JPH03204615A - Magnetooptic element and display device using the same - Google Patents

Magnetooptic element and display device using the same

Info

Publication number
JPH03204615A
JPH03204615A JP81090A JP81090A JPH03204615A JP H03204615 A JPH03204615 A JP H03204615A JP 81090 A JP81090 A JP 81090A JP 81090 A JP81090 A JP 81090A JP H03204615 A JPH03204615 A JP H03204615A
Authority
JP
Japan
Prior art keywords
transparent
film
magneto
dielectric film
optical element
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP81090A
Other languages
Japanese (ja)
Inventor
Aretsukusu Maikeru
マイケル・アレックス
Keiji Shono
敬二 庄野
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Fujitsu Ltd
Original Assignee
Fujitsu Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fujitsu Ltd filed Critical Fujitsu Ltd
Priority to JP81090A priority Critical patent/JPH03204615A/en
Publication of JPH03204615A publication Critical patent/JPH03204615A/en
Pending legal-status Critical Current

Links

Abstract

PURPOSE:To enlarge, project, and display an image with small power consump tion by providing X-array transparent electrodes and Y-array transparent electrodes, which are so arranged as to form matrix intersections, while interpos ing a transparent electrostrictive dielectric film. CONSTITUTION:This device is equipped with a transparent magnetic film 1 which has uniaxial magnetic anisotropy, the transparent magnetostrictive dielec tric film 5 which is arranged nearby the transparent magnetic film 1 so that the film 1 is stressed, and the X-array transparent electrodes 4 and Y-array transparent electrodes 3 which are arranged while interposing the transparent electrostrictive dielectric film 5 as to form the matrix intersections. Then a voltage is applied to a part of the transparent electrostrictive dielectric film 5 corresponding to one picture element to strain the transparent electrostrictive dielectric film at the part. Thus, the voltage is only applied to the transparent electrostrictive dielectric film 5, so the power consumption is extremely low. Consequently, the low power consumption and performance of the high-definition, large-screen projection type display device can be improved.

Description

【発明の詳細な説明】 〔概要〕 磁気光学素子とそれを用いた表示装置に関し、小さな消
費電力で磁化反転を行わせることにより、光のスイッチ
ングと拡大投影表示を行うことを目的とし、 一軸磁気異方性を有する透明磁性膜と、前記透明磁性膜
に応力を与えるように近接して配置された透明電工性誘
電体膜と、前記透明電歪性誘電体膜を間に挟んで、マト
リクス交点を形成するように配設されたX列透明電極お
よびY列透明電極とを少なくとも備えるように磁気光学
素子を構成する9また、前記磁気光学素子を用いて、X
列透明電極およびY列透明電極に電圧を印加し、そのマ
トリクス交点を画素として光のON−OFF制御を行い
、スクリーン上に拡大投影するように表示装置を構成す
る。
[Detailed Description of the Invention] [Summary] The purpose of this invention is to perform light switching and enlarged projection display by performing magnetization reversal with small power consumption in magneto-optical elements and display devices using the same. A transparent magnetic film having anisotropy, a transparent dielectric film disposed in close proximity to apply stress to the transparent magnetic film, and a matrix intersection point with the transparent electrostrictive dielectric film sandwiched therebetween. A magneto-optical element is configured to include at least X-column transparent electrodes and Y-column transparent electrodes arranged to form
A display device is constructed so that a voltage is applied to the column transparent electrodes and the Y column transparent electrodes, and the matrix intersections are used as pixels to control the ON/OFF of light, thereby enlarging and projecting the image onto the screen.

〔産業上の利用分野〕[Industrial application field]

本発明は磁気光学素子を用いた表示装置、とくに、低駆
動電力で高速光スイッチングを行い、かつ、大容量で階
調表示が可能な投影型表示装置の構成に関する。
The present invention relates to a display device using a magneto-optical element, and particularly to a projection type display device that performs high-speed optical switching with low driving power, and is capable of large-capacity gradation display.

