傍より高い周波数域が望
ましく、主原料の配合条件を鋭意検討の結果、磁性粉粒
物の配合量が乾燥重量比で、75%以上または95%以
下の範囲がTV周波数帯域用電波吸収物として適切であ
ることを発見した。
In Fig. 3 (a) and (b), these conditions are preferably a frequency near the peak value of the imaginary component of the complex magnetic permeability (resonance frequency) indicated by the mark, and a frequency range higher than the vicinity of the mark, and the main As a result of careful study of the blending conditions of the raw materials, it was discovered that a blending amount of magnetic powder in a dry weight ratio of 75% or more or 95% or less is suitable as a radio wave absorber for the TV frequency band.

カーボンファイバーについては、あくまで磁性粉粒物の
電波摘出の不足分を補う目的上、適宜配合するものであ
り、0%もしくは0.01vt%〜1vt%の微量添加
範囲がよい。
Carbon fiber is appropriately added for the purpose of compensating for the lack of radio wave extraction of magnetic particles, and is preferably added in a small amount of 0% or 0.01vt% to 1vt%.

本発明電波吸収物は、大型成形物が容易に作成可能であ
るため、パネルとパネルの隙間による電波吸収性能の低
下が軽減できる。例えば、10階建てのビルの4階以上
の面積(1ooOrrrと想定)が電波障害となる場合
、10cm角タイルを33%の空隙率で取り付けると、
約6万7000枚分の作業が必要となる。しかも、パネ
ルとパネルの隙間が1關づつ存在すると電波(100M
Hz)の反射率は約33倍増加し、吸収特性は激減する
(日本放送協会編:電波吸収体による電波障害対策ガイ
ドブック昭和56年7月6頁)。
Since the radio wave absorbing material of the present invention can be easily produced into a large-sized molded product, a decrease in radio wave absorption performance due to gaps between panels can be reduced. For example, if the area above the 4th floor of a 10-story building (assumed to be 1ooOrrr) causes radio wave interference, if 10cm square tiles are installed with a porosity of 33%,
Approximately 67,000 pieces of work will be required. Moreover, if there is a gap between each panel, radio waves (100M
Hz) increases by approximately 33 times, and the absorption characteristics decrease sharply (edited by the Japan Broadcasting Corporation: Guidebook for Countermeasures against Radio Wave Interference Using Radio Wave Absorbers, July 1980, p. 6).

ところが、本発明に述べる電波吸収物を、例えば3rn
X1mの大きさに成形することにより、取り付は総数は
約330枚分・工数は約1/200に簡素化でき、また
隙間の問題も解消可能となる。
However, the radio wave absorber described in the present invention, for example,
By molding to a size of x1m, the total number of installation steps can be simplified to about 330 sheets and the man-hours to about 1/200, and the problem of gaps can be solved.

(実 施 例) 以下本発明を実施例に従って説明する。(Example) The present invention will be explained below according to examples.

実施例 1 厚さ5龍の成形物を内径18.9mm、外径38.8m
m1こ超音波加工機で切断後、39D同軸管に円筒状切
断試料を装入し、ネットワークアナライザーにて、10
0MHzから600MHzにおける、実数(μ′)なら
びに虚数(μ″)透磁率を測定した。
Example 1 A 5mm thick molded product with an inner diameter of 18.9 mm and an outer diameter of 38.8 m.
After cutting with an ultrasonic processing machine, the cylindrical cut sample was placed in a 39D coaxial tube, and the sample was cut with a network analyzer for 10 minutes.
The real (μ′) and imaginary (μ″) magnetic permeability was measured from 0 MHz to 600 MHz.

測定に用いた成形体の、乾燥重量比における配合比は、
Mn−Znフェライト90%、カーボンファイバー〇、
05%、ポリ酢酸エマルジョン5%、残部白色ポルトラ
ンドセメントとした。
The blending ratio in terms of dry weight ratio of the molded body used for measurement is:
Mn-Zn ferrite 90%, carbon fiber〇,
05%, polyacetic acid emulsion 5%, and the balance white Portland cement.

