JPH03204145A - Method and apparatus for horizontal rotary continuous casting - Google Patents

Method and apparatus for horizontal rotary continuous casting

Info

Publication number
JPH03204145A
JPH03204145A JP34329589A JP34329589A JPH03204145A JP H03204145 A JPH03204145 A JP H03204145A JP 34329589 A JP34329589 A JP 34329589A JP 34329589 A JP34329589 A JP 34329589A JP H03204145 A JPH03204145 A JP H03204145A
Authority
JP
Japan
Prior art keywords
slab
mold
continuous casting
casting
roll
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP34329589A
Other languages
Japanese (ja)
Inventor
Shigehisa Anzai
安斎 栄尚
Hirofumi Maede
前出 弘文
Takaharu Watanabe
渡辺 隆治
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Steel Corp
Original Assignee
Nippon Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Steel Corp filed Critical Nippon Steel Corp
Priority to JP34329589A priority Critical patent/JPH03204145A/en
Publication of JPH03204145A publication Critical patent/JPH03204145A/en
Pending legal-status Critical Current

Links

Landscapes

  • Continuous Casting (AREA)

Abstract

PURPOSE:To stably produce a continuously cast billet having good quality without solidified segregation and solidified shrinkage hole by pressurizing the continuously cast slab before completely solidified in a groove for casting with a roll type screw down apparatus at the time of continuously casting the molten steel while rotating an endless ring type mold having the groove of narrow width for casting. CONSTITUTION:The molten steel in a ladle 1 is poured into a rotating mold 5 having the annular groove of narrow width for casting from a nozzle 4 through an intermediate vessel 3 and cooled and solidified while rotating the mold 5 to the arrow mark 8 direction without oxidizing the surface with non-oxidizing atmospheric means 9 to make the continuously cast billet 12. In this case, the rolling reduction is executed at >= 1% draft to the continuously cast billet 6, the inner part of which is not yet solidified, with the roll type screw down apparatus 11 under condition within the range of 0.5 - 1 solidified ratio. To unsolidified molten metal part in the continuously cast billet 6, the development of solidified segregation and solidified shrinkage hole is prevented with pressurizing and after drawing out the continuously cast billet 12 having small cross sectional area and excellent quality and structure from the annular mold 5 with a cast billet drawing straightening device 13, this is cut 14 to the prescribed length.

Description

【発明の詳細な説明】 (産業上の利用分野) 本発明は、溶融金属、主として溶鋼の連続鋳造、特に小
断面鋳片を鋳造する水平回転連続鋳造装置および鋳造方
法に関する。
DETAILED DESCRIPTION OF THE INVENTION (Industrial Application Field) The present invention relates to continuous casting of molten metal, mainly molten steel, and particularly to a horizontal rotation continuous casting apparatus and casting method for casting small cross-section slabs.

(従来の技術) 小断面鋳片を連続鋳造する方式に水平回転溝型方式があ
る。この水平連鋳法は、断面の一辺がlO〜100mm
角程度の小断面鋳片鋳造に適し、設備費が低源で生産性
が高いことが特徴であり、例えば米国特許第32848
59号明細書、米国特許第3478810号明細書や特
公昭63−13785号公報などに記載されたものがあ
る。
(Prior Art) A horizontal rotating groove method is a method for continuously casting small cross-section slabs. In this horizontal continuous casting method, one side of the cross section is lO~100mm.
It is suitable for casting slabs with small cross-sections, such as squares, and is characterized by low equipment costs and high productivity.
59, US Pat. No. 3,478,810, and Japanese Patent Publication No. 13785/1985.

米国特許第3284859号明細書には、桶型断面の環
状の回転冷却鋳型を備え、桶型の長辺が金属供給装置に
対面している連続鋳造装置が開示されている。この鋳型
には、溶融金属をゲート装置から供給する鋳造用溝が形
成されている。鋳型は垂直軸芯の回りに回転駆動される
。鋳型に注入されたた強制冷却装置が設けられている。
U.S. Pat. No. 3,284,859 discloses a continuous casting apparatus equipped with an annular rotary cooling mold having a tub-shaped cross section, with the long side of the tub facing a metal supply device. This mold is formed with a casting groove into which molten metal is supplied from a gate device. The mold is driven to rotate around a vertical axis. A forced cooling device is provided which is poured into the mold.

凝固した鋳片は、注入点から200〜270’に位置す
る点から鋳造用溝から連続的に引出されて、連続ミル装
置へ供給される。
The solidified slab is continuously withdrawn from the casting groove from a point located 200-270' from the injection point and fed to a continuous mill apparatus.

この鋳型は上部が開放された溝型で、残り3面が銅合金
などによって構成された冷却構造を有するため、上部の
冷却が他の3面に比べ弱く、凝固が遅れる6通常溶融金
属は、溶融状態から固体状態に変態する際に収縮(凝固
収縮)と溶質元素の濃化(固体と液体への分配によって
起る)を示す。従って、凝固が主に底面および側面から
進行するに伴って凝固収縮が起ると、凝固完了時の鋳片
状態は凹字状を呈する。また、上面側は注湯流の影響に
よる湯面の波立ちを伴うため、上面側の鋳片形状が一定
とならない。さらに、水平状態で凝固するため押し渦効
果が低く、溶融金属の給湯性が劣り、凝固収縮に見合う
溶融金属の補給がなされず、凝固収縮孔が不可避的に発
生しやすく、同時に凝固収縮孔近傍は最終凝固部である
ため溶質元素が濃化し、成分偏析が起る。
This mold is a groove type with an open top, and has a cooling structure with the remaining three sides made of copper alloy, etc., so the cooling of the top is weaker than the other three sides, and solidification is delayed. 6 Normally molten metal During the transformation from the molten state to the solid state, it exhibits shrinkage (solidification shrinkage) and concentration of solute elements (caused by partitioning into solid and liquid). Therefore, if solidification shrinkage occurs as solidification progresses mainly from the bottom and side surfaces, the slab will have a concave shape upon completion of solidification. In addition, the shape of the slab on the upper surface side is not constant because the molten metal surface on the upper surface side is undulated due to the influence of the pouring flow. Furthermore, since it solidifies in a horizontal state, the pushing vortex effect is low, and the molten metal supply performance is poor, and the molten metal is not replenished to match the solidification shrinkage, and solidification shrinkage holes are unavoidably likely to occur. Since this is the final solidification part, solute elements are concentrated and component segregation occurs.