〔従来の技術〕[Conventional technology]

従来表示装置としてはCRTをはじめとして、多種多様
な製品が実用化されてきた。と(に、最近は小形軽量化
の要求から、ブラスマディスプレイ(FDP)や液晶表
示装置(LCD)なとのフラットパネルデイスプレィが
多(使用されるようになってきた。
Conventionally, a wide variety of products have been put into practical use as display devices, including CRTs. Recently, flat panel displays such as plasma displays (FDPs) and liquid crystal displays (LCDs) have come into widespread use due to the demand for smaller and lighter displays.

FDPは輝度が高く明るいが高電圧で消費電力が大きく
、また、LCDは低電圧、低消費電力という特徴がある
が、コントラストが低く精細度や大画面化という点てま
だ問題がある。
FDPs have high brightness and brightness, but require high voltage and high power consumption, while LCDs have the characteristics of low voltage and low power consumption, but have low contrast and still have problems in terms of definition and large screens.

これに対して、磁気光学素子を用いてスクリーン上に投
影画像を得ようという提案がなされている。
In response, a proposal has been made to obtain a projected image on a screen using a magneto-optical element.

たとえば、第6図は従来の磁気光学素子の例を示す図で
、同図(イ)は斜視図、同図(ロ)はXX゛断面図であ
るっ図中、2は透明基板、たとえば非磁性カーネットG
a3GasO+□(GGG)である、1“は透明磁性膜
、たとえば、前記透明基板2の上に液相エピタキシャル
法(LPE)で形成された一軸磁気異方性を有する磁性
カーネット膜、4′は透明磁性膜l′上に形成されたX
列電極で、たとえば、ストライブ状の透明導体配線、3
′は絶縁膜9を挟んて前記X列電極4゛と交叉させマト
リクス交点を形成するように配置されたY列電極で、た
とえば、同しくストライプ状の透明導体配線から構成さ
れているっ40゛ は前記X列電極丁に電流11を流す
ためのX駆動制御回路、30゛ は前記Y列電極3°に
電流i、を流すためのY駆動制御回路である。
For example, FIG. 6 shows an example of a conventional magneto-optical element, in which (a) is a perspective view and (b) is a cross-sectional view of XX. magnetic carnet G
a3GasO+□(GGG), 1" is a transparent magnetic film, for example, a magnetic Carnet film having uniaxial magnetic anisotropy formed on the transparent substrate 2 by liquid phase epitaxial method (LPE), and 4' is a X formed on the transparent magnetic film l'
In the column electrode, for example, a striped transparent conductor wiring, 3
' is a Y-column electrode arranged to intersect with the X-column electrode 4' with an insulating film 9 in between to form a matrix intersection, and is also made of striped transparent conductor wiring, for example. 30 is an X drive control circuit for passing a current 11 through the X-column electrodes, and 30 is a Y-drive control circuit for passing a current i through the Y-column electrodes 3.

いま、こ\には図示してないバイアス磁界印加手段13
.たとえば、永久磁石て一軸磁気異方性を有する透明磁
性膜1゛にバイアス磁界を加えて、磁化の方向を一方向
、たとえば、下向きに揃える。
Now, bias magnetic field applying means 13, not shown here.
.. For example, a bias magnetic field is applied to a transparent magnetic film 1 having uniaxial magnetic anisotropy using a permanent magnet to align the direction of magnetization in one direction, for example, downward.

そこで、たとえば、第3番目のX列電極4゛3に電流i
えを、第2番目の7列電極3”2に電流i、を流すと、
その交点のクロスハツチで示した部分で磁化反転が起こ
り、直交ニコル間で透過光を観測すると、いわゆる、フ
ァラデー効果により前記クロスハツチで示した部分が、
たとえば、明部の中に暗部として識別される。すなわち
、高密度のXYマトリクス光スイッチアレイが構成され
る。
Therefore, for example, a current i is applied to the third X-column electrode 4'3.
When a current i is applied to the second 7-column electrode 3''2,
Magnetization reversal occurs at the intersection indicated by the crosshatch, and when the transmitted light is observed between the orthogonal nicols, the so-called Faraday effect causes the section indicated by the crosshatch to
For example, a dark area is identified within a bright area. In other words, a high-density XY matrix optical switch array is constructed.