ここで、第3図(a)は粒径が、0.1mm以上および
2關1m以下(粒度分布ピーク1.5mm)の磁性粉粒
物を用いた例であり、第3図(b)は、微細な粉粒物(
粒度分布ピークが約0.75+m) 18vt%と、粒
度分布ピーク1.5mmの同粉粒物72%を用いた例で
ある。
Here, FIG. 3(a) is an example using magnetic powder particles with a particle size of 0.1 mm or more and 2 times 1 m or less (particle size distribution peak 1.5 mm), and FIG. 3(b) is an example of using magnetic powder. , fine powder (
This is an example using 72% of the same powder particles with a particle size distribution peak of about 0.75+m) and 18 vt% and a particle size distribution peak of 1.5 mm.

第4図には、磁性粉粒物の粒度分布図を示す。FIG. 4 shows a particle size distribution diagram of the magnetic powder.

これら主原料の混ぜ方は、セメントとカーボンファイバ
ーと水分とをペースト状に練った中に、(a)は磁性粉
粒物と酢酸エマルジョンとを絡ませておいて混合し、(
b)については、まず微細分にのみ、ポリ酢酸エマルジ
ョンを絡ませ、さらに残りの粉粒物と合わせた物を混合
し、5■厚の板状成形物を作成した。
The method of mixing these main raw materials is to knead cement, carbon fiber, and water into a paste, and (a) mix together magnetic powder and acetic acid emulsion.
Regarding b), first, only the fine particles were entangled with polyacetic acid emulsion, and the remaining powder and granules were further mixed to form a plate-shaped molded product with a thickness of 5 cm.

このように、セメントよりも高価であっても結合力に優
れた粘結材を使用した場合、少量の添加で、細かい磁性
粉粒物を成形物の中に20〜30wt%配合可能となる
。これは、以降述べる磁気特性ならびに成形物の密度と
大きく関係する。なお、セメントのみで微細分を混ぜ、
成形物を作成する場合の微細粉粒物の配合量は多くても
105前後であった。
In this way, when using a caking agent that is more expensive than cement but has excellent bonding strength, it is possible to incorporate 20 to 30 wt % of fine magnetic powder into a molded product by adding a small amount. This is largely related to the magnetic properties and the density of the molded product, which will be described later. In addition, if you mix fines with cement only,
When creating a molded article, the blending amount of the fine powder was around 105 at most.

第3図において、マ印で示す周波数が、各成形物の共鳴
周波数を示し、(a)については、160MHz、(b
)については、 80M)lzであった。両者の例えば
、100MHzにおける透磁率の虚数成分μ′ならびに
、μ′/μ (実数成分/虚数成分)の値を比較すると
(a)はμm11.5、u’ /μm1.47また、(
b)はμ −17,5、μ′/μ −0,25と同一磁
性粉粒物量でも磁気特性は大きく異なる。
In Fig. 3, the frequencies indicated by marks indicate the resonance frequencies of each molded product, 160 MHz for (a), 160 MHz for (b)
), it was 80M)lz. For example, when comparing the values of the imaginary component μ' and μ'/μ (real component/imaginary component) of magnetic permeability at 100 MHz, (a) is μm11.5, and u'/μm1.47.
In b), the magnetic properties are significantly different from μ −17,5 and μ′/μ −0,25 even when the amount of magnetic powder is the same.

特に、μ′/μ′に着目すると、試料(b)はTV周波
数域で、μ′/μ′の値は約0.15〜0.3とほぼ一
定値となるのに対し、試料(a)のμ′/μ′値(0,
15〜1.47)は周波数によって大きく異なる。TV
電波は91)MHzより770M)12までの広い周波
数領域を含むことより、TV周波数域に対して、μ′/
μ′の変動の少ない(b)に示す成形条件が電波吸収物
として、より好ましい。
In particular, focusing on μ'/μ', sample (b) has a nearly constant μ'/μ' value of about 0.15 to 0.3 in the TV frequency range, while sample (a ) of μ′/μ′ value (0,
15 to 1.47) varies greatly depending on the frequency. TV
Since radio waves include a wide frequency range from 91) MHz to 770 MHz), μ'/
The molding conditions shown in (b) with less variation in μ' are more preferable for the radio wave absorber.

実施例 2 第5図には、TV周波数帯域における本発明物(・印)
ならびに比較物(O印)の電波吸収特性値を示す。
Example 2 In Fig. 5, the present invention in the TV frequency band (marked with
Also, the radio wave absorption characteristic values of the comparative product (marked with O) are shown.