鋳片が凹状になることは、後の圧延工程においてコーナ
ーの倒れを誘発し、製品に圧延方向に連続した欠陥を残
す、成分偏析が存在することは。
The concave shape of the slab causes the corners to collapse in the subsequent rolling process, leaving continuous defects in the product in the rolling direction, and the presence of component segregation.

鋳片の断面内の部位によって機械的特性が異なることを
意味する。また、凝固収縮孔が存在すれば、圧延工程で
消失せず製品欠陥となる。このような鋳片では、製品品
質の厳格化が進む今日とうてい実用化できない。
This means that the mechanical properties differ depending on the location within the cross section of the slab. Moreover, if solidification shrinkage holes exist, they will not disappear during the rolling process and will result in a product defect. Such slabs cannot be put to practical use in today's world, where product quality is becoming increasingly strict.

これらの問題を解決すべく考えられたものとして、特開
昭61−195756号公報、実開昭62−11384
3号公報記載のものがある。
To solve these problems, Japanese Unexamined Patent Publication No. 61-195756 and Utility Model Application No. 62-11384
There is one described in Publication No. 3.

特開昭61−195756号公報には、無端リング鋳型
を用いて鋳造する際に、鋳造方向にある適当な角度を設
けて鋳片の未凝固部に溶鋼静圧を与え、上面側凝固殻が
凹むのを防止すること、傾斜角度は鋳造速度によって適
正な範囲があることが指摘されている。たしかに、本発
明者らが行った再現実験によれば、鋳片上面側凝固殻が
形成されまだ液相が残存する段階までは凹みが改善され
、むしろ上方に膨らむ傾向さえあり、明らかに効果があ
ることが確認できた。しかし、凝固の更なる進行と共に
上面側凝固殻は再度凹みを生じた。これは、先に述べた
ように凝固完了時に発生する収縮によるためである。ま
た、より致命的なのは、鋳造した鋳片を切出し断面を観
察したところ凝固収縮孔が多発していたことである。
JP-A-61-195756 discloses that when casting using an endless ring mold, static pressure of molten steel is applied to the unsolidified part of the slab at an appropriate angle in the casting direction, so that the solidified shell on the upper surface side is It has been pointed out that there is an appropriate range for preventing denting and for the angle of inclination depending on the casting speed. Indeed, according to a reproduction experiment conducted by the present inventors, the concavity was improved up to the stage where a solidified shell was formed on the upper surface of the slab and the liquid phase still remained, and there was even a tendency for it to swell upward, clearly indicating that the effect was I was able to confirm something. However, as the solidification progressed further, the solidified shell on the upper surface side again became depressed. This is due to the contraction that occurs upon completion of solidification, as described above. Moreover, what is more fatal is that when the cast slab was cut out and the cross section was observed, there were many solidification shrinkage holes.

従って、傾斜によって鋳片表面を改善することは効果が
あまりないことが分かった。また、傾斜による溶鋼静圧
増加によって凝固収縮時の押湯効果の向上も期待できず
、工業的利用価値がないことが明らかである。
Therefore, it was found that improving the slab surface by tilting was not very effective. Furthermore, due to the increase in static pressure of molten steel due to inclination, no improvement in the feeder effect during solidification shrinkage can be expected, and it is clear that there is no industrial use value.

一方、実開昭62−113843号公報記載のものは、
主に鋳片上面の成型を意図したものであり、鋳造で生じ
る凹凸を機械的に平坦にするものである。
On the other hand, the one described in Japanese Utility Model Application Publication No. 62-113843 is
It is mainly intended for molding the upper surface of a slab, and mechanically flattens the unevenness that occurs during casting.

これによれば見掛は上の鋳片表面は平滑になると期待さ
れるが、圧下を加える鋳片表面は空気中の酸素などと反
応して酸化物層(スケール)が形成する。従って、本来
凹凸を有する表面にスケールが生成されるので、これを
圧下しても鋳片疵として残存し、圧下の効果がない、ま
た、凝固収縮孔や偏析が必然的に生成するので、表面疵
以上に最終製品の品質を決定づけることになる6表面疵
は、歩留りの若干の低下を覚悟すれば鋳片の手入れによ
って改善できるので、まず凝固収縮孔あるいは偏析を改
善する手段を開発することが重要である。
According to this, it is expected that the upper surface of the slab will appear smooth, but the surface of the slab to which pressure is applied will react with oxygen in the air and form an oxide layer (scale). Therefore, scale is generated on the surface which is originally uneven, so even if it is rolled down, it remains as slab defects and there is no effect of rolling down.Furthermore, solidification shrinkage pores and segregation are inevitably formed, so the surface 6 Surface defects, which determine the quality of the final product more than defects, can be improved by taking care of the slab, if you are prepared for a slight decrease in yield, so it is first necessary to develop a means to improve solidification shrinkage holes or segregation. is important.

また、同公報中には引は巣即ち凝固収縮孔に関する記述
があるが、圧下装置によって引は巣を減少させる場合、
凝固の進行状態即ち凝固率(固相率)と圧下条件を明確
にすることが不可欠であるにもかかわらず、その定量的
明示がない。
In addition, the same publication includes a description of the shrinkage holes, that is, solidification shrinkage holes, but when reducing the shrinkage holes using a reduction device,
Although it is essential to clarify the progress state of coagulation, that is, the coagulation rate (solid fraction) and rolling conditions, there is no quantitative clarification.

以上の点で、同公報は実用的かつ工業的生産の見地から
考えると具体性に欠け、有効な手段を与えるものではな
い。
In the above points, the publication lacks specificity from the standpoint of practical and industrial production, and does not provide effective means.

(発明が解決しようとする課題) 本発明の目的は、上部が開放された無端溝付きリング鋳
型を有した鋳型が水平方向に回転する溶融金属の連続鋳
造装置により、断面の一片が10〜100mm角程度の
小断面鋳片鋳造を行なう際に、その低設備費、高生産性
を最大限に発揮すべく、鋳造原理上最大の問題となる凝
固偏析、凝固収縮孔を完全あるいは品質上無視できるま
でに改善する手段を提供することである。
(Problems to be Solved by the Invention) An object of the present invention is to use a continuous casting device for molten metal in which a mold having an endless grooved ring mold with an open upper part rotates in the horizontal direction. When casting slabs with small cross-sections, such as square slabs, in order to maximize low equipment costs and high productivity, solidification segregation and solidification shrinkage pores, which are the biggest problems in casting principles, can be completely ignored in terms of quality. The goal is to provide a means to improve the results.

