JPS5865548A - Continuous casting method - Google Patents

Continuous casting method

Info

Publication number
JPS5865548A
JPS5865548A JP16240581A JP16240581A JPS5865548A JP S5865548 A JPS5865548 A JP S5865548A JP 16240581 A JP16240581 A JP 16240581A JP 16240581 A JP16240581 A JP 16240581A JP S5865548 A JPS5865548 A JP S5865548A
Authority
JP
Japan
Prior art keywords
mold
ingot
thickness
cooling water
casting
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP16240581A
Other languages
Japanese (ja)
Other versions
JPS6127148B2 (en
Inventor
Akira Yamazaki
明 山崎
Kosaku Nakano
中野 耕作
Toru Komura
小村 徹
Hideaki Kudo
秀明 工藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Furukawa Electric Co Ltd
Original Assignee
Furukawa Electric Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Furukawa Electric Co Ltd filed Critical Furukawa Electric Co Ltd
Priority to JP16240581A priority Critical patent/JPS5865548A/en
Publication of JPS5865548A publication Critical patent/JPS5865548A/en
Publication of JPS6127148B2 publication Critical patent/JPS6127148B2/ja
Granted legal-status Critical Current

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B21MECHANICAL METAL-WORKING WITHOUT ESSENTIALLY REMOVING MATERIAL; PUNCHING METAL
    • B21BROLLING OF METAL
    • B21B37/00Control devices or methods specially adapted for metal-rolling mills or the work produced thereby

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Continuous Casting (AREA)

Abstract

PURPOSE:To prevent the sweating phenomena of ingots and to improve the quality and performance of the ingots by controlling casting conditions in such a way that the thickness of the ingots removed from molds have the nearest possible thickness of the inside dimensions of the molds. CONSTITUTION:In a continuous casting device which charges molten metal through a charging nozzle 7 into a continuous mold 5 formed by putting an endless belt 3 between a rotary wheel 1 for casting provided with a hollow groove on the circumferential surface and a rotary wheel 2 for guiding and bringing a belt 2 into moving contact with the circumferential surface in a part of the wheel 1 by means of a push roll 4, cools and solidifies the molten metal in the mold 5 by injecting water from a cooling zone 6 provided in the outside part of the mold 5, and coiling the resultant ingot 8 with a coiler 13 through hot rolling mills 12, the thickness of the ingot 8 is measured with a thickness measuring device 9, and the flow rate of the cooling water from the zone 6 is controlled by keeping the other casting conditions constant so as to control the thickness of the ingot 8 to >=98.8% the thickness of the inside dimensions of the mold 5.

Description

【発明の詳細な説明】 本発明は1IllIIJi用回転輪と無端ベルトにより
形成した鋳型内に金属溶湯を注湯して鋳塊を連続して製
造する連続鋳造方法に関するもので、%#cilliI
I塊の発汗現象を防止して鋳塊の品質及び性能の向上を
討つ友ものである。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a continuous casting method for continuously producing ingots by pouring molten metal into a mold formed by a rotating wheel for 1IllIIJi and an endless belt.
It is useful for improving the quality and performance of ingots by preventing the sweating phenomenon of ingots.

一般に金Jim材蝶周rkiに凹溝を設けた鋳型用回転
輪と、その一部周面と接動する金属無端ベル)Kより、
連続してmuを形成し該1111M内に一端より金属溶
湯を注湯し鋳型周面に冷却水を噴射して冷却凝固せしめ
、鋳型の他端より連続して鋳塊を取出し、これに連続熱
間圧延と冷間伸線加工を加えて造られている。このよう
な鋳造工種において、fs11!内に注入された金属溶
湯はその初期に鋳型自身の熱容量によって多量の熱が奪
われ、鋳型内面に#固穀(以下スキンと略記)t−形成
し、同時にスキンの凝固収縮に゛より鋳型との関に空隙
を生じ、鋳型内のfrill形状より小さい相似形とな
る0続いて鋳型周囲に噴射した冷却水により鋳型を介し
て冷却され、全域凝固して鋳塊となり鋳型の他端よシ連
続的#/cIiL出される。
In general, from a mold rotating ring with a concave groove on the circumference of the gold material, and a metal endless bell that comes into contact with a part of the circumferential surface,
MU is continuously formed, molten metal is poured into the 1111M from one end, cooling water is injected around the mold to cool and solidify it, the ingot is continuously taken out from the other end of the mold, and it is heated continuously. Manufactured using inter-rolling and cold wire drawing. In this kind of casting work, fs11! The molten metal poured into the mold loses a large amount of heat due to the heat capacity of the mold itself at the initial stage, and forms solid grain (hereinafter referred to as skin) on the inner surface of the mold, and at the same time, due to the solidification and contraction of the skin, the mold A void is created at the junction, resulting in a similar shape that is smaller than the frill shape in the mold.Next, the cooling water sprayed around the mold cools it through the mold, solidifies the entire area, and becomes an ingot, which is continuous from the other end of the mold. Target #/cIiL is issued.

