JPH0320435A - Aluminum alloy for heat exchanger - Google Patents

Aluminum alloy for heat exchanger

Info

Publication number
JPH0320435A
JPH0320435A JP15636089A JP15636089A JPH0320435A JP H0320435 A JPH0320435 A JP H0320435A JP 15636089 A JP15636089 A JP 15636089A JP 15636089 A JP15636089 A JP 15636089A JP H0320435 A JPH0320435 A JP H0320435A
Authority
JP
Japan
Prior art keywords
heat exchanger
brazing
alloy
aluminum alloy
corrosion resistance
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP15636089A
Other languages
Japanese (ja)
Inventor
Takeshi Kawabe
剛 川辺
Nobuaki Yamamoto
山本 信明
Yoshitatsu Otsuka
良達 大塚
Ichiro Iwai
一郎 岩井
Ichizo Tsukuda
市三 佃
Makoto Tanio
谷尾 真
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Honda Motor Co Ltd
Altemira Co Ltd
Original Assignee
Honda Motor Co Ltd
Showa Aluminum Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Honda Motor Co Ltd, Showa Aluminum Corp filed Critical Honda Motor Co Ltd
Priority to JP15636089A priority Critical patent/JPH0320435A/en
Publication of JPH0320435A publication Critical patent/JPH0320435A/en
Pending legal-status Critical Current

Links

Abstract

PURPOSE:To obtain the Al alloy for a heat exchanger having excellent strength after brazing while retaining excellent corrosion resistance and workability by specifying the compsn. constituted of Mg, Si, Mn, Fe, Cu and Al. CONSTITUTION:The Al alloy for a heat exchanger contains, by weight, 0.1 to 0.8% Mg, 0.3 to 1.0% Si, 0.3 to 1.5% Mn and 0.01 to 0.3% Fe, furthermore contains, at need, one or both of 0.05 to 0.3% Cr and 0.01 to 0.05% Ti, in which Cu as impurities is regulated to <=0.05% and the balance Al with other inevi table impurities, which retains corrosion resistance and workability equal to or above those of an A3003 alloy and has increased strength after brazing. Thus, a lightweight heat exchanger having prolonged service life in which tubes, substructural members, etc., have improvement in thinning, lightening in weight and durability can be obtd. at low cost.

Description

【発明の詳細な説明】 産業上の利用分野 この発明はラジエーター、カーヒーター、インタークー
ラー等の各種熱交換器のチューブや副構成部材例えばヘ
ツダープレート、サイドプレート等に用いられる熱交換
器用アルミニウム合金に関する。
DETAILED DESCRIPTION OF THE INVENTION Field of Industrial Application This invention relates to an aluminum alloy for heat exchangers used for tubes and sub-components such as header plates, side plates, etc. of various heat exchangers such as radiators, car heaters, and intercoolers. .

従来の技術 従来、上記のような熱交換器において、熱交換媒体を流
通させるチューブや熱交換器副構戊部材等の材料として
、比較的耐食性、加工性に優れたA3003合金が一般
に使用されていた。
Conventional technology Conventionally, in the above-mentioned heat exchangers, A3003 alloy, which has relatively excellent corrosion resistance and workability, has been generally used as a material for the tubes through which the heat exchange medium flows and the heat exchanger sub-structural members. Ta.

発明が解決しようとする課題 ところが、かかるA3003合金では、熱交換器の製作
において各構成部材の接合のためにろう付を行った場合
、ろう付後の強度が低くなる(耐力σa.t*4Kyf
/mA)という欠点があった。このためチューブ等の十
分な強度を確保するにはその肉厚を厚くせざるを得ず、
その結果熱交換器の大型化、重量増、コスト増を容認せ
ざるを得なかった。
Problem to be Solved by the Invention However, in the case of the A3003 alloy, when brazing is performed to join each component in the production of a heat exchanger, the strength after brazing is low (yield strength σa.t*4Kyf
/mA). For this reason, in order to ensure sufficient strength for tubes, etc., the wall thickness must be increased.
As a result, they had no choice but to accept an increase in the size, weight, and cost of the heat exchanger.