図において、電波吸収物の配合条件は、実施例1と同一
条件とした。・印が微細磁性粉粒物あり(本発明例)、
○印が微細磁性粉粒物なしく比較例)とし、(a)が試
料厚20關の場合、(b)が試料厚25關の場合を示す
In the figure, the mixing conditions of the radio wave absorber were the same as in Example 1. - Marked with fine magnetic powder (example of the present invention),
○ indicates a comparative example without fine magnetic powder, (a) shows the case where the sample thickness is 20 mm, and (b) shows the case where the sample thickness is 25 mm.

図によれば、本発明ならびに比較例ともVHF帯で、1
0d・9dB・約92%以上の電波を吸収する。
According to the figure, in both the present invention and the comparative example, 1
Absorbs radio waves of 0d/9dB/approximately 92% or more.

これらの値は、現在使用されているフェライト焼結タイ
ル材(反射減衰量は約20dB)の約93%以上に相当
する電波吸収性能と言える。またfliooMtlz(
UHF帯の中心周波数)においても、反射減衰量の値は
8.2dB以上と、現在使用されているフェライト焼結
タイル材の約85.7%以上の吸収性能が得られている
These values can be said to have radio wave absorption performance equivalent to about 93% or more of the currently used ferrite sintered tile materials (return loss is about 20 dB). Also flioMtlz (
Even at the center frequency of the UHF band, the return loss value is 8.2 dB or more, which is about 85.7% or more of the absorption performance of the currently used ferrite sintered tile materials.

しかしながら、本発明物(・印)は、比較物(O印)と
比べ、VHF帯(図のハツチング部)で1.5dB〜1
2.7dB、 UHF帯(図のハツチング部)で0.6
clB〜2.[ldB特性に改善が認められた。従来セ
メントだけでは結合力が弱く、微細粉粒物の配合比率が
高められないことを理由に、高充填密度ならびに優れた
磁気特性が得られなかったが、粘結材の使用により、さ
らに優れた電波吸収物を作成することが可能となった。
However, compared to the comparative product (marked O), the product of the present invention (marked with *) is 1.5 dB to 1.
2.7dB, 0.6 in UHF band (hatched area in the figure)
clB~2. [Improvement was observed in ldB characteristics. Conventionally, it was not possible to obtain high packing density and excellent magnetic properties with cement alone due to the weak bonding force and the inability to increase the blending ratio of fine particles, but by using a caking agent, even better It has become possible to create radio wave absorbers.

また、成形物の密度については、後述する。Further, the density of the molded product will be described later.

実施例 3 第6図には、磁性粉粒物の配合比と共鳴周波数との関係
を、第7図には、成形体物の密度を示す。
Example 3 FIG. 6 shows the relationship between the blending ratio of magnetic powder and the resonance frequency, and FIG. 7 shows the density of the molded product.

測定に用いた成形物の乾燥重量比における配合比は、M
n−ZnフェライトX%(X−75〜90)、カーボン
ファイバー0.05%、ポリ酢酸エマルジョン5%、残
部白色ポルトランドセメントとした。本発明ならびに比
較例において、磁性粉粒物(粒径分布ピーク)の配合条
件は、・印か1.5順(80%)と0.75mm (2
0%)および、O印が1.5mm(100%)とした。
The blending ratio in the dry weight ratio of the molded product used for measurement was M
X% n-Zn ferrite (X-75 to 90), 0.05% carbon fiber, 5% polyacetic acid emulsion, and the balance white Portland cement. In the present invention and comparative examples, the blending conditions of the magnetic powder (particle size distribution peak) are 1.5 order (80%) and 0.75 mm (2
0%) and the O mark was 1.5 mm (100%).

また、成形物の作成手順・方法は実施例1と同様とした
Further, the procedure and method for creating the molded article were the same as in Example 1.

観測を行ったTV周波数帯域において、共鳴現象が認め
られた範囲は、磁性粉粒物の重量比が75%以上の範囲
であり、なかでも、83%以上の範囲において、はぼV
HF帯に相当する低い周波数においても共鳴現象が認め
られた。共鳴周波数の値が、電波吸収特性のすべてを表
す尺度ではないが、少なくとも、TV電波を効率的に吸
収するための磁性粉粒物の配合条件は、75vt%以上
の範囲が好ましく、さらに望ましくは、83νt%以上
より90vt%以下であると言える。
In the TV frequency band where the observation was conducted, the resonance phenomenon was observed in the range where the weight ratio of magnetic particles was 75% or more, and in particular, in the range where the weight ratio of magnetic particles was 83% or more, the resonance phenomenon was observed.
A resonance phenomenon was also observed at low frequencies corresponding to the HF band. Although the value of the resonance frequency is not a measure that represents all of the radio wave absorption characteristics, at least the blending conditions of the magnetic powder and granules to efficiently absorb TV radio waves are preferably in the range of 75vt% or more, and more preferably. , it can be said that it is 90vt% or less than 83vt% or more.