第5図は従来の磁気光学素子を用いた表示装置の例を示
す図である。図中、100は前記第6図て説明した従来
の磁気光学素子であるっ11および12は磁気光学素子
100の両側に直交配置された偏光板、13はバイアス
磁界印加手段、16は光源、14はコリメートレンズ、
15は拡大投影レンズ系、17はスクリーンであるう 通常、透明磁性膜I“は大きさが高々数10m m角以
下であり、そのま\ては表示装置として使用することは
できないっしかし、高密度の微小画素を形成できるので
、図示したごとくスクリーン上に拡大投影することによ
り大画面で、かつ、大容量の表示装置を構成することか
できる。
FIG. 5 is a diagram showing an example of a display device using a conventional magneto-optical element. In the figure, 100 is the conventional magneto-optical element explained in FIG. is a collimating lens,
15 is a magnifying projection lens system, and 17 is a screen.Usually, the size of the transparent magnetic film I" is several tens of square meters or less at most, and it cannot be used as a display device for the time being. Since minute pixels can be formed at a high density, a display device with a large screen and a large capacity can be constructed by enlarging and projecting the image onto a screen as shown.

〔発明が解決しようとする課題〕[Problem to be solved by the invention]

しかし、上記の従来例の磁気光学素子では光スィッチを
構成する磁化方向の反転動作に、直交する2つの導体配
線に電流を流す、いわゆる、カレント・アクセス法を用
いているので消費電力が太き(、また、透明磁性膜1′
の温度上昇による動作不安定を引き起こすなどの問題が
あり、その解決が必要となっていた。
However, the conventional magneto-optical device described above consumes a lot of power because it uses the so-called current access method, in which current is passed through two orthogonal conductor wires, to reverse the magnetization direction that constitutes the optical switch. (, also, the transparent magnetic film 1'
There were problems such as unstable operation due to temperature rise, and a solution was needed.

〔課題を解決するための手段〕[Means to solve the problem]

上記の課題は、一軸磁気異方性を有する透明磁性膜1と
、前記透明磁准膜lに応力を与えるように近接して配置
された透明電歪性誘電体膜5と、前記透明電歪性誘電体
膜5を間に挟んで、マトリクス交点を形成するように配
設されたX列透明電極4および7列透明電極3とを少な
くとも備えるように磁気光学素子10を構成する。そし
て、この磁気光学素子10と、そのX列透明電極4およ
び7列透明電極3に電圧を印加するためのX駆動制御回
路40およびY駆動制御回路30と、前記透明磁性膜1
面に垂直磁界を与えるためのバイアス磁界印加手段13
と、前記磁気光学素子IOの両側に直交配置された2つ
の偏光板11.12と、前記一方の偏光板11の前方に
配置された光源16と、前記光源からの光を前記磁気光
学素子IOに平行光として入射させるコリメートレンス
14と、前記他方の偏光板I2の後方に配置され、前記
磁気光学素子IOを透過した平行光を拡大する拡大投影
レンズ系15と、前記拡大投影レンズ系15の後方に配
置されたスクリーン17とを少なくとも備えるように表
示装置を構成することによって解決することができる。
The above problem consists of a transparent magnetic film 1 having uniaxial magnetic anisotropy, a transparent electrostrictive dielectric film 5 disposed close to the transparent magnetic quasi-film 1 so as to apply stress, and a transparent electrostrictive dielectric film 5 that The magneto-optical element 10 is configured to include at least the X-column transparent electrodes 4 and the seventh-column transparent electrodes 3, which are arranged to form matrix intersections with the magnetic dielectric film 5 in between. This magneto-optical element 10, an X drive control circuit 40 and a Y drive control circuit 30 for applying voltages to the X row transparent electrode 4 and the seventh row transparent electrode 3, and the transparent magnetic film 1
Bias magnetic field applying means 13 for applying a perpendicular magnetic field to the surface
, two polarizing plates 11 and 12 arranged orthogonally on both sides of the magneto-optical element IO, a light source 16 arranged in front of one of the polarizing plates 11, and a light source 16 that directs the light from the light source to the magneto-optical element IO. a collimating lens 14 that allows the parallel light to be incident on the magneto-optical element IO; This problem can be solved by configuring the display device to include at least the screen 17 located at the rear.