(課題を解決するための手段) 本発明の要旨は、上部が開放された無端溝付きリング鋳
型が水平方向に回転する溶融金属の小断面連続鋳造装置
を用い、鋳片圧下装置を鋳片上面凝固完了位置以降の鋳
型上部開放部または/および冷却帯に設け、最終凝固部
固相率が0.5から1の範囲で圧下率1%以上の圧下を
行うことを特徴とする水平回転連続鋳造方法、および、
上部が開放された無端溝付きリング鋳型が水平方向に回
転する溶融金属の小断面連続鋳造装置において、ロール
または面圧下装置からなる鋳片圧下装置を鋳片上面凝固
完了位置以降の鋳型上部開放部または/および冷却帯で
最終凝固部同相率が0.5から1の範囲に設けたことを
特徴とする水平回転連続鋳造装置、ならびに、該水平回
転連続鋳造装置において圧下装置を鋳片との接触領域全
体が同一速度となるテーパーロールとしたことを特徴と
する水平回転連続鋳造装置、圧下装置をロール径がロー
ル軸方向に変化するロールとしたことを特徴とする水平
回転連続鋳造装置、圧下装置をロールとし、ロールを回
転鋳型半径に等しい曲率半径を有する球殻の一部とした
ことを特徴とする水平回転連続鋳造装置、および、圧下
装置に駆動手段を付加し、鋳片回転速度と同期させたこ
とを特徴とする水平回転連続鋳造装置である。
(Means for Solving the Problems) The gist of the present invention is to use a small-section continuous casting device for molten metal in which a ring mold with an open top and an endless groove rotates in the horizontal direction, and a slab reduction device is installed on the top of the slab. Horizontal rotary continuous casting, which is provided in the upper open part of the mold after the solidification completion position and/or in the cooling zone, and is characterized in that the final solidification part solid fraction is in the range of 0.5 to 1 and the reduction is performed at a reduction rate of 1% or more. method, and
In a small-section continuous casting machine for molten metal in which an endless grooved ring mold with an open top rotates horizontally, a slab reduction device consisting of rolls or a surface reduction device is installed at the top open part of the mold after the solidification of the top surface of the slab is completed. or/and a horizontal rotary continuous casting device, characterized in that the cooling zone is provided with a homogeneous ratio of the final solidified part in the range of 0.5 to 1; Horizontal rotary continuous casting device characterized by having a tapered roll whose speed is the same throughout the area, horizontal rotary continuous casting device characterized by having a rolling device with a roll whose roll diameter changes in the roll axis direction, and rolling device. A horizontal rotary continuous casting device characterized in that the roll is a roll and the roll is a part of a spherical shell having a radius of curvature equal to the radius of the rotating mold, and a rolling device is provided with a driving means, and the rolling device is synchronized with the slab rotation speed. This is a horizontally rotating continuous casting device that is characterized by:

(作 用) 以下、本発明の作用について図面を用いて詳細に説明す
る。
(Function) Hereinafter, the function of the present invention will be explained in detail using the drawings.

まず、溶融金属が鋳造される過程を第1図に具体的に示
す。
First, FIG. 1 specifically shows the process in which molten metal is cast.

溶融金属を溶融金属取餡1から注入量制御装置2を用い
て中間容器3に注入し、注入ノズル4を介して無端溝型
回転鋳型5に注入する。鋳型5内には溶融金属逆流防止
堰7が設けてあり、溶融金属は鋳造方向8にのみ鋳造さ
れ、凝固が進行しつつ鋳片6となる。次に、必要に応じ
て鋳片上面の非酸化性雰囲気保持手段9を設けて、上面
側の溶融金属の酸化による品質劣化を防止する。この間
に凝固が進行しつつある溶融金属は、鋳片側面及び底面
側から優先的に凝固が進むが、やがて上面側も凝固し、
凝固殻が形成され、鋳片圧下装置11に至る。鋳片は、
圧下装置11により上面側から圧下が加えられ、以前の
凝固過程で生じた凝固収縮孔や凝固収縮負圧による濃化
液相の吸引力が解消される。即ち、圧下によって鋳片に
発生する凝固収縮孔が閉塞され、かつ中心偏析が改善さ
れる。同時に鋳片表面も平滑となる。上面側は、特に非
酸化性雰囲気を維持することによって表面のスケールの
影響もなく良好なものとなる。
Molten metal is injected from a molten metal filling 1 into an intermediate container 3 using an injection amount control device 2, and is injected into an endless groove type rotary mold 5 through an injection nozzle 4. A molten metal backflow prevention weir 7 is provided in the mold 5, and the molten metal is cast only in a casting direction 8, and becomes a slab 6 as it solidifies. Next, if necessary, a non-oxidizing atmosphere maintaining means 9 is provided on the upper surface of the slab to prevent quality deterioration due to oxidation of the molten metal on the upper surface side. During this time, the molten metal is solidifying preferentially from the sides and bottom of the slab, but eventually the top side also solidifies.
A solidified shell is formed and reaches the slab reduction device 11. The slab is
A reduction is applied from the upper surface side by the reduction device 11, and the suction force of the concentrated liquid phase due to the solidification contraction pores and negative pressure caused by the solidification contraction generated in the previous solidification process is eliminated. That is, the solidification shrinkage pores that occur in the slab due to rolling are closed, and center segregation is improved. At the same time, the slab surface also becomes smooth. By maintaining a non-oxidizing atmosphere, the upper surface side is free from the influence of scale on the surface and is in good condition.

さらに、鋳片は、圧下され良好な状態の鋳片12となり
、鋳片引抜き矯正手段13によって回転鋳型より連鋳機
外へ取り出され、切断機14によって圧延可能な長さに
切断される。鋳造装置後段に圧延機を配して、切断後ま
たは切断なしに直接圧延を行うことも可能である。
Further, the slab is rolled down to become a slab 12 in good condition, which is taken out of the continuous caster from the rotary mold by a slab pulling and straightening means 13, and cut into a length that can be rolled by a cutting machine 14. It is also possible to arrange a rolling mill downstream of the casting apparatus and perform rolling directly after or without cutting.