凝固収縮により生じた空隙は鋳型内の鋳塊i1&が低下
する間増加し続ける物理的現象であり、薄いスキンが生
成し始める鋳造初期のg!pJiII′i#型と鋳塊間
の熱伝達能を低下せしめる几め、スキンからの熱抽出が
不充分となり鋳塊品質を低下せしめる発汗現象を起す@
発汗現象は凝固直彼の高温のスキンが内部の高温の熱に
より局部的に再溶解を起し、内部溶謔やスキン中の低融
点成分、即ち未凝固の金属が内部の静圧によりスキン表
面に粒状に突出する現象であり、このような発汗部は脆
くなシ発汗の程度がある限界を越すと、熱間圧延におい
て圧g@れを起し圧延材の品質を著しく低下し、またそ
の後の伸線加工においても断線事故の原因となるば>9
か、製品の機械的性能を劣化させたり、変動させる等生
産性や品質に悪影響を及ぼす。
The voids caused by solidification shrinkage are a physical phenomenon that continues to increase while the ingot i1& in the mold decreases, and g! pJiII'i# This method reduces the heat transfer ability between the mold and the ingot, and heat extraction from the skin becomes insufficient, causing a sweating phenomenon that reduces the quality of the ingot.
The sweating phenomenon occurs when the high-temperature skin immediately after solidification re-melts locally due to internal high-temperature heat, and internal melting and low-melting-point components in the skin, i.e., unsolidified metal, melt onto the skin surface due to internal static pressure. These sweating areas are brittle and when the degree of sweating exceeds a certain limit, rolling occurs during hot rolling, significantly reducing the quality of the rolled material, and the subsequent If it causes a wire breakage accident even in the wire drawing process of
Otherwise, the product's mechanical performance may deteriorate or fluctuate, resulting in a negative impact on productivity and quality.

このような発汗現象を防止するため、従来は溶湯の注湯
温度、鋳造速度、鋳型温f(冷却水量)等の鋳造条件を
一定に保持して鋳造を行なっているが、鋳造初期に発生
する空隙は1/100〜1/10m5程度であり、しか
も鋳造は動的に行なわれるため、鋳型と一塊の接触具合
、即ち鋳型の熱抽出能が常に変動するところから鋳造さ
れた鋳塊KijLばしは発汗現象が生じていた。
In order to prevent this sweating phenomenon, conventionally, casting conditions such as molten metal pouring temperature, casting speed, mold temperature f (cooling water amount), etc. are held constant during casting, but sweating occurs in the early stages of casting. The air gap is about 1/100 to 1/10 m5, and since casting is done dynamically, the condition of contact between the mold and the lump, that is, the heat extraction capacity of the mold, is constantly changing. There was a phenomenon of sweating.