ここで、比較例(O印)の共鳴周波数は、粘結材:磁性
粉粒物の比が1ニア前後から磁性粉粒物の高い領域にお
いて、はとんど変化せず本発明材(・印)との間に相違
が観測される。またその値は、共鳴周波数(Q印)の1
/2に相当し、微細粉粒物の高配合添加とそれを可能に
する粘結材添加により磁気特性が改質し、低周波側での
共鳴に伴う(磁気)損出を生じゃすくさせる(なお、こ
の磁性材料の真密度時の共鳴周波数は約10MIIz)
Here, the resonant frequency of the comparative example (marked with O) hardly changes in the region where the ratio of binder:magnetic powder is around 1 nia and the ratio of magnetic powder is high, and the present invention material (・). Also, its value is 1 of the resonant frequency (Q mark)
/2, and the magnetic properties are modified by adding a high proportion of fine powder and the addition of a caking agent to make this possible, and the (magnetic) loss associated with resonance on the low frequency side is suppressed. (The resonance frequency of this magnetic material at true density is approximately 10 MIIz)
.

第6図には第5図に用いた成形物の密度を示すが、O印
に示す成形物の密度上昇は、磁性粉粒物87.5%以上
より3.24g/cTlN前後で最大となり、Mn−Z
nフェライトの真密度4.9g−/c+tlの66%で
頭打ちとなる。ところが、・印で示す微細な粉粒物を2
0%添加した成形物においては、比較材の約11%に相
当する密度の上昇が観測され、第2図(b)に示したよ
うに高密度成形物の作成が可能となる。すなわち、粘結
材の種類をセメント1種類に限定せず、さらに結合性の
良好な成分を配合することにより、高密度かつ共鳴周波
数の低い、特にVHF帯で優れた特性を有する電波吸収
物の作成が可能となる。
Fig. 6 shows the density of the molded product used in Fig. 5, and the increase in density of the molded product indicated by O mark is maximum at around 3.24 g/cTlN compared to 87.5% or more of magnetic powder. Mn-Z
It peaks out at 66% of the true density of n-ferrite, 4.9 g-/c+tl. However, the fine powder particles indicated by 2
In the molded product with 0% addition, an increase in density equivalent to about 11% of the comparative material was observed, making it possible to create a high-density molded product as shown in FIG. 2(b). In other words, by not limiting the type of caking agent to just one type of cement, but also by incorporating components with good binding properties, we can create radio wave absorbers with high density and low resonance frequency, which have excellent properties especially in the VHF band. It becomes possible to create.

(発明の効果) 本発明の電波吸収物をパネル材に成形するこ止より、形
状の自由が与えられ、施工工程が簡素化できる。また、
パネル材として量産することが可能となるため、従来の
電波吸収タイル材(約10co+角)と比較し、本発明
の経済的便益性は大きい。
(Effects of the Invention) Since the radio wave absorbing material of the present invention is not molded into a panel material, freedom of shape is provided, and the construction process can be simplified. Also,
Since it can be mass-produced as a panel material, the economic benefit of the present invention is great compared to conventional radio wave absorbing tile materials (approximately 10 CO+ square).