第1図はロール圧下装置を鋳型上面側に設けたものを示
し、1以上の圧下装置があればよい。また、圧下装置駆
動手段はロールの軸受け、圧下刃付加用油圧シリンダ、
くさびやばねの反発力などを利用可能な構造である。ロ
ールは圧下刃により鋳片に密着するため、鋳型回転即ち
鋳片の進行に伴って自動的に回転するが、電動機など外
部回転駆動用の機器を組合せて構成することも可能であ
る。これらの構成においては、望ましくはロール回転用
電動機を具備し、圧下刃の操作を容易にするだめに油圧
シリンダとばねの2重圧下機構とする。
FIG. 1 shows a mold in which a roll rolling device is provided on the upper surface of the mold, and one or more rolling devices may be provided. In addition, the rolling device driving means includes a roll bearing, a hydraulic cylinder for adding a rolling blade,
It has a structure that can utilize the repulsive force of wedges and springs. Since the roll is brought into close contact with the slab by the reduction blade, it automatically rotates as the mold rotates, that is, as the slab advances, but it is also possible to configure it in combination with an external rotation drive device such as an electric motor. In these configurations, it is preferable that an electric motor for rotating the roll is provided, and a double rolling mechanism including a hydraulic cylinder and a spring is used to facilitate the operation of the rolling blade.

第2図は圧下装置11および圧下装置用駆動手段18を
鋳片出側にも設けたものを示す。この場合、鋳片引抜き
矯正手段13と組合せて構成することができる。また、
圧下装置は鋳型内あるいは連鋳機出側のいずれかに設置
されれば良く、必ずしも両方に設ける必要はない。
FIG. 2 shows a device in which the rolling down device 11 and the driving means 18 for the rolling down device are also provided on the slab outlet side. In this case, it can be constructed in combination with the slab pulling straightening means 13. Also,
The rolling down device may be installed either inside the mold or on the outlet side of the continuous casting machine, and does not necessarily need to be installed on both sides.

第3図は、圧下装置11と鋳型5および鋳片6の関係を
示す鳥瞳図である。
FIG. 3 is a bird's-eye view showing the relationship between the rolling down device 11, the mold 5, and the slab 6.

第4図(a)は、圧下装置11にテーパー付きロールを
用いた場合を示す、この場合、テーパーとすることによ
ってロール回転軸は傾斜するが、鋳片の鋳型内周側と外
周側の速度を完全に一致させることが可能である0回転
鋳型の外周側と内周側では半径差に基づき必ず速度差を
生じ、ここに圧下装置を導入した場合、圧下部で速度差
によって鋳片の内周側と外周側では変形状態が異なり、
内外周どちらかに滑りが生じ、摺り疵の原因となる。従
って、圧下装置のロールをテーパーとすることによって
速度差に起因する疵を完全に防止でき、良好な鋳片を得
ることができる。第4図fbl、fc)は、圧下装置の
断面A−Aの詳細、および鋳片圧下前後(断面A−A、
断面B−B)の鋳片の形状変化と凝固収縮孔の防止過程
を模式的に示す図である。
FIG. 4(a) shows a case where a tapered roll is used in the rolling down device 11. In this case, the roll rotation axis is inclined due to the taper, but the speed of the slab on the inner and outer sides of the mold is There is always a speed difference between the outer and inner sides of a zero-rotation mold due to the radius difference, and if a rolling device is introduced here, the speed difference at the rolling part will cause the inside of the slab to The deformation state is different between the circumferential side and the outer circumferential side,
Slippage occurs on either the inner or outer periphery, causing scratches. Therefore, by tapering the rolls of the rolling down device, it is possible to completely prevent flaws caused by speed differences, and to obtain good slabs. Fig. 4 fbl, fc) shows the details of the cross section A-A of the rolling down device, and the details before and after rolling down the slab (cross section A-A,
It is a figure which shows typically the shape change of the slab of cross section BB), and the prevention process of the solidification shrinkage hole.

第5図fatは、テーパーロールに替え太鼓型ロールを
用いた例である。これによって、凝固収縮孔や偏析の防
止に必要な鋳片幅中央部分の優先的圧下を可能としたも
ので、圧下を有効に行うことができる。第5図 (b)
〜(elは第4図と同様である・ 第6図は圧下を更に効果的且つ柔軟に行うためのロール
を示す。本発明に係る無端溝型水平回転連続鋳造機は鋳
型がリング状であるため、圧下装置としてロールを採用
した場合、鋳型溝と圧下ロールの形状は互に干渉しない
範囲でしか設計できない、装置を設計あるいは改造する
場合、その幾何学的寸法から規定されることになり、あ
らゆる金属、サイズあるいはグレードの鋳片の品質を常
に維持することは難しい、この様な問題に対する改善策
として第6図ta+に示すものがある。
FIG. 5 fat is an example in which a drum-shaped roll is used instead of a tapered roll. This makes it possible to preferentially reduce the central portion of the width of the slab, which is necessary to prevent solidification shrinkage holes and segregation, and allows effective reduction. Figure 5 (b)
~ (el is the same as in Fig. 4. Fig. 6 shows rolls for more effective and flexible rolling. The endless groove type horizontal rotating continuous casting machine according to the present invention has a ring-shaped mold. Therefore, when a roll is used as the rolling down device, the shapes of the mold groove and the rolling roll can only be designed within a range that does not interfere with each other.When designing or modifying the device, it is determined by its geometric dimensions. It is difficult to always maintain the quality of slabs of all metals, sizes, and grades. As a solution to this problem, there is a solution shown in FIG. 6 (ta+).

第6図(alは圧下装置を設置した場合の平面図である
が、ロールは鋳型の半径に添って湾曲した形状となって
いる。即ち、ロールは鋳型半径Rと等しい球面の一部で
あり、ロールの幅は同図(blに示すように鋳片幅Wに
等しい、これによって、第6図fc)に示したように鋳
型との干渉が全くなく、圧下用ロールの半径rを任意に
変更することが可能となる。圧下ロール半径を任意に変
更可能であるということは、鋳片に与える圧下勾配(圧
下速度)や圧下ロールの安定した噛み込みを可能とする
。即ち、圧下ロールと鋳片の初期接触点とロールキス点
の水平方向距離をそれぞれLl、L2  (Ll >L
x )とし、圧下量をδとすれば、圧下勾配はδ/L、
、δ/L、(δ/L1〈δ/L、)で定義され、ロール
半径を太き(することで圧下勾配が小さくなる。更に、
ロール半径を大きくすることで噛込み可能な圧下量も大
きくすることが可能である。このロール半径は特に規制
を受けるものではなく、任意の値で良いが、概ね鋳型半
径の5%〜30%であれば十分である。
Figure 6 (Al is a plan view with the rolling down device installed; the roll is curved along the radius of the mold. In other words, the roll is part of a spherical surface equal to the radius R of the mold. , the width of the roll is equal to the slab width W as shown in the figure (bl), so there is no interference with the mold as shown in Fig. 6fc, and the radius r of the rolling roll can be set arbitrarily. Being able to arbitrarily change the radius of the reduction roll enables the reduction gradient (reduction speed) given to the slab and the stable bite of the reduction roll.In other words, the reduction roll and Let the horizontal distances between the initial contact point and roll kiss point of the slab be Ll and L2 (Ll > L
x) and the amount of reduction is δ, the reduction gradient is δ/L,
, δ/L, (δ/L1<δ/L,), and the roll radius is increased (by doing so, the rolling gradient becomes smaller.Furthermore,
By increasing the roll radius, it is possible to increase the amount of reduction that can be bitten. This roll radius is not particularly regulated and may be any value, but approximately 5% to 30% of the mold radius is sufficient.