〔作用〕[Effect]

本発明によれば、透明磁性膜lに応力を与えるように近
接して配置された透明電歪性誘電体膜5の1画素に相当
する部分に電圧を印加し、その部分の透明電歪性誘電体
膜に歪みを生じさせる。その歪みによって、近接した透
明磁性膜lの局部。
According to the present invention, a voltage is applied to a portion corresponding to one pixel of the transparent electrostrictive dielectric film 5 which is arranged close to the transparent magnetic film 1 so as to apply stress, and the transparent electrostrictive film 5 of the transparent magnetic film 1 is This causes distortion in the dielectric film. Due to the distortion, local parts of the transparent magnetic film l that are close to each other.

すなわち、画素に相当する部分に応力を与えることにな
る。透明磁性膜として、たとえば、特定の磁性カーネッ
ト膜を選べば磁性膜に加えられた応力により、磁化反転
あるいは磁化回転が起ることは既に磁気バブルメモリ技
術においてよく知られており、しかも、前記透明電歪性
誘電体膜5には電圧を印加するだけでよいので、消費電
力は極めて軽微であり、また、磁化回転の程度を電気歪
みの程度、すなわち、印加電圧の大きさで制御すること
により、グレイ表示も可能となるのである。
In other words, stress is applied to the portion corresponding to the pixel. It is already well known in magnetic bubble memory technology that if a specific magnetic Carnet film, for example, is selected as a transparent magnetic film, magnetization reversal or magnetization rotation will occur due to stress applied to the magnetic film. Since it is only necessary to apply a voltage to the transparent electrostrictive dielectric film 5, the power consumption is extremely small, and the degree of magnetization rotation can be controlled by the degree of electrostriction, that is, the magnitude of the applied voltage. This allows for gray display.

〔実施例〕〔Example〕

第1図は本発明の実施例を示す図で、同図(イ)は平面
図、同図(ロ)はx−x’断面図である。
FIG. 1 is a diagram showing an embodiment of the present invention, in which (a) is a plan view and (b) is a sectional view taken along line xx'.

図中、■は透明磁性膜で、大きさIOm m X lo
mm、厚さ0.5mmのGGGからなる透明基板2の上
に、たとえば、厚さ3μmのB!2.5DYo5Gao
、 5Fe4□012を基板温度550°Cでスパッタ
法により形成する。
In the figure, ■ is a transparent magnetic film, and the size is IOm m x lo
For example, on a transparent substrate 2 made of GGG with a thickness of 0.5 mm and a thickness of 3 μm, a B! 2.5DYo5Gao
, 5Fe4□012 is formed by sputtering at a substrate temperature of 550°C.

次いて、前記透明磁性膜lの上に透明電歪性誘電体膜5
として、たとえば、よく知られたPLZTセラミック膜
を1μmの厚さにスパッタ法で被着形成する。
Next, a transparent electrostrictive dielectric film 5 is placed on the transparent magnetic film l.
For example, a well-known PLZT ceramic film is deposited to a thickness of 1 μm by sputtering.

次に、前記透明電歪性誘電体膜5の上と透明基板2の上
に、透明導電膜、たとえば、ITO(In203Sn0
2)を500nmの厚さに形成し、互いに直交配置にな
るように巾50μm、キャップ10μmのストライブ状
のX−Yマトリクス電極配線を形成する。
Next, on the transparent electrostrictive dielectric film 5 and on the transparent substrate 2, a transparent conductive film, for example, ITO (In203Sn0
2) is formed to a thickness of 500 nm, and strip-shaped X-Y matrix electrode wiring having a width of 50 μm and a cap of 10 μm is formed so as to be orthogonal to each other.

この例ではX列電極150本、Y列電極150本の合計
150 X150画素になるように構成した。
In this example, the configuration is such that 150 X column electrodes and 150 Y column electrodes constitute a total of 150×150 pixels.