本発明はこれに鑑み種々検討の結果、発汗現象を防止し
た連続鋳造方法を開発したもので、周面に凹溝を設けた
鋳型用回転輪と、その一部周面と接動する金属無端ベル
トにより連続して鋳型を形成し該鋳型内に一端よシ金嬌
溶湯を注湯し鋳型周囲に冷却水を噴射して溶湯を冷却凝
固せしめ、鋳型の他端より鋳塊を取出す方法において、
取出した鋳塊の厚さを測定し該厚さが鋳型内寸法厚さに
可及的に近ずくように鋳造条件を制御することを特徴と
するものである・ 即ち一定の鋳造条件で連続鋳造した鋳塊厚さと鋳塊表面
の発汗に起因する欠陥点数との関係を調べた結果、鋳塊
厚さが大きい程欠陥点数が少なくなることが判った。例
えば第1図#i鋳型内法厚さ5o−によりイ号アルミニ
ウム合金を連続鋳造し几場合の鋳塊厚さと発汗に起因す
る欠陥点数との関係を示したもので、鋳塊厚さが大きく
なると欠陥点数が小さくなることが判る@ま友鋳塊厚(
tm)K影響を与える鋳造因子は注湯温度(c’rc)
と鋳型温度(MTtl:)であり、これ等は次の実験式
の関係にある。
In view of this, as a result of various studies, the present invention has developed a continuous casting method that prevents the sweating phenomenon. A method in which a mold is continuously formed using a belt, molten metal is poured into the mold from one end, cooling water is injected around the mold to cool and solidify the molten metal, and the ingot is taken out from the other end of the mold,
It is characterized by measuring the thickness of the taken out ingot and controlling the casting conditions so that the thickness is as close as possible to the dimensional thickness inside the mold. In other words, continuous casting under constant casting conditions. As a result of investigating the relationship between the thickness of the ingot and the number of defects caused by sweating on the surface of the ingot, it was found that the larger the thickness of the ingot, the fewer the number of defects. For example, Figure 1 shows the relationship between the ingot thickness and the number of defects caused by perspiration when continuously casting No. It can be seen that the number of defects decreases when @ Mayu ingot thickness (
tm) The casting factor that affects K is the pouring temperature (c'rc)
and the mold temperature (MTtl:), which have a relationship according to the following empirical formula.

tm(7X1G−叶’+50X10−4MT+71.6
76 )晶但しITは鋳塊温度CC)を示す。
tm(7X1G-Kano'+50X10-4MT+71.6
76) However, IT indicates the ingot temperature CC).