第7図は、圧下装置に駆動手段を付加する場合の装置の
速度制御方法をブロック図で示したものである。鋳型駆
動手段16、圧下装置用駆動手段18および引抜き矯正
装置駆動手段19を運転する際は、各装置の減速比など
を考慮し、各駆動手段制御装置の前段に比率変換器を設
けて鋳片速度に同期させて運転することが可能となる。
FIG. 7 is a block diagram showing a method for controlling the speed of the rolling down device when a driving means is added to the device. When operating the mold drive means 16, the rolling device drive means 18, and the drawing straightening device drive means 19, the reduction ratio of each device is taken into consideration, and a ratio converter is provided upstream of each drive means control device to control the slab. It becomes possible to operate in synchronization with the speed.

また、比率変換器は、仮に機械的変換比(例えば、歯車
比やスプロケット比など)によってマツチングが可能で
あれば、比率変換器に与えるべき比率はlであることか
ら、省略可能である。
Furthermore, if matching is possible using a mechanical conversion ratio (eg, gear ratio, sprocket ratio, etc.), the ratio converter can be omitted since the ratio to be given to the ratio converter is l.

第8図(alは、圧下装置として面圧下装置を用いた場
合の圧下部の鳥敵図である。第8図(bl、(c)は、
同図(atの鋳造方向断面A−Aを示す図である。これ
は面圧下装置を油圧装置などの駆動手段18によって鋳
片に押しつけるものであり、例えば圧下のみの一方向荷
重や油圧装置に往復動を与えることによって面圧下装置
に振動あるいは揺動運動を与える構造である。振動や揺
動運動は相となる。圧下装置用駆動手段18は、この他
ばね機構、偏芯カム機構、リンク機構などによって構成
することが可能である。
Figure 8 (al) is a bird's-eye view of the rolling part when a surface rolling down device is used as the rolling down device. Figure 8 (bl, (c))
This is a diagram showing a section A-A in the casting direction of the same figure (at). This is a view that presses the surface reduction device against the slab by a driving means 18 such as a hydraulic device. It has a structure that gives vibration or rocking motion to the surface pressure lowering device by giving reciprocating motion.The vibration and rocking motion are phases.The drive means 18 for the pressure lowering device includes a spring mechanism, an eccentric cam mechanism, a link, etc. It is possible to configure it by a mechanism or the like.

第9図は、圧下時期および圧下による品質改善原理を模
式的に示したものである。圧下は鋳片上面側が凝固して
から行なうが、この場合でも内部には液相が存在する。
FIG. 9 schematically shows the timing of rolling down and the principle of quality improvement by rolling down. Reduction is performed after the upper surface of the slab has solidified, but even in this case, a liquid phase still exists inside.

しかし、凝固が進行するにしたがって通過面積が減少す
るため液相の移動が容易ではない状態になり、凝固収縮
に見合う液相が補給不可能となり、凝固収縮孔を生しる
。また、凝固完了直前の液相は不純物成分が濃化してお
り、偏析の原因となる。そこで、圧下ロールによって外
部から凝固収縮量に見合う量を変形させる。また、圧下
によって図に示す液相流動も起こすことが可能であり、
濃化液相をスクイーズすることができる。圧下位置につ
いては、図に示した通り上面側の凝固が完了しない内は
原理上圧下できない。
However, as the solidification progresses, the passage area decreases, making it difficult for the liquid phase to move easily, making it impossible to replenish the liquid phase to match the solidification shrinkage, resulting in solidification shrinkage pores. In addition, impurity components in the liquid phase immediately before completion of solidification are concentrated, which causes segregation. Therefore, a reduction roll is used to deform the material from the outside by an amount corresponding to the amount of solidification shrinkage. In addition, it is possible to cause liquid phase flow as shown in the figure by pressure reduction.
The concentrated liquid phase can be squeezed. Regarding the rolling position, as shown in the figure, it cannot be rolled down in principle until solidification on the upper surface side is completed.

第1O図は、本発明の連続鋳造法を用いる場合の最適圧
下タイミングを説明する図で、同図(a)は鋳片の幅の
中央の長手方向における断面、同図Fbl は鋳片の水
平面で下面から3分の2の高さ位置における長平方向に
おける断面の凝固進行状態を炭素鋼を例に数値計算によ
って求めたものである。圧下可能位置は、鋳造金属の種
類、鋳造速度(V)、鋳造過熱度(鋳造温度と液相線温
度の差△T)などによって変化するが、計算によって容
易に推定可能である。図中には固相率をパラメータに示
すが、0は完全液相状態、1は完全固相状態を示し、中
間の値は固相液相の割合を示す。
Fig. 1O is a diagram explaining the optimum rolling timing when using the continuous casting method of the present invention, in which (a) is a cross section in the longitudinal direction at the center of the width of the slab, and Fbl in the figure is a horizontal plane of the slab. The solidification progress state of a cross section in the longitudinal direction at a height two-thirds from the bottom surface was determined by numerical calculation using carbon steel as an example. The possible rolling position varies depending on the type of cast metal, casting speed (V), degree of casting superheat (difference ΔT between casting temperature and liquidus temperature), etc., but can be easily estimated by calculation. In the figure, the solid phase ratio is shown as a parameter; 0 indicates a completely liquid phase state, 1 indicates a completely solid phase state, and intermediate values indicate the ratio of solid phase to liquid phase.