30は7列透明電極3を駆動制御するY駆動制御回路、
40はX列透明電極4を駆動制御するX駆動制御回路で
ある。
30 is a Y drive control circuit for driving and controlling the seven rows of transparent electrodes 3;
Reference numeral 40 denotes an X drive control circuit that drives and controls the X-column transparent electrodes 4.

いま、たとえば、こ\には図示してないバイアス磁界印
加手段で透明磁性膜1の磁化の向きを下向きに揃え、第
3番目のX列透明電極43と、第2番目の7列透明電極
3□に、前記X駆動制御回路40およびY駆動制御回路
30から電圧を印加すると、その交点部分、すなわち、
Aで表示した部分の透明電歪性誘電体膜5に歪みが生じ
、その部分の透明磁性膜lの磁化が、たとえば、反転し
て、いわば情報の書き込みが行われる。
Now, for example, by aligning the magnetization direction of the transparent magnetic film 1 downward using a bias magnetic field applying means (not shown), the third X-row transparent electrode 43 and the second 7-row transparent electrode 3 are aligned. When a voltage is applied from the X drive control circuit 40 and Y drive control circuit 30 to □, the intersection point, that is,
Distortion occurs in the transparent electrostrictive dielectric film 5 in the portion indicated by A, and the magnetization of the transparent magnetic film l in that portion is reversed, so to speak, so that information is written.

このま\では、情報の書き込みが行われるが表示装置と
しては使用しに(いので、投影型の表示装置に構成すれ
ば実用的なものにすることかできる。
At this point, information is written on it, but it is not used as a display device (since it is not used as a display device), it can be made into a practical device by constructing it as a projection type display device.

第2図は本発明の実施例素子を用いた表示装置の構成例
を示す図である。図中、10は本発明の磁気光学素子で
ある。光源16としては、たとえば、ハロゲンランプな
どを用いてよく、また、パイアス磁界印加手段13とし
ては永久磁石、あるいは、電磁石を用いればよいっ なお、前記従来例の図面で説明したものと同等の部分に
ついては同一符号を付し、かつ、同等部分についての説
明は省略する。
FIG. 2 is a diagram showing an example of the configuration of a display device using an example element of the present invention. In the figure, 10 is a magneto-optical element of the present invention. As the light source 16, for example, a halogen lamp may be used, and as the bias magnetic field applying means 13, a permanent magnet or an electromagnet may be used. The same reference numerals will be given to the same parts, and the explanation of the equivalent parts will be omitted.

第3図は本発明実施例の基本動作を説明する図で、本発
明の実施例素子の両側に偏光板を直交配置したときの動
作特性を模式的に示したものである。縦軸は透過光強度
を、横軸はXおよびY列透明電極間への印加電圧を示す
。また、図の下方に示した矢印(■〜■)は電圧印加に
ともなう透明磁性膜lの磁化の向きの変化を示す。すな
わち、印加電圧と共に磁化方向は、たとえば、右回転し
それに対応して透過光強度は暗−グレイ−明→グレイー
暗と変化する。したがって、これを拡大投影すれば階調
表示が可能な投影型表示装置が得られるのである。なお
、本図では磁化は90°回転の場合について図示しであ
る。
FIG. 3 is a diagram for explaining the basic operation of the embodiment of the present invention, and schematically shows the operating characteristics when polarizing plates are orthogonally arranged on both sides of the element of the embodiment of the present invention. The vertical axis represents the transmitted light intensity, and the horizontal axis represents the voltage applied between the X and Y column transparent electrodes. Further, the arrows (■ to ■) shown at the bottom of the figure indicate changes in the direction of magnetization of the transparent magnetic film l as voltage is applied. That is, the magnetization direction rotates, for example, clockwise, with the applied voltage, and the transmitted light intensity changes from dark-gray-bright to gray-dark correspondingly. Therefore, by enlarging and projecting this, a projection type display device capable of displaying gradations can be obtained. In this figure, the magnetization is illustrated for a case of 90° rotation.

第4図は本発明の他の実施例を示す図である。FIG. 4 is a diagram showing another embodiment of the present invention.