本発明はこれ等の関係から鋳塊厚さを連続的に掬造条件
を制御することによシ、発汗のない健全な一塊を製造す
るもので、第2図に示すように周面に凹溝を設は定鋳造
用回転輪α)と案内回転輪(2)間に金属無端ベルト0
)を掛廻し、プツシェロール(4)により回転輪α)の
一部周面にベルl)を接動させて#型(5)を連続的に
廊成し鎖部a (S)の周sK冷却ゾーン(句を設けて
鋳型(5)周囲に水を噴射し鋳1f!(5)の一端に設
けた注湯ノズル6)KよりIs型瘍)内に金属溶湯を注
湯して冷却凝固せしめ、鋳ff1(5)の他端より鋳塊
(8)を連続的KkR出し、これを厚さ測定装置6)K
通して鋳塊厚さ=f を測定し、該厚さが鋳m (S)@ IM、p厚さに可
及的に近ずくように鋳造条件を制御するものである。陶
図において(10)(11)は厚さ測定装置e)の前後
に設けたピンチロール、(12)は熱間圧延装置、(1
3)社寺取り装置を示す・ 鋳造条件の制御としては注湯温度、鋳造速度又は/及び
鋳型温度(冷却水量)を制御する鳴のである@注湯温l
t扛鋳造速度のみの影響を受けて変化するものて、−造
速度が速くなると保持炉等から注湯部に至るまでの溶湯
が流れる所要時間が短かくなり、この間に大気或は移送
機等KIIk収される熱量が減少し注湯部における#l
湯温度が上昇し、注湯温度が高くなる。しかし通常の操
業では鋳造速度を一定に保持するため、上記の如き影響
を受けることなく、注湯部IItは設定温度に対し±2
℃の範囲内に制御されており、従って1llI型温度即
ち冷却水量を制御することが望ましい。鋳型温度は鋳型
とスキンとの間に発生する!2!隙の量(厚さ)Kより
変化するため、冷却水量を減少させて鋳型温度を高めれ
ば空隙の量は減少し、鋳塊の厚さは厚くなり、鋳型とス
キンの接触度合が向上し、凝固収縮を制御して健全なス
キンが形成され発汗現象が防止される・ 鋳塊厚さ測定装置としては、例えば第3図に示すように
1に同な構造物(14)K!1ituに固定したシリン
ダー(15)[W ?/ド(16)を挿入し、該aラド
(16)O上部には水平に固定された軸(17X)片端
にガイドロール(18)を回転自在に取付け、被測定物
の上下変位により、その軌跡が上下に変化しても、常に
被測定物の下面に確実に一接触するようにシリイダ−(
15)と軸(17)関にスプリング(19)を介入する
。軸(17)のガイドロール(1B)と反対側の端部(
20)に、該端部(20)を支点とするアーム(21)
を軸(17)と直角に、tlぼ水平に設はアーム(21
)の一端をシリンダー(15)に取付けたフック(22
) Kスプリング(23)で接続し、アーム(21)の
他端を上方(押し上げるようKなっている。アーム(2
1)の他端に:社軸(17)と平行に基準軸(24)を
固定し、該基準軸(24)の一端にガイドロール(18
)と同一軌道上に回転自在の下部検知ロール(25)を
取付ける。下部検知ロール(25)の直上には基準軸(
24)と平行な水平軸(27)に上部検知ロール(26
)を回転自在に取付け、基準軸(24)と水平軸(27
)間に両軸(24)(27)を上下平行に維持する支持
機構(28)を取付け、該支持1mm (28)を基準
軸(24)と直角に固定する・余−損森県−醐υ澁鳩清
轟淋滋燦勤家そして基準軸(24)と水平軸(27)と
の間に支持機構(28)と平行に差動変位針(29)を
設けたもので、上部検知ロール(26)と下部積卸ロー
ル(25)間の間隙、即ち#塊の厚さの変化に比例した
電位を発生する。
Based on these relationships, the present invention manufactures a healthy ingot without sweating by continuously controlling the scooping conditions for the thickness of the ingot. To set the groove, insert a metal endless belt between the fixed casting rotary wheel α) and the guide rotary wheel (2).
), and the bell l) is brought into contact with a part of the circumferential surface of the rotating ring α) by the pusher roll (4), and the # type (5) is continuously formed to cool the circumference of the chain part a (S). The molten metal is poured into the Is-type cavity from the pouring nozzle 6) K provided at one end of the casting mold (5) by spraying water around the mold (5) and cooling and solidifying it. , the ingot (8) is continuously taken out from the other end of the caster ff1 (5) and measured by the thickness measuring device 6)K.
The ingot thickness = f is measured throughout the process, and the casting conditions are controlled so that the thickness is as close as possible to the cast m (S)@IM,p thickness. In the diagram, (10) and (11) are the pinch rolls installed before and after the thickness measuring device e), (12) is the hot rolling device, and (1) is the pinch roll installed before and after the thickness measuring device e).
3) Showing the shrine and temple removal device・As for controlling the casting conditions, the pouring temperature, casting speed, and/or mold temperature (cooling water amount) are controlled by Nairinota@Pouring temperature l.
This is influenced only by the casting speed. - As the casting speed increases, the time required for the molten metal to flow from the holding furnace etc. to the pouring section becomes shorter, and during this time, the atmosphere or transfer machine etc. KIIk The amount of heat absorbed decreases and #l in the pouring part
The hot water temperature rises and the pouring temperature becomes higher. However, in normal operation, the casting speed is kept constant, so the pouring section IIt is kept at ±2 relative to the set temperature without being affected by the above.
Therefore, it is desirable to control the 1llI type temperature, that is, the amount of cooling water. Mold temperature occurs between the mold and the skin! 2! The amount of voids (thickness) changes from K, so if you reduce the amount of cooling water and raise the mold temperature, the amount of voids will decrease, the thickness of the ingot will increase, and the degree of contact between the mold and the skin will improve. A healthy skin is formed by controlling the solidification shrinkage and the sweating phenomenon is prevented. As an ingot thickness measuring device, for example, as shown in Fig. 3, the same structure as 1 (14) K! Cylinder (15) fixed at 1 itu [W? A guide roll (18) is rotatably attached to one end of a horizontally fixed shaft (17X) on the upper part of the arad (16). Even if the trajectory changes up and down, the cylinder (
15) and the shaft (17). The end of the shaft (17) opposite to the guide roll (1B) (
20), an arm (21) having the end (20) as a fulcrum;
The arm (21) is set perpendicular to the axis (17) and horizontally.
) with one end attached to the cylinder (15) (22
) It is connected with a K spring (23), and the other end of the arm (21) is pushed upward.
1) At the other end: A reference shaft (24) is fixed parallel to the shaft (17), and a guide roll (18) is fixed at one end of the reference shaft (24).
) A rotatable lower detection roll (25) is installed on the same orbit as the lower detection roll (25). Directly above the lower detection roll (25) is a reference shaft (
The upper detection roll (26) is attached to the horizontal axis (27) parallel to the upper detection roll (24).
) is rotatably mounted, and the reference axis (24) and horizontal axis (27
) A support mechanism (28) is installed between the shafts (24) and (27) to maintain vertical parallelism, and the support mechanism (28) is fixed at right angles to the reference shaft (24) by 1 mm. A differential displacement needle (29) is installed parallel to the support mechanism (28) between the reference axis (24) and the horizontal axis (27), and the upper detection roll (26) and the lower unloading roll (25), that is, a potential proportional to the change in the thickness of the # lump is generated.