本発明の無端溝型水平回転連鋳法では、圧下可能となる
時期の内部の最も低い固相率は05てあり、本発明法に
よって固相率0.5〜1.0の範囲で圧下を行うことが
できる。通常、凝固偏析や凝固収縮孔を防止するには、
金属の半凝固状態での液相の透過が可能か否かによって
適当な圧下時期を推定することができる。また、液相の
透過可能な固相率は流動限界固相率として実測されてお
り、0.6〜0.7前後の値が多い。従って、本発明は
0.5〜1.0の広範囲で圧下を加えることが原理的に
可能で、かつ金属の凝固の際の欠陥を防止する上でも効
果的と言える6 (実施例) 鋳造に用いた金属は第1表に示す炭素鋼である。鋳造は
実施例、比較例ともに独立したチャージで行なったので
、成分範囲を用いて示した。
In the endless channel type horizontal rotary continuous casting method of the present invention, the lowest internal solid fraction at the time when rolling is possible is 05, and the method of the present invention allows rolling to be performed within the solid phase ratio range of 0.5 to 1.0. It can be carried out. Usually, to prevent solidification segregation and solidification shrinkage pores,
Appropriate reduction timing can be estimated depending on whether or not the liquid phase can pass through the metal in a semi-solidified state. Further, the solid phase rate through which the liquid phase can pass is actually measured as the flow limit solid phase rate, and the value is often around 0.6 to 0.7. Therefore, it can be said that the present invention is theoretically capable of applying a reduction in a wide range of 0.5 to 1.0, and is also effective in preventing defects during solidification of metal6 (Example) For casting The metal used was carbon steel shown in Table 1. Since casting was carried out using independent charges in both Examples and Comparative Examples, the composition ranges are shown.

第 1 表 (実施例、比較例とも共通)   重量%
鋳造、圧延条件を以下に示す。
Table 1 (Common to Examples and Comparative Examples) Weight%
The casting and rolling conditions are shown below.

実施例1 ■ 鋳造 鋳造方式 %式% 鋳造サイズ ニー40mm 鋳型半径 R: 1000mm 鋳造速度 V ・7.0m/min 溶鋼過熱度△T・36°C 鋳型材質 :銅合金 圧下装置  :テーパーロール圧下 ロール半径r  : 150mm ロール幅 W ・ 40mm 軽圧下鋳造  、圧下率1〜15% ■熱間圧延 加熱温度 保持時間 圧延比 圧延後の冷却 :  1150℃ :  2hr :1.8 (≠40闘→φ32mm) :空冷 実施例2 ■ 鋳造 鋳造方式   :無端溝型水平連続鋳造機 鋳造サイズ  、φ40mm 鋳型半径 R: 1000mm 鋳造速度 V  : 7.0m/min溶鋼過熱度△T
:36℃ 鋳型材質 、銅合金 圧下装置 :面圧下 (圧下長: 200mm ) 軽圧下鋳造  :圧下率1〜15% ■熱間圧延 加熱温度 保持時間 圧延比 圧延後の冷却 比較例1 ■ 鋳造 鋳造方式 鋳造サイズ 鋳型半径 R 鋳造速度 V 溶鋼過熱度△T 鋳型材質 圧下装置 :  1150℃ :  2hr :1.8 (φ40mm→φ32mm) :空冷 :無端溝型水平連続鋳 造機 :φ40mm : 1000mm : 7.0m/min :36℃ :銅合金 :なし 軽圧下鋳造 :なし ■熱間圧延 加熱温度 保持時間 圧延比 圧延後の冷却 :  1150℃ :  2hr :1.8 (φ40mm→φ32mm) :空冷 比較例2 ■ 鋳造 湾曲型連続鋳造機(現行CC)鋳造サイズ 
 : 350mm X 560mmマシン半径  : 
12 mR 鋳造速度 : 0.9m/min 溶鋼過熱度  =25℃ 鋳型材質 :銅合金 軽圧下鋳造  :なし ■熱間圧延 加熱温度 : 1150℃ 保持時間 : 2hr 圧延比 :244 (350mmX 560mm −1φ32+nm)圧延
後の冷却 :空冷 実施例における圧下時の鋳片固相率は、第10図中に示
した通り約0.68である。
Example 1 ■ Casting Casting method % formula % Casting size knee 40mm Mold radius R: 1000mm Casting speed V ・7.0m/min Molten steel superheat degree △T・36°C Mold material: Copper alloy rolling down device: Tapered roll rolling radius r: 150mm Roll width W: 40mm Light reduction casting, reduction rate 1-15% ■Hot rolling heating temperature holding time Rolling ratio Cooling after rolling: 1150℃: 2hr: 1.8 (≠40mm → φ32mm): Air cooling Example 2 ■ Casting Casting method: Endless groove type horizontal continuous casting machine Casting size: φ40mm Mold radius R: 1000mm Casting speed V: 7.0m/min Molten steel superheat degree △T
: 36℃ Mold material, copper alloy rolling device: Surface reduction (rolling length: 200mm) Light reduction casting: Reduction rate 1 to 15% ■ Hot rolling heating temperature holding time Rolling ratio Cooling comparison example 1 after rolling ■ Casting Casting method Casting size Mold radius R Casting speed V Molten steel superheating degree △T Mold material reduction device: 1150℃: 2hr: 1.8 (φ40mm→φ32mm): Air cooling: Endless groove horizontal continuous casting machine: φ40mm: 1000mm: 7.0m/ min: 36℃: Copper alloy: None Light reduction casting: None ■Hot rolling heating temperature holding time Rolling ratio Cooling after rolling: 1150℃: 2hr: 1.8 (φ40mm→φ32mm): Air cooling comparative example 2 ■Casting Curved Mold continuous casting machine (current CC) casting size
: 350mm x 560mm machine radius :
12 mR Casting speed: 0.9m/min Molten steel superheating degree = 25℃ Mold material: Copper alloy light reduction casting: None Hot rolling heating temperature: 1150℃ Holding time: 2hr Rolling ratio: 244 (350mmX 560mm -1φ32+nm) rolling Post-cooling: The solid fraction of the slab during rolling in the air-cooled example is about 0.68, as shown in FIG.