この発明はかかる事情に鑑みてなされたものであって、
A3003合金と同程度以上の耐食性、加工性を保有し
つつろう付後の強度を向上したチューブや副構成部材等
となしうる熱交換器用アルミニウム合金の提供を目的と
する。
This invention was made in view of such circumstances, and
The purpose of the present invention is to provide an aluminum alloy for heat exchangers that can be used as tubes, sub-components, etc., and has improved strength after brazing while maintaining corrosion resistance and workability equivalent to or higher than A3003 alloy.

課題を解決するための手段 上記目的は、Mg : 0.  1〜0. 8wt%、
Si : 0.  3 〜1. ・Owt%、Mn :
 0.  3〜1.5wt%、Fe:0.01〜O。3
wt%を含有し、あるいはざらにC r : 0. 0
5 〜0. 3wt%、Ti:0、01〜0.05wt
%のINまたは2種を含有し、不純物としてCu:0.
05wt%以下に規制され、残部アルミニウム及び他の
不可避不純物とからなることを特徴とする熱交換器チュ
ーブ用アルミニウム合金によって違或される。
Means for Solving the Problems The above purpose is as follows: Mg: 0. 1~0. 8wt%,
Si: 0. 3 ~1.・Owt%, Mn:
0. 3 to 1.5 wt%, Fe: 0.01 to O. 3
wt% or roughly Cr: 0. 0
5 ~ 0. 3wt%, Ti: 0, 01~0.05wt
% of IN or two kinds, and Cu: 0.0% as an impurity.
The aluminum alloy for heat exchanger tubes is characterized by being regulated to 0.5 wt% or less, with the remainder consisting of aluminum and other unavoidable impurities.

まず、各元素の添加意義と組成範囲の限定理由について
説明すると、Mgはろう付後の強度向上に寄与するもの
であるが、0.1wt%未満では上記効果に乏しく、逆
に0.  8wt%を超えて含有されるとろう付不良を
発生する。特に好ましいMgの含有範囲は0.2〜0.
  5wt%である。
First, to explain the significance of adding each element and the reason for limiting the composition range, Mg contributes to improving the strength after brazing, but if it is less than 0.1 wt%, the above effect is poor; If the content exceeds 8 wt%, brazing failure will occur. A particularly preferable Mg content range is 0.2 to 0.
It is 5wt%.

Stも同じくろう付後の強度向上に寄与するものである
が、0.  3wt%未満では上記効果に乏しく、逆に
1,Owt%を超えて含有されるとやはりろう付不良を
発生する。特に好ましいSiの含有範囲は0.  6w
t%を超え0.9wt%以下である。
St also contributes to improving the strength after brazing, but 0. If the content is less than 3 wt%, the above effects will be poor, and if the content exceeds 1.0 wt%, brazing defects will still occur. A particularly preferable Si content range is 0. 6w
It is more than t% and less than 0.9wt%.

Mnは耐食性向上と強度向上に有効なものである。しか
し0.  3wt%未満では上記効果に乏しく、逆に1
.5wt%を超えると効果が飽和しコスト上昇に見合う
だけの効果が得られないばかりか、粗大品出物を生威し
加工性を劣化させる。特に好ましいMnの含有範囲は0
。5〜1.2wt%である。
Mn is effective in improving corrosion resistance and strength. But 0. If it is less than 3 wt%, the above effect will be poor, and conversely, if it is less than 1
.. If it exceeds 5 wt%, the effect will be saturated and not only will it not be possible to obtain an effect commensurate with the increase in cost, but it will also produce bulky products and deteriorate processability. A particularly preferable Mn content range is 0
. It is 5 to 1.2 wt%.

Feは結晶粒微細化と強度向上及び高温での粒界腐食の
抑制に寄与するものであるが、0.01wt%未満では
その効果がな<、0.  3wt%を超えると効果が飽
和する。特に好ましいFeの含有範囲は0.02〜0.
 2wt%である。
Fe contributes to grain refinement, strength improvement, and suppression of intergranular corrosion at high temperatures, but if it is less than 0.01 wt%, it has no effect. If it exceeds 3 wt%, the effect will be saturated. A particularly preferable Fe content range is 0.02 to 0.
It is 2wt%.