上記鋳塊厚さ測定装置に、よれば第4図<a)〜Φ)に
示すように#塊(8)の軌跡(8′)が上下に変化した
り、うねったり下向率又は上向き、或はこれ等を合せた
変化を起してもガイドロール(18)は常に一塊(8)
下面に接触し、上下両検知ロール(25)(26) (
D鋳塊(8)との接触点を常に^塊(2)の長手方向と
直角に保持し鋳塊(8)の厚さを正確に測定すること声
できるもので、(a)は正常な場合、φ)は上方に変化
する場合、(C)は下向きに変化する場合、(中は上向
きに変化する場合を示す。
According to the above-mentioned ingot thickness measuring device, as shown in FIG. Or even if a combination of these changes occurs, the guide roll (18) will always remain in one block (8).
Both upper and lower detection rolls (25) (26) (
D It is possible to accurately measure the thickness of the ingot (8) by keeping the contact point with the ingot (8) at right angles to the longitudinal direction of the ingot (2). In this case, φ) indicates an upward change, (C) indicates a downward change, and (middle indicates an upward change).

本発明は鋳型から取出した鋳塊の厚さを上記測定外 99.2%以上となるように鋳造条件、特に冷却水量を
制御することにより鋳塊の発汗現象を防止して鋳塊の品
質向上、(には生産性の向上を計ったものである。
The present invention improves the quality of the ingot by controlling the casting conditions, especially the amount of cooling water, so that the thickness of the ingot taken out from the mold is 99.2% or more outside the above measurements, thereby preventing the sweating phenomenon of the ingot. , (is intended to improve productivity.

以下本発明を実施−HKついて説明する。Hereinafter, the implementation of the present invention will be explained.

第3図に示す鋳塊厚さ測定装置を用い、wX2図に示す
連続鋳造方法によりht−ss−Mg合金の連続鋳造実
験を行なり几。
Using the ingot thickness measuring device shown in Fig. 3, a continuous casting experiment of HT-SS-Mg alloy was carried out using the continuous casting method shown in Fig. wX2.