【図面の簡単な説明】[Brief explanation of drawings]

第1図は、本発明によるTV周波数帯域電波吸収物の概
略口、第2図は、本発明電波吸収成形物例(b)ならび
に比較物例(a)を示す図、第3図(a)ならびに(b
)は、100M)Izから600MHzにおける本発明
物ならびに比較物の複素透磁率を示すグラフ、第4図は
、磁性粉粒物の粒度分布を示すグラフ、第5図は、厚さ
20m+iならびに25+amに成形した本発明電波吸
収物ならびに比較物の、TVR波数帯域における反射減
衰量を示すグラフ、第6図は、本発明成形物ならびに比
較物の共鳴周波数におよぼす、粘結材と磁性粉粒物との
配合比の影響を示すグラフ、第7図は、本発明成形物な
らびに比較物の密度におよぼす、粘結材と磁性粉粒物と
の配合比の影響を示すグラフである。 第2図 (a) (b) 第3図 (a) (b) 00 魚 3艶 40) 50:) 6刀 1■ 20:1 3(X)   400 f(MHz) 00 00 第4図 粒径(trz m) 粒径(rrh m) 0 磁性粉粒物配合率(wt%) 70 80  85     90 粘結材 :磁性粉粒物(記合重量比)
Fig. 1 is a schematic diagram of the TV frequency band radio wave absorbing product according to the present invention, Fig. 2 is a diagram showing an example (b) of the radio wave absorbing molded product of the present invention and a comparative example (a), and Fig. 3 (a) and (b
) is a graph showing the complex magnetic permeability of the present invention and comparative products from 100M) Iz to 600MHz, Figure 4 is a graph showing the particle size distribution of magnetic powder, and Figure 5 is a graph showing the particle size distribution of magnetic powder particles at thicknesses of 20m+i and 25+am. FIG. 6 is a graph showing the return loss in the TVR wavenumber band of the molded radio wave absorbing material of the present invention and the comparative product, and shows the effect of the caking material and magnetic powder on the resonant frequency of the molded product of the present invention and the comparative product. FIG. 7 is a graph showing the influence of the blending ratio of the binder and the magnetic powder on the density of the molded products of the present invention and comparative products. Figure 2 (a) (b) Figure 3 (a) (b) 00 Fish 3 Gloss 40) 50:) 6 sword 1 ■ 20:1 3 (X) 400 f (MHz) 00 00 Figure 4 Particle size (trz m) Particle size (rrh m) 0 Magnetic powder mixture ratio (wt%) 70 80 85 90 Binder: Magnetic powder (weight ratio)

Claims (6)

【特許請求の範囲】[Claims] (1)乾燥重量比で粘結材5〜25%、磁性粉粒物75
〜95%を主原料とした成形物の複素透磁率の虚数成分
ピーク値が、TV電波周波数帯域以下であることを特徴
とするTV周波数帯域用電波吸収物。
(1) Caking agent 5-25% by dry weight, magnetic powder 75%
1. A radio wave absorber for a TV frequency band, characterized in that the peak value of the imaginary component of the complex magnetic permeability of a molded product made of ~95% as a main raw material is below the TV radio frequency band.
(2)乾燥重量比で粘結材5〜25%、磁性粉粒物75
〜95%、カーボンファイバー0.01〜1%を主原料
とした成形物の複素透磁率の虚数成分ピーク値が、TV
電波周波数帯域以下であることを特徴とするTV周波数
帯域用電波吸収物。
(2) Caking agent 5-25% by dry weight ratio, magnetic powder 75%
~95%, the peak value of the imaginary component of the complex magnetic permeability of a molded product made mainly of carbon fiber 0.01~1% is TV
A radio wave absorbing material for a TV frequency band characterized by being below a radio wave frequency band.
(3)乾燥重量比で粘結材5〜17%、磁性粉粒物83
〜95%を主原料とした成形物の複素透磁率の虚数成分
ピーク値が、TV電波周波数帯域以下であることを特徴
とするTV周波数帯域用電波吸収物。
(3) Caking agent 5-17% by dry weight ratio, magnetic powder 83
1. A radio wave absorber for a TV frequency band, characterized in that the peak value of the imaginary component of the complex magnetic permeability of a molded product made of ~95% as a main raw material is below the TV radio frequency band.
(4)乾燥重量比で粘結材5〜17%、磁性粉粒物83
〜95%、カーボンファイバー0.01〜1%を主原料
とした成形物の複素透磁率の虚数成分ピーク値が、TV
電波周波数帯域以下であることを特徴とするTV周波数
帯域用電波吸収物。
(4) Caking agent 5-17% by dry weight ratio, magnetic powder 83
~95%, the peak value of the imaginary component of the complex magnetic permeability of a molded product made mainly of carbon fiber 0.01~1% is TV
A radio wave absorbing material for a TV frequency band characterized by being below a radio wave frequency band.
(5)粒径分布の異なる2種類の磁性粉粒物を用いるこ
とを特徴とする、請求項(1),(2),(3)または
(4)記載のTV周波数帯域用電波吸収物。
(5) The radio wave absorber for TV frequency bands according to claim (1), (2), (3) or (4), characterized in that two types of magnetic powder particles having different particle size distributions are used.
(6)磁性粉粒物がMn基フェライトである、請求項(
1),(2),(3),(4)または(5)記載のTV
周波数帯域用電波吸収物。
(6) Claim (
TV described in 1), (2), (3), (4) or (5)
Radio wave absorber for frequency bands.
JP1343414A 1989-12-29 1989-12-29 Radio wave absorber for TV frequency band Expired - Fee Related JP2735914B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP1343414A JP2735914B2 (en) 1989-12-29 1989-12-29 Radio wave absorber for TV frequency band