上記必須元素に加えて、任意的に1種または2種の含有
が許容されるC『とTiのうち、Crは粒界腐食の抑制
に寄与するものである。しかし0.05wt%未満では
その効果に乏しく、0.  3wt%を超えると効果が
飽和する。特に好ましいC『の含有範囲は0.06〜0
. 2wt%である。またTiは結晶粒微細化効果を発
揮するが、0.01wt%未満ではその効果に乏しく、
0.05wt%を超えるとやはり効果が飽和する。
In addition to the above-mentioned essential elements, Cr contributes to suppressing intergranular corrosion among C' and Ti, which may be optionally included in one or two kinds. However, if it is less than 0.05 wt%, the effect is poor; If it exceeds 3 wt%, the effect will be saturated. The particularly preferable content range of C' is 0.06 to 0.
.. It is 2wt%. Furthermore, although Ti exhibits a crystal grain refining effect, if it is less than 0.01 wt%, the effect is poor;
If it exceeds 0.05 wt%, the effect will be saturated.

特に好ましいTiの含有範囲は0.02〜0,04wt
%である。
A particularly preferable Ti content range is 0.02 to 0.04wt
%.

また不可避的に含まれる不純物のうち、Cuは耐食性を
劣化させることから、その含有量は0.05wt%以下
に規制されなければならない。
Further, among impurities that are inevitably included, Cu deteriorates corrosion resistance, so its content must be regulated to 0.05 wt% or less.

この発明に係るアルミニウム合金の例えばチューブ材へ
の製作に際しては、これを常法に従う押出法により管材
に押出しても良く、また押出したのち引抜いても良く、
あるいは常法に従う圧延法により板材に圧延したのち、
電縫溶接によって管材としても良く、その製造方法は限
定されない。また、第1図に示すように上記のアルミニ
ウム合金単独でチューブ(1)を構成しても良く、ある
いは第2図に示すようにフィンとの接合のために該合金
を心材(2)として外面にAQ−Si系合金等からなる
ろう材層(3)をクラッド等により被覆してチューブ(
1′)としても良い。加えてまた、特にラジ工一夕用熱
交換器のように、熱交換媒体として腐食性の強い水等が
用いられる場合には、チューブにさらに優れた耐食性を
付与すべく、同図に示すように内面にA7072合金等
からなる犠牲陽極層(4)を被覆したものに構威しても
良い。一方、ヘツダープレート、サイドプレート等の熱
交換器副構成部材への製作に際しても、やはり押出法で
押出しても良いし、常法に従う圧延法により圧延しても
良い。また、第3図に示すように上記のアルミニウム合
金単独で副構成部材(5)を構成しても良いが、第4図
に示すように該合金を心材(6)として片面あるいは両
面にろう材層(7)を被覆して副構成部材(5′)とす
るのが一般的である。なお、ろう付後の自然時効により
さらにチューブや副構成部材の強度向上を図るものとし
ても良い。
When manufacturing the aluminum alloy according to the present invention into, for example, a tube material, it may be extruded into a tube material by a conventional extrusion method, or it may be extruded and then pulled out.
Or after rolling it into a plate material by a conventional rolling method,
It may be made into a pipe material by electric resistance welding, and the manufacturing method thereof is not limited. Further, as shown in Fig. 1, the tube (1) may be made of the above-mentioned aluminum alloy alone, or as shown in Fig. 2, the aluminum alloy may be used as the core material (2) to form the outer surface for joining with the fins. A brazing material layer (3) made of AQ-Si alloy or the like is covered with a cladding or the like to form a tube (
1') may also be used. In addition, especially when highly corrosive water or the like is used as a heat exchange medium, such as in a heat exchanger for overnight radio work, in order to give the tube even better corrosion resistance, it is necessary to Alternatively, the inner surface may be coated with a sacrificial anode layer (4) made of A7072 alloy or the like. On the other hand, when manufacturing heat exchanger sub-components such as header plates and side plates, extrusion may be used as well, or rolling may be performed using a conventional rolling method. Further, as shown in FIG. 3, the sub-component member (5) may be made of the above-mentioned aluminum alloy alone, but as shown in FIG. It is common to coat the layer (7) as a sub-component (5'). Note that natural aging after brazing may be used to further improve the strength of the tube and sub-components.