鋳塊厚さの測定には図には示してないが、ピンチロール
(10)の前方に鋳塊温度制御装置を設けて鋳塊温度を
450±5℃に、1III御して測定した。ま之鋳型の
冷却社冷却ゾーン(6)を図に示すように7分割(6−
1)(6−2)・・・・・・(6−7)L、、最終冷却
ゾーン(6−7)の冷却水量を増減して行なった。その
他の鋳造条件は次のよう和して鋳塊の厚さを49.6−
以上に制御した・ 注湯温度         700±2℃鋳造速f  
        12.5愼/−冷却水量(6−1) 
〜(6−6)  55−シメhr冷却水温      
   18〜25℃鋳型内法厚さ       50■ 遅続して取出された鋳塊の厚さを厚さ測定装置により連
続的K11定し、5分毎に1回の周期で鋳塊厚さを表示
板に表示した・作業者はこれを見て目Ili値の49.
7■以下、例えtf49.65mの場合に最終冷却ゾー
ンの水量を約3.8m//hrかも約2.8j/hr[
減少させた◎その結果鋳塊温度が130℃から145℃
に上昇し鋳塊厚さti49.7■に回復し友。このよう
【°シて最終冷却ゾーンの冷却水量と鋳塊厚さ及び−塊
温度の関係を調べた。その結果を第5図に示す。
Although not shown in the figure, the ingot thickness was measured by installing an ingot temperature control device in front of the pinch roll (10) to control the ingot temperature to 450±5°C. The cooling zone (6) of Mano Mold is divided into seven parts (6-
1)(6-2)...(6-7)L... The amount of cooling water in the final cooling zone (6-7) was increased or decreased. Other casting conditions are as follows, and the thickness of the ingot is 49.6-
Pouring temperature 700±2℃ Casting speed f
12.5 liters/-cooling water amount (6-1)
~(6-6) 55-hour cooling water temperature
18-25℃ In-mold thickness 50■ The thickness of the ingot taken out after a while is continuously determined by a thickness measuring device, and the ingot thickness is displayed once every 5 minutes. Displayed on the board - When the worker sees this, the Ili value is 49.
7■ Below, for example, in the case of TF49.65m, the water volume in the final cooling zone should be about 3.8m//hr or about 2.8j/hr [
◎As a result, the ingot temperature decreased from 130℃ to 145℃
The thickness of the ingot rose to 49.7cm and the ingot thickness recovered to 49.7cm. In this way, the relationship between the amount of cooling water in the final cooling zone, the thickness of the ingot, and the temperature of the ingot was investigated. The results are shown in FIG.

次に上記鋳造実験#C基づき、同様にして長時間の連続
鋳造を行なった。その結果鋳塊厚さを49.61〜49
.92−の範囲に制御することができた。また得られ友
鋳塊について発汗現象に基−づ〈・欠陥点数を調べた・
その結果を従来の一定の鋳造条件で鋳造し几−塊の欠陥
点数と比較して第6図に示す0図中(A) Fi本発明
方法により連続鋳造した鋳塊の欠陥点数、(B) Fi
従来方法によ)連続鋳造し友鋳塊の欠陥点数の経時変化
を示したものて、図から判るように従来方法では欠陥点
数の平均値(′りが53点であるのに対し、本発明方法
では欠陥点数の平均値(りが24点と大巾に減少してい
る。tた従来方法で蝶欠陥点数の変動が非常に大きいの
に対し本発明方法では欠陥点数の変動も小さいことが判
る・実施例において、−塊厚さが49.6■以上和なる
ように制御した一実例を示した一〇であるが、第1図に
もとずき鋳塊厚さ:#49.4■以上の時欠陥点数#i
80以下と′&や製品の品質上、同等問題はなかった事
から鋳型内寸法50■に対し鋳塊厚さ49.4■、その
比を98.8鳴以上和なΔよう制御すればよい。
Next, continuous casting was carried out for a long time in the same manner based on the above casting experiment #C. As a result, the ingot thickness was 49.61~49
.. It was possible to control it within the range of 92-. We also investigated the number of defects in the obtained ingots based on the sweating phenomenon.
The results are compared with the number of defects in ingots cast under constant conventional casting conditions and shown in Figure 6 (A) Number of defects in ingots continuously cast by the method of the present invention; Fi
As can be seen from the figure, the average number of defects in the conventional method (by the conventional method) was 53 points, while the present invention With the method, the average number of defect points (ri) has been significantly reduced to 24 points.In contrast to the conventional method, where the variation in the number of defect points is very large, with the method of the present invention, the variation in the number of defect points is small. Understand - In the example, 10 shows an example in which the ingot thickness was controlled so that the sum was 49.6 cm or more, but based on Fig. 1, the ingot thickness: #49.4 ■When the number of defects is more than #i
Since there were no similar problems with 80 or less and the quality of the product, the ingot thickness was 49.4 mm for the mold internal dimension of 50 mm, and the ratio should be controlled to Δ, which is the sum of 98.8 mm or more. .