前記実施例では、一方のストライブ状電極、たとえば、
Y列電極3は透明基板2を挟んで形成されたが、本発明
実施例では透明電歪性誘電体膜5の上下両面に直接7列
電極3とX列電極4が形成されているので、その分だけ
駆動電圧を低下させることができる。
In the embodiment, one striped electrode, e.g.
Although the Y-column electrodes 3 were formed with the transparent substrate 2 in between, in the embodiment of the present invention, the 7-column electrodes 3 and the X-column electrodes 4 are directly formed on both the upper and lower surfaces of the transparent electrostrictive dielectric film 5. The driving voltage can be reduced by that amount.

以上述べた実施例はあくまでも例を示したもので、本発
明の趣旨に添うものである限り、使用する素材や構成な
ど適宜好ましいもの、あるいはその組み合わせを用いる
ことができることは言うまでもない。
The embodiments described above are merely examples, and it goes without saying that preferred materials and configurations, or combinations thereof, can be used as appropriate, as long as they comply with the spirit of the present invention.

〔発明の効果〕〔Effect of the invention〕

以上説明したように、本発明によれば、透明磁性膜lに
応力を与えるように近接して配置された透明電歪性誘電
体膜5の1画素に相当する部分に電圧を印加し、その部
分の透明電歪性誘電体膜に歪みを生じさせる。その歪み
によって、近接した透明磁性膜lの局部、すなわち、画
素に相当する部分に応力を与え、その部分の透明磁性膜
の磁化反転あるいは磁化回転を起させることができる。
As explained above, according to the present invention, a voltage is applied to a portion corresponding to one pixel of the transparent electrostrictive dielectric film 5 which is arranged closely to apply stress to the transparent magnetic film l. This causes distortion in the transparent electrostrictive dielectric film in that part. The distortion can apply stress to a local part of the transparent magnetic film l in the vicinity, that is, a part corresponding to a pixel, and cause magnetization reversal or magnetization rotation of the transparent magnetic film in that part.

しかも、前記透明電歪性誘電体膜5には電圧を印加する
だけて゛よいので、消費電力は極めて軽微であり、また
、磁化回転の程度を電気歪みの程度。
Moreover, since it is only necessary to apply a voltage to the transparent electrostrictive dielectric film 5, the power consumption is extremely small, and the degree of magnetization rotation is the same as that of electric distortion.

すなわち、印加電圧の大きさで制御することにより、グ
レイ表示も可能となるり、高精細、大画面の投影型表示
装置の低消費電力化および性能の向上に寄与するところ
が極めて大きい。
That is, by controlling the magnitude of the applied voltage, gray display is also possible, which greatly contributes to lower power consumption and improved performance of high-definition, large-screen projection display devices.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は本発明の実施例を示す図、 第2図は本発明の実施例素子を用いた表示装置の構成例
を示す図、 第3図は本発明実施例の基本動作を説明する図、第4図
は本発明の他の実施例を示す図、第5図は従来の磁気光
学素子を用いた表示装置の例を示す図、 第6図は従来の磁気光学素子の例を示す図である。 図において、 lは透明磁性膜、 2は透明基板、 3はY列透明電極、 4はX列透明電極、 5は透明・電歪性誘電体膜、 IOは磁気光学素子、 1112は偏光板、 13はバイアス磁界印加手段、 14はコリメートレンス、 15は拡大投影レンス系、 16は光源、 17はスクリーン、 30はY駆動制御回路、 40はX駆動制御回路である。 、JOXル勧靭4p立路 (ロ)X X′茜面図 ト・夕 9月 力・y別置イ列?示¥図 3 1  図 参を朗の・実力色分゛1素子と用パ4−表示装置シ・す
界、先例を示す図第 図 木7発15月T万モ/妙りn屋ルト動作ΣL先9月才ろ
図第 図 本発明 Iフイ七乙aつ実8セ1イク・1苓ヒデrゴ図第 図
FIG. 1 is a diagram showing an embodiment of the present invention. FIG. 2 is a diagram showing an example of the configuration of a display device using an example element of the present invention. FIG. 3 is a diagram explaining the basic operation of the embodiment of the present invention. , FIG. 4 is a diagram showing another embodiment of the present invention, FIG. 5 is a diagram showing an example of a display device using a conventional magneto-optical element, and FIG. 6 is a diagram showing an example of a conventional magneto-optical element. It is. In the figure, l is a transparent magnetic film, 2 is a transparent substrate, 3 is a Y-column transparent electrode, 4 is an X-column transparent electrode, 5 is a transparent electrostrictive dielectric film, IO is a magneto-optical element, 1112 is a polarizing plate, 13 is a bias magnetic field applying means, 14 is a collimating lens, 15 is an enlarged projection lens system, 16 is a light source, 17 is a screen, 30 is a Y drive control circuit, and 40 is an X drive control circuit. , JOX le Kankei 4p standing road (b) Figure 3 1 Figure 3 1 Figure showing the actual color division 1 element and display device world, figure showing precedents ΣL The next nine months old figure diagram This invention I Fi Nanao Atsumi 8th part 1 Iku 1 Rei Hide rgo diagram