発明の効果 この発明に係る熱交換器用アルミニウム合金は、特定の
元素とその組成範囲との組合せによって、後述の実施例
の参酌によって明らかなように、従来のA3003合金
と同程度以上の耐食性、加工性を有するものでありなが
らもろう付後の強度を増大することができる。従って、
チューブや副構成部材等の薄肉、軽量化を図りうるとと
もに耐久性をも向上することができ、ひいては軽量、長
寿命、安価な熱交換器の提供が可能となる。
Effects of the Invention The aluminum alloy for heat exchangers according to the present invention has corrosion resistance and processing properties equivalent to or higher than that of the conventional A3003 alloy, as will be clear from the examples described below, due to the combination of specific elements and their composition ranges. It is possible to increase the strength after brazing even though it has properties. Therefore,
It is possible to reduce the thickness and weight of tubes, sub-components, etc., and improve durability, thereby making it possible to provide a lightweight, long-life, and inexpensive heat exchanger.

実施例 次にこの発明の実施例を示す。Example Next, examples of this invention will be shown.

[以下余白] 上記第1表に示す各種組成のアルミニウム合金を溶解、
鋳造し、次いで均質化処理したのち、500℃の熱間圧
延、370℃×2時間の中間焼鈍、冷間圧延、600℃
×5分の最終熱処理を順次的に実施して、厚さ1.Or
MRの熱交換器用供試片を製作した。なお、Nol2を
除いて何の問題もなく加工を行うことができたのに対し
、Mn含有量が過多であるN012の合金では直径10
0μm以上のA受一Fe−Mn系金属間化合物が生成さ
れており加工性に劣る′ものであった。
[Left below] Aluminum alloys with various compositions shown in Table 1 above are melted,
After casting and then homogenizing, hot rolling at 500°C, intermediate annealing at 370°C for 2 hours, cold rolling at 600°C.
A final heat treatment of 5 minutes was sequentially performed to obtain a thickness of 1. Or
A specimen for an MR heat exchanger was manufactured. It should be noted that, with the exception of No. 2, processing could be carried out without any problems, whereas in the case of alloy No. 10, which has an excessive Mn content, the diameter of 10
A Fe--Mn based intermetallic compound having a diameter of 0 μm or more was formed, and the workability was poor.

次に、上記により得た各種供試片につき、ろう付試験、
腐食環境の異なる2種類の耐食性試験を以下の条件にて
行った。
Next, the various test pieces obtained above were subjected to a brazing test.
Two types of corrosion resistance tests in different corrosive environments were conducted under the following conditions.

■ろう付試験 各供試片を幅50M×長さ50mとする一方、A300
3心材の両面にBA4045ろう材がクラッドされた幅
50a*X長さ50ma+の相手材を用意した。そして
、第5図に示すように供試片(8)に相手材(9)を丁
字形に組合せ、N2ガス雰囲気中にてフフ化物系フラッ
クスを用いた600℃×5分のろう付を行い、ろう付後
における接合部分のフィレット形或状態を目視観察する
とともに、供試片の耐力を測定した。
■Brazing test Each specimen is 50M wide x 50m long, and A300
A mating material with a width of 50a*×length of 50ma+ was prepared, which was a core material clad with BA4045 brazing filler metal on both sides. Then, as shown in Figure 5, the test piece (8) and the mating material (9) were combined in a T-shape, and brazed at 600°C for 5 minutes using fluoride flux in an N2 gas atmosphere. The fillet shape and condition of the joint after brazing were visually observed, and the yield strength of the specimen was measured.

■耐食性試験(1) この試験は特にチューブ材として用いられる場合の内面
環境を意識した試験であり、各供試片を幅40馴×長さ
70mとし、これらをASTMIO倍水+10ppmC
u  溶液中で95℃×500時間浸漬後、孔食深さを
測定した。
■ Corrosion resistance test (1) This test is a test that takes into account the internal environment especially when used as a tube material.
After immersion in the u solution at 95°C for 500 hours, the depth of pitting corrosion was measured.