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP1343414A JP2735914B2 (en) 1989-12-29 1989-12-29 Radio wave absorber for TV frequency band

Publications (2)

Publication Number Publication Date
JPH03204998A true JPH03204998A (en) 1991-09-06
JP2735914B2 JP2735914B2 (en) 1998-04-02

Family

ID=18361329

Family Applications (1)

Application Number Title Priority Date Filing Date
JP1343414A Expired - Fee Related JP2735914B2 (en) 1989-12-29 1989-12-29 Radio wave absorber for TV frequency band

Country Status (1)

Country Link
JP (1) JP2735914B2 (en)

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5227355A (en) * 1975-08-27 1977-03-01 Hitachi Ltd Diffusion layer formation method
JPS58108603A (en) * 1981-12-14 1983-06-28 清水 康敬 Radio wave absorber and method of producing same
JPS6137832A (en) * 1984-07-30 1986-02-22 Nec Corp Production of radio wave absorbing material

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5227355A (en) * 1975-08-27 1977-03-01 Hitachi Ltd Diffusion layer formation method
JPS58108603A (en) * 1981-12-14 1983-06-28 清水 康敬 Radio wave absorber and method of producing same
JPS6137832A (en) * 1984-07-30 1986-02-22 Nec Corp Production of radio wave absorbing material

Also Published As

Publication number Publication date
JP2735914B2 (en) 1998-04-02

Similar Documents

Publication Publication Date Title
JP3278373B2 (en) Radio wave absorber and method of manufacturing the same
JPH10290094A (en) Electromagnetic-wave absorbing material and its manufacture
CN106746944A (en) The preparation method of double-layer cement base wave-absorbing material
JPH03204998A (en) Tv frequency band radio wave absorbent body
CN116335269A (en) 3D electromagnetic wave-absorbing concrete super structure based on optimized pavement frequency directional steel fibers
JP2002338339A (en) Method for manufacturing oxide magnetic material
CN113800863B (en) Modified recycled aggregate concrete with electromagnetic wave-transmitting function and preparation method thereof
CN109265128A (en) It is a kind of can 3D printing electromagnetic protection phosphate material preparation method
JPH03203396A (en) Wave absorbing body for tv frequency band
JP2735913B2 (en) Radio wave absorber for TV frequency band
JP3056858B2 (en) Radio wave absorber for TV frequency band
JPH03203397A (en) Wave absorbing body for tv frequency band
JPH10215097A (en) Radio wave absorption building material
CN114059682A (en) Broadband efficient multilayer foam cement-based wave absorbing plate
JPH0222130A (en) Nickel-zinc-based ferrite material
KR100730597B1 (en) Ceramic Panel for Building Having Electromagnetic Wave in Broad Frequency Range and Manufacturing Method Thereof
JPH0766584A (en) Mortar or concrete lamination type radio wave absorber
CN111205040A (en) High-performance cement-based electromagnetic shielding composite material and preparation process thereof
JP2925805B2 (en) Manufacturing method of radio wave absorbing wall
JPH05182812A (en) Manufacture of electromagnetic wave absorptive material for tv frequency band
JP2000233960A (en) Electromagnetic shielding method for building
KR100248978B1 (en) Gypsum board for shielding electromagnetic wave
JP2001028493A (en) Electromagnetic wave absorber
JPH05183331A (en) Radio wave absorbing wall for tv frequency band
JP3519562B2 (en) Electromagnetic wave absorber

Legal Events

Date Code Title Description
R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313115

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090109

Year of fee payment: 11

LAPS Cancellation because of no payment of annual fees