Claims (2)

【特許請求の範囲】[Claims] (1)一軸磁気異方性を有する透明磁性膜(1)と、前
記透明磁性膜(1)に応力を与えるように近接して配置
された透明電歪性誘電体膜(5)と、前記透明電歪性誘
電体膜(5)を間に挟んで、マトリクス交点を形成する
ように配設されたX列透明電極(4)およびY列透明電
極(3)とを少なくとも備えた磁気光学素子。
(1) a transparent magnetic film (1) having uniaxial magnetic anisotropy; a transparent electrostrictive dielectric film (5) disposed close to the transparent magnetic film (1) so as to apply stress to the transparent magnetic film (1); A magneto-optical element comprising at least X-column transparent electrodes (4) and Y-column transparent electrodes (3) arranged to form matrix intersections with a transparent electrostrictive dielectric film (5) in between. .
(2)請求項(1)記載の磁気光学素子(10)と、前
記磁気光学素子(10)のX列透明電極(4)およびY
列透明電極(3)に電圧を印加するためのX駆動制御回
路(40)およびY駆動制御回路(30)と、前記磁気
光学素子(10)の透明磁性膜(1)面に垂直磁界を与
えるためのバイアス磁界印加手段(13)前記磁気光学
素子(10)の両側に直交配置された2つの偏光板(1
1、12)と、 前記一方の偏光板(11)の前方に配置された光源(1
6)と、 前記光源からの光を前記磁気光学素子(10)に平行光
として入射させるコリメートレンズ(14)と、前記他
方の偏光板(12)の後方に配置され、前記磁気光学素
子(10)を透過した平行光を拡大する拡大投影レンズ
系(15)と、 前記拡大投影レンズ系(15)の後方に配置されたスク
リーン(17)とを少なくとも備えることを特徴とした
表示装置。
(2) The magneto-optical element (10) according to claim (1), and the X-column transparent electrodes (4) and Y-column transparent electrodes (4) of the magneto-optical element (10).
Applying a perpendicular magnetic field to an X drive control circuit (40) and a Y drive control circuit (30) for applying voltage to the column transparent electrodes (3), and to the surface of the transparent magnetic film (1) of the magneto-optical element (10). Bias magnetic field applying means (13) for applying two polarizing plates (13) disposed orthogonally on both sides of the magneto-optical element (10).
1, 12), and a light source (1) disposed in front of the one polarizing plate (11).
6), a collimating lens (14) that causes the light from the light source to enter the magneto-optical element (10) as parallel light; ); and a screen (17) disposed behind the magnifying projection lens system (15).
JP81090A 1990-01-06 1990-01-06 Magnetooptic element and display device using the same Pending JPH03204615A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP81090A JPH03204615A (en) 1990-01-06 1990-01-06 Magnetooptic element and display device using the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP81090A JPH03204615A (en) 1990-01-06 1990-01-06 Magnetooptic element and display device using the same

Publications (1)

Publication Number Publication Date
JPH03204615A true JPH03204615A (en) 1991-09-06