■耐食性試験(2) この試験はチューブや副構或部材の外面環境を意識した
試験であり、各供試片を幅40ffilllX長さ70
1mとし、これらにJISZ2371に準じる塩水噴霧
試験を1000時間実施したのち、腐食状態を調べた。
■Corrosion resistance test (2) This test is a test that takes into account the external environment of tubes and sub-structures or members, and each specimen is
After carrying out a salt water spray test according to JIS Z2371 for 1000 hours, the corrosion state was examined.

以上の試験結果を第2表に示す。The above test results are shown in Table 2.

[以下余白] 上記第2表の結果から、この発明に係るアルミニウム合
金の実施品(No1〜8)はA3003合金(Nol4
)と同程度の耐食性を有するものでありながらもろう付
後の強度に優れたものであり、かつろう付性も全く問題
のないことがわかる。これに対し、Mg,S1の含有量
が過多であるNo9、10はろう付性に劣り、Mn含有
量が少なくまた不純物としてのCu量が多いNollは
耐食性に劣り、Mg SS iの含有量が少ないNol
3及びA3003合金であるNol4は強度に劣ってい
た。
[Blank below] From the results in Table 2 above, it can be seen that the aluminum alloys according to the present invention (Nos. 1 to 8) are A3003 alloy (No. 4).
), it has excellent strength after brazing, and there are no problems with brazing properties. On the other hand, No. 9 and No. 10, which have excessive contents of Mg and S1, have poor brazing properties, and No. 1, which has a low Mn content and a large amount of Cu as an impurity, has poor corrosion resistance, and has a high content of Mg SS i. Less Nol
No. 3 and No. 4, which is an A3003 alloy, had poor strength.

【図面の簡単な説明】[Brief explanation of drawings]

第1図はこの発明のアルミニウム合金を用いた熱交換器
チューブの一例を示す断面図、第2図は同じくチューブ
の変形例を示す断面図、第3図はこの発明のアルミニウ
ム合金を用いた熱交換器副構成部材の一例を示す断面図
、第4図は同じく副構成部材の変形例を示す断面図、第
5図は実施例のろう付試験における供試片の組合せ状態
を示す斜視図である。 (1)(1’)・・・チューブ、(2)・・・心材、(
3)・・・ろう材層、(4)・・・犠牲陽極層、(5)
(5′)・・・副構成部材、(6)・・・心材、(7)
・・・ろう材層。 以上
Fig. 1 is a sectional view showing an example of a heat exchanger tube using the aluminum alloy of this invention, Fig. 2 is a sectional view showing a modified example of the tube, and Fig. 3 is a sectional view showing an example of a heat exchanger tube using the aluminum alloy of this invention. FIG. 4 is a sectional view showing an example of an exchanger sub-component, FIG. 4 is a sectional view showing a modification of the sub-component, and FIG. be. (1) (1')...Tube, (2)...Heartwood, (
3)...brazing metal layer, (4)...sacrificial anode layer, (5)
(5')... Sub-component member, (6)... Core material, (7)
...Brazing metal layer. that's all

Claims (2)

【特許請求の範囲】[Claims] (1)Mg:0.1〜0.8wt%、Si:0.3〜1
.0wt%、Mn:0.3〜1.5wt%、Fe:0.
01〜0.3wt%を含有し、不純物としてCu:0.
05wt%以下に規制され、残部アルミニウム及び他の
不可避不純物とからなることを特徴とする熱交換器用ア
ルミニウム合金。
(1) Mg: 0.1-0.8wt%, Si: 0.3-1
.. 0 wt%, Mn: 0.3 to 1.5 wt%, Fe: 0.
Cu: 0.01 to 0.3 wt% as an impurity.
1. An aluminum alloy for heat exchangers, characterized in that the content is regulated to 0.5 wt% or less, and the remainder consists of aluminum and other unavoidable impurities.
(2)Mg:0.1〜0.8wt%、Si:0.3〜1
.0wt%、Mn:0.3〜1.5wt%、Fe:0.
01〜0.3wt%を含有し、さらにCr:0.05〜
0.3wt%、Ti:0.01〜0.05wt%の1種
または2種を含有し、不純物としてCu:0.05wt
%以下に規制され、残部アルミニウム及び他の不可避不
純物とからなることを特徴とする熱交換器用アルミニウ
ム合金。
(2) Mg: 0.1-0.8wt%, Si: 0.3-1
.. 0 wt%, Mn: 0.3 to 1.5 wt%, Fe: 0.
01 to 0.3 wt%, and further contains Cr: 0.05 to 0.05 wt%.
0.3 wt%, Ti: 0.01 to 0.05 wt%, and Cu: 0.05 wt% as an impurity.
% or less, and the remainder consists of aluminum and other unavoidable impurities.
JP15636089A 1989-06-19 1989-06-19 Aluminum alloy for heat exchanger Pending JPH0320435A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP15636089A JPH0320435A (en) 1989-06-19 1989-06-19 Aluminum alloy for heat exchanger