第11図は、実施例1.2および比較例1.2で得られ
た鋳片の凝固収縮孔面積率および偏析度を示す図である
。圧下率Oが比較例1を、それ以外が実施例1.2の平
均値を示す、これから1%以上の圧下、望ましくは5%
以上の圧下を加えることによって凝固収縮孔、偏析度共
に大幅に改善されることがわかる。
FIG. 11 is a diagram showing the solidification shrinkage pore area ratio and segregation degree of slabs obtained in Example 1.2 and Comparative Example 1.2. The rolling reduction rate O is the average value of Comparative Example 1, and the other values are the average values of Example 1.2. From this, the rolling reduction is 1% or more, preferably 5%.
It can be seen that by applying the above reduction, both the solidification shrinkage pores and the degree of segregation are significantly improved.

第12図は、鋳片から更に棒鋼圧延を行なって最終製品
である棒鋼の品質特性を示したものである。横軸は、成
分のばらつきを規格化するために炭素当量を用いて示し
た。なお、実施例1.2の値は圧下率5%の圧下な行な
った鋳片から製造した場合である。比較例2は、現在商
業生産ベースで達成している品質範囲である6 実施例1.2はいずれも比較例2、即ち現在の商業生産
で達成している品質レベルと比較し同等ないしそれ以上
の優れた特性を達成できることが分かる。また、実施例
は圧延比1.8、比較例2は圧延比244であることを
合せ考えれば、本発明方法によって圧延比の低減、即ち
圧延機台数の大幅削減が可能であることが分かり、品質
のみならず生産設備の簡単化にとっても極めて有効な鋳
造手段であると言える。一方、比較例1は鋳造での圧下
を省略した例であるが、製品の断面収縮率即ち絞りが低
い、従って、鋳造中の圧下が製品品質を向上させる上で
不可欠であると言える。
FIG. 12 shows the quality characteristics of the final product of the steel bar obtained by further rolling the slab. The horizontal axis is plotted using carbon equivalent to normalize component variations. Note that the values of Example 1.2 are for the case where the slab was manufactured from a slab that was rolled at a rolling reduction rate of 5%. Comparative Example 2 is the quality range currently achieved on a commercial production basis.6 Examples 1 and 2 are all equivalent to or higher than the quality level achieved in Comparative Example 2, that is, current commercial production. It can be seen that excellent characteristics can be achieved. Furthermore, considering that the rolling ratio in Example is 1.8 and the rolling ratio in Comparative Example 2 is 244, it can be seen that the method of the present invention makes it possible to reduce the rolling ratio, that is, to significantly reduce the number of rolling mills. It can be said that this is an extremely effective casting method not only for improving quality but also for simplifying production equipment. On the other hand, although Comparative Example 1 is an example in which the reduction during casting is omitted, the cross-sectional shrinkage rate of the product, that is, the reduction of area, is low, so it can be said that reduction during casting is essential for improving product quality.

(発明の効果) 以上示したように、上部が開放された無端溝付きリング
鋳型が水平方向に回転する溶融金属の小断面連続鋳造装
置を用いて品質上量も重要となる凝固偏析、凝固収縮孔
を鋳造過程での鋳片圧下によって防止できる。さらに、
本発明は製品品質の向上を達成できるだけでなく、製造
工程の簡略化をも可能とし、ひいては製造コストを大幅
に低減でき、産業上極めて有益な発明といえる。
(Effects of the Invention) As shown above, solidification segregation and solidification shrinkage, in which quantity is also important in terms of quality, can be achieved by using a small-section continuous casting device for molten metal in which an endless grooved ring mold with an open top rotates horizontally. Holes can be prevented by reducing the slab during the casting process. moreover,
The present invention not only improves product quality, but also simplifies the manufacturing process, which in turn can significantly reduce manufacturing costs, making it an extremely useful invention industrially.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は本発明の水平回転連続鋳造装置を示す平面図、 第2図は本発明の水平回転連続鋳造装置の連鋳機側に圧
下装置を設けた例を示す平面図、第3図は圧下装置にロ
ールを用いた例を示す図、 第4図は圧下装置にテーパーロールを用いた例を示す図
、 第5図は圧下装置にロールを用い、ロール径がロール軸
方向に変化する例を示す図、 第6図は圧下装置にロールを用いる場合で、ロール形状
を球面の一部とする例を示す図、第7図は圧下装置と鋳
造装置を組合せて使用する場合で、各装置の速度調整方
法を示す図、第8図は圧下装置として面圧下装置を用い
る場合で、面圧下装置に圧下刃のみを作用させる場合と
面圧下装置を動揺させる場合を示す図、第9図は本発明
の水平回転連続鋳造装置における凝固の進行状況と圧下
装置の設置位置を示す図、 第10図は本発明の連続鋳造法の最適圧下タイミンクを
説明する図、 第11図は実施例を示す図、 第12図は実施例と比較例を示す図である。 l・・・溶融金属取鍋、2・・・注入量制御装置。 3・・・中間容器、4・・・注入ノズル、5・・・無端
溝型回転鋳型、6・・・鋳片、7・・・溶融金属逆流防
止堰、8・・・鋳造方向、9・・・非酸化性雰囲気保持
手段、10・・・非酸化性雰囲気媒体導入部、11・・
・鋳片圧下装置、12・・・鋳片、13・・・鋳片引抜
き矯正手段、14・・・切断機、15・・・注入装置駆
動手段、16・・・鋳型駆動手段、17・・・回転動力
伝達部材、18・・・圧下装置用駆動手段、19・・・
鋳片引抜き矯正装置駆動手段。
Fig. 1 is a plan view showing a horizontal rotary continuous casting device of the present invention, Fig. 2 is a plan view showing an example of a horizontal rotary continuous casting device of the present invention in which a reduction device is provided on the continuous caster side, and Fig. 3 is Figure 4 shows an example in which a roll is used as the rolling device. Figure 4 is a diagram showing an example in which a tapered roll is used in the rolling device. Figure 5 is an example in which a roll is used in the rolling device and the roll diameter changes in the roll axis direction. Figure 6 shows an example in which a roll is used as a rolling device, and the roll shape is a part of a spherical surface, and Figure 7 shows a case in which a rolling device and a casting device are used in combination, and each device is Fig. 8 is a diagram showing the case where a surface reduction device is used as the reduction device, and a diagram showing a case where only the reduction blade acts on the surface reduction device and a case where the surface reduction device is moved. A diagram showing the progress of solidification and the installation position of the rolling down device in the horizontal rotary continuous casting apparatus of the present invention. Figure 10 is a diagram explaining the optimum rolling down timing of the continuous casting method of the present invention. Figure 11 shows an example. FIG. 12 is a diagram showing an example and a comparative example. l... Molten metal ladle, 2... Injection amount control device. 3... Intermediate container, 4... Injection nozzle, 5... Endless groove rotary mold, 6... Slab, 7... Molten metal backflow prevention weir, 8... Casting direction, 9... ... Non-oxidizing atmosphere holding means, 10... Non-oxidizing atmosphere medium introduction part, 11...
- Slab rolling device, 12... Slab, 13... Slab drawing straightening means, 14... Cutting machine, 15... Injector driving means, 16... Mold driving means, 17... - Rotary power transmission member, 18... Drive means for the lowering device, 19...
Driving means for a slab drawing straightening device.