Family

ID=11484037

Family Applications (1)

Application Number Title Priority Date Filing Date
JP81090A Pending JPH03204615A (en) 1990-01-06 1990-01-06 Magnetooptic element and display device using the same

Country Status (1)

Country Link
JP (1) JPH03204615A (en)

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000193885A (en) * 1998-12-24 2000-07-14 Asahi Optical Co Ltd Zoom lens system
JP2003315756A (en) * 2002-02-21 2003-11-06 Japan Science & Technology Corp Spatial light modulator
JP2007310177A (en) * 2006-05-18 2007-11-29 Fdk Corp Spatial light modulator
JP2008083686A (en) * 2006-08-31 2008-04-10 Nippon Hoso Kyokai <Nhk> Optical modulator, display device, holography device, and hologram recording device
JP2008145748A (en) * 2006-12-11 2008-06-26 Nippon Hoso Kyokai <Nhk> Magnetooptical spatial light modulator
JP2009092968A (en) * 2007-10-10 2009-04-30 Nippon Hoso Kyokai <Nhk> Spatial optical modulation element
JP2009218237A (en) * 2008-03-06 2009-09-24 Nippon Hoso Kyokai <Nhk> Magnetooptical imaging device
JP2010286669A (en) * 2009-06-11 2010-12-24 Fdk Corp Magnetooptical spatial light modulator

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000193885A (en) * 1998-12-24 2000-07-14 Asahi Optical Co Ltd Zoom lens system
JP2003315756A (en) * 2002-02-21 2003-11-06 Japan Science & Technology Corp Spatial light modulator
JP2007310177A (en) * 2006-05-18 2007-11-29 Fdk Corp Spatial light modulator
JP2008083686A (en) * 2006-08-31 2008-04-10 Nippon Hoso Kyokai <Nhk> Optical modulator, display device, holography device, and hologram recording device
JP2008145748A (en) * 2006-12-11 2008-06-26 Nippon Hoso Kyokai <Nhk> Magnetooptical spatial light modulator
JP2009092968A (en) * 2007-10-10 2009-04-30 Nippon Hoso Kyokai <Nhk> Spatial optical modulation element
JP2009218237A (en) * 2008-03-06 2009-09-24 Nippon Hoso Kyokai <Nhk> Magnetooptical imaging device
JP2010286669A (en) * 2009-06-11 2010-12-24 Fdk Corp Magnetooptical spatial light modulator

Similar Documents

Publication Publication Date Title
KR100283346B1 (en) Display device and driving method
JP3824290B2 (en) Array type light modulation element, array type exposure element, flat display, and method for driving array type light modulation element
US5781164A (en) Matrix display systems
US5404236A (en) Display device with crossing electrodes with specific ratio for gray scale
EP1020840A1 (en) Electrooptic device and electronic device
JPWO2007043148A1 (en) Liquid crystal display device and display method
KR100799085B1 (en) LCD with over-changable viewing angle
JP2007334224A (en) Liquid crystal display
JP3031295B2 (en) Active matrix type liquid crystal display
JP2001242819A6 (en) Electro-optical device and electronic apparatus
JPH03204615A (en) Magnetooptic element and display device using the same
EP0830666B1 (en) Plasma-addressed display
US9741296B2 (en) Driving method of a display device, and a display device
JP2002023135A (en) Liquid crystal display device
JPH02149823A (en) Liquid crystal display device
JP3650280B2 (en) Horizontal electric field type active matrix liquid crystal display device
US6404412B1 (en) Plasma-addressed color display
JP2000214465A (en) Liquid crystal device and electronic equipment
JP3947067B2 (en) Optical path shift element
KR100487433B1 (en) Array Substrate in Liquid Crystal Display Device
KR20020055783A (en) IPS mode Liquid crystal display device
KR20070068891A (en) Liquid crystal display having in-cell backlight and method for manufacturing thereof
JPS61183688A (en) Projection type liquid crystal display unit
US20230314880A1 (en) Liquid crystal display device
JP3856027B2 (en) Electro-optical device and electronic apparatus