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP15636089A JPH0320435A (en) 1989-06-19 1989-06-19 Aluminum alloy for heat exchanger

Publications (1)

Publication Number Publication Date
JPH0320435A true JPH0320435A (en) 1991-01-29

Family

ID=15626056

Family Applications (1)

Application Number Title Priority Date Filing Date
JP15636089A Pending JPH0320435A (en) 1989-06-19 1989-06-19 Aluminum alloy for heat exchanger

Country Status (1)

Country Link
JP (1) JPH0320435A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2018211947A1 (en) * 2017-05-16 2018-11-22 住友化学株式会社 Aluminum alloy for extrusion processing, aluminum alloy extruded article using same, method for producing said aluminum alloy for extrusion processing, and method for producing said aluminum alloy extruded article

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2018211947A1 (en) * 2017-05-16 2018-11-22 住友化学株式会社 Aluminum alloy for extrusion processing, aluminum alloy extruded article using same, method for producing said aluminum alloy for extrusion processing, and method for producing said aluminum alloy extruded article

Similar Documents

Publication Publication Date Title
JPH0320594A (en) Heat exchanger
JP5486592B2 (en) Aluminum alloy strip of brazed heat exchanger tube
AU2003289789B2 (en) Aluminum alloy tube and fin assembly for heat exchangers having improved corrosion resistance after brazing
JP6351206B2 (en) High corrosion resistance aluminum alloy brazing sheet and flow path forming part for automotive heat exchanger
JPH02147163A (en) Production of heat exchanger made of aluminum
JP4874074B2 (en) Aluminum alloy clad material for heat exchanger
JP4263160B2 (en) Aluminum alloy clad material and heat exchanger tube and heat exchanger using the same
JPH1088265A (en) Aluminum alloy fin material for heat exchanger, excellent in sacrificial anode effect as well as in strength after brazing
JPH0320435A (en) Aluminum alloy for heat exchanger
JPH0261536B2 (en)
JPH0320436A (en) Aluminum alloy for heat exchanger fin
JP4596618B2 (en) High corrosion resistance aluminum alloy composite for heat exchanger and anticorrosion aluminum alloy for heat exchanger
JPH09176767A (en) Al brazing sheet for vacuum brazing
JP3759441B2 (en) High strength and high corrosion resistance aluminum alloy extruded tube for heat exchanger, method for producing the same, and heat exchanger
JPH0250934A (en) Brazing sheet made of aluminum for heat exchanger member
JP3243188B2 (en) Aluminum alloy clad material for heat exchangers with excellent alkali corrosion resistance
JP3243189B2 (en) Aluminum alloy clad material for heat exchangers with excellent alkali corrosion resistance
JP2783921B2 (en) Low temperature brazed aluminum alloy heat exchanger
JPH02142672A (en) Manufacture of aluminum heat exchanger
JPH0436432A (en) High strength and high corrosion resistant al alloy clad material for al heat exchanger
JPH04198694A (en) Heat exchanger having good anticorrosion and heat transfer property
JP3529074B2 (en) Aluminum alloy clad material for heat exchanger with excellent alkali corrosion resistance
JPH0254735A (en) Aluminum brazing sheet
JPH03162542A (en) Aluminum alloy for heat exchanger
JPH04193927A (en) Brazable fin material for aluminum heat exchanger having superior heat conductivity and significant sacrificial anode effect after brazing