Claims (6)

【特許請求の範囲】[Claims] (1)上部が開放された無端溝付きリング鋳型が水平方
向に回転する溶融金属の小断面連続鋳造装置を用い、鋳
片圧下装置を鋳片上面凝固完了位置以降の鋳型上部開放
部または/および冷却帯に設け、最終凝固部固相率が0
.5から1の範囲で圧下率1%以上の圧下を行うことを
特徴とする水平回転連続鋳造方法。
(1) Using a small-section continuous casting device for molten metal in which an endless grooved ring mold with an open top rotates horizontally, the slab lowering device is installed at the top open part of the mold or/and after the top solidification position of the slab. Provided in the cooling zone, the final solidification part solid fraction is 0
.. A horizontal rotation continuous casting method characterized by performing reduction at a reduction rate of 1% or more in the range of 5 to 1.
(2)上部が開放された無端溝付きリング鋳型が水平方
向に回転する溶融金属の小断面連続鋳造装置において、
ロールまたは面圧下装置からなる鋳片圧下装置を鋳片上
面凝固完了位置以降の鋳型上部開放部または/および冷
却帯で最終凝固部固相率が0.5から1の範囲に設けた
ことを特徴とする水平回転連続鋳造装置。
(2) In a small-section continuous casting device for molten metal in which an endless grooved ring mold with an open top rotates in the horizontal direction,
A slab reduction device consisting of a roll or a surface reduction device is provided in the mold upper open part or/and cooling zone after the solidification completion position of the slab top surface so that the final solidification part solid fraction is in the range of 0.5 to 1. Horizontal rotating continuous casting equipment.
(3)圧下装置を鋳片との接触領域全体が同一速度とな
るテーパーロールとしたことを特徴とする請求項2記載
の水平回転連続鋳造装置。
(3) The horizontal rotary continuous casting apparatus according to claim 2, wherein the rolling down device is a tapered roll whose entire contact area with the slab has the same speed.
(4)圧下装置をロール径がロール軸方向に変化するロ
ールとしたことを特徴とする請求項2記載の水平回転連
続鋳造装置。
(4) The horizontal rotary continuous casting apparatus according to claim 2, wherein the rolling down device is a roll whose diameter changes in the axial direction of the roll.
(5)圧下装置をロールとし、ロールを回転鋳型半径に
等しい曲率半径を有する球殻の一部としたことを特徴と
する請求項2記載の水平回転連続鋳造装置。
(5) The horizontal rotary continuous casting apparatus according to claim 2, wherein the rolling down device is a roll, and the roll is a part of a spherical shell having a radius of curvature equal to the radius of the rotary mold.
(6)圧下装置に駆動手段を付加し、鋳片回転速度と同
期させたことを特徴とする請求項2記載の水平回転連続
鋳造装置。
(6) The horizontal rotary continuous casting apparatus according to claim 2, characterized in that a driving means is added to the rolling down device and synchronized with the rotational speed of the slab.
JP34329589A 1989-12-28 1989-12-28 Method and apparatus for horizontal rotary continuous casting Pending JPH03204145A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP34329589A JPH03204145A (en) 1989-12-28 1989-12-28 Method and apparatus for horizontal rotary continuous casting

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP34329589A JPH03204145A (en) 1989-12-28 1989-12-28 Method and apparatus for horizontal rotary continuous casting

Publications (1)

Publication Number Publication Date
JPH03204145A true JPH03204145A (en) 1991-09-05

Family

ID=18360414

Family Applications (1)

Application Number Title Priority Date Filing Date
JP34329589A Pending JPH03204145A (en) 1989-12-28 1989-12-28 Method and apparatus for horizontal rotary continuous casting

Country Status (1)

Country Link
JP (1) JPH03204145A (en)

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS63183765A (en) * 1986-09-04 1988-07-29 Kawasaki Steel Corp Continuous squeeze forming for cast slab in continuous casting
JPH01162551A (en) * 1987-12-21 1989-06-27 Kawasaki Steel Corp Method for continuously casting round shape billet

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS63183765A (en) * 1986-09-04 1988-07-29 Kawasaki Steel Corp Continuous squeeze forming for cast slab in continuous casting
JPH01162551A (en) * 1987-12-21 1989-06-27 Kawasaki Steel Corp Method for continuously casting round shape billet

Similar Documents

Publication Publication Date Title
CA1135476A (en) Ingot casting method
US4493363A (en) Method at continuous casting of steels and metal alloys with segregation tendency and apparatus for carrying out the method
JPH03204145A (en) Method and apparatus for horizontal rotary continuous casting
JP2000326060A (en) Method and apparatus for producing continuously cast steel material
JPH07276004A (en) Method for controlling crown and thickness of cast slab in twin roll type continuous casting process
US4454908A (en) Continuous casting method
JPS632534A (en) Method of bottom pouring steel ingot making
CN114713780B (en) Method for improving stability of solidified strip of silicon steel molten steel in thin strip continuous casting process
JPS60162560A (en) Continuous casting method of steel
US3759314A (en) High capacity continuous casting method
JPS6216722B2 (en)
JPH06210410A (en) Single belt type continuous casting apparatus
JPS61189850A (en) Continuous casting method of steel slab
JPH01258801A (en) Method for forging round shaped continuous cast billet
CN101885133B (en) Method for improving homogeneity of steel structure and equipment thereof
JP3402250B2 (en) Manufacturing method of round billet slab by continuous casting
JP3394730B2 (en) Continuous casting method of steel slab
JPH0515404Y2 (en)
JPH03133543A (en) Continuous casting method
JPH01313165A (en) Continuous casting method partially containing semi-molten metal
JPS5865548A (en) Continuous casting method
JPS6127151A (en) Continuous casting method and direct rolling method
JPS63171249A (en) Continuous casting method for cast metal strip
JPS58218359A (en) Production of thin metallic plate
JPH11267804A (en) Method of producing round billet cast piece by continuous casting