以上鋳塊の厚さを連続測定してこれを表示し、人手によ
り最終冷却ゾーンの水量を増減させたが、こtLK限る
ものではなく自動制御化してもよい。またA4合金の連
続−造について説明したがこれに@るものではなくすべ
ての金属、合金にも適用することができるものである。
In the above, the thickness of the ingot was continuously measured and displayed, and the amount of water in the final cooling zone was manually increased or decreased, but the method is not limited to this and may be controlled automatically. Furthermore, although the explanation has been made regarding the continuous production of A4 alloy, the present invention is not limited to this and can be applied to all metals and alloys.

このように本発明によれば発汗現象を防止して鋳塊品質
を著しく向上し圧延加工時の割れ、伸縮加工時断線等を
改善して生産性を向上し、更に製品の機械的特性の低下
及び変動等を改善し得るもので、工業上−著な効果を奏
するものである。
As described above, according to the present invention, it is possible to significantly improve the quality of the ingot by preventing the sweating phenomenon, improve productivity by improving cracking during rolling processing, wire breakage during stretching processing, etc., and further reduce the mechanical properties of the product. It can improve the effects and fluctuations, etc., and has a significant industrial effect.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は従来方法により連続鋳造した鋳塊厚さと欠陥点
数との関係を示す説明図、第2図は本発明方法の一例を
示す説明図、第3図#i鈎塊厚さ測定装置の一例を示す
原壇図、菖4図←)〜(d)は第3図に示す測定装置の
作動状11を示すもので、(a)は鋳塊が正常走行の場
合、(b)は上下に平行変位の場合、(e)ij下向き
に変位した場合、(d)ti上向1!に変位した場合を
示す・第5図は本発明方法における最終冷却ゾーンの冷
却水量と鋳塊温K及び鋳塊厚さの関係を示す説明図、第
6図は本発明方法と従来方法により連続鋳造した一塊の
欠陥点数の経時変化を票す説明図である。 l・・・・・・・・・鋳型用回転輪 2・・・・−・・・・・・・案内輪 41−−−聞・・曲フッシュロール 3菖・・・・・・・・・−・・金4無端ベルト5・・・
・・・・・・・・・鋳型 6・・・・・・・・・・・・冷却ゾーン8−−−−・・
・・・・・鋳塊 9・・−・−・・・・・鋳塊厚さ測定装置12・・・・
・・・・・連続圧延機 13・−・・・・・・・巻取機 18−・・・・・・・  ガイドロール25.26・・
・検知ロール 29・・・・・・・・・差動変位針 第4 図
Fig. 1 is an explanatory diagram showing the relationship between the thickness of an ingot continuously cast by a conventional method and the number of defects, Fig. 2 is an explanatory diagram showing an example of the method of the present invention, and Fig. 3 is an explanatory diagram showing an example of the method of the present invention. An example of the original bed diagram and iris diagram ←) to (d) show the operating state 11 of the measuring device shown in Figure 3, where (a) shows the ingot running normally, and (b) shows the top and bottom. If the displacement is parallel to , (e) ij is displaced downward, (d) ti is displaced upward 1! Fig. 5 is an explanatory diagram showing the relationship between the amount of cooling water in the final cooling zone, the ingot temperature K, and the ingot thickness in the method of the present invention. FIG. 3 is an explanatory diagram showing the change over time in the number of defects in a cast piece. l・・・・・・Rotating wheel for mold 2・・・・・・・・・・Guide wheel 41---Hearing・Fish roll 3 Iris・・・・・・・・・・-...Gold 4 Endless belt 5...
...... Mold 6 ...... Cooling zone 8 -----...
...Ingot 9...--Ingot thickness measuring device 12...
...Continuous rolling mill 13... Winder 18... Guide rolls 25, 26...
・Detection roll 29...Differential displacement needle Fig. 4

Claims (1)

【特許請求の範囲】 (1)  周Illに凹溝を設けた鋳型用回転輪と、そ
の一部” 周面と接動する金属無端ベルトによシ、連続
して鋳型を形成し該鋳型内に二端より金属溶湯を注湯し
、−塁周囲に冷却水を噴射して溶1kを冷却凝固せしめ
、鋳型の他端より一塊を取出す方法において、取出した
鋳塊の厚さを一定し、該厚さが―型− 内法厚さに可及的に近ずくように鋳造条件を制御 1八 することを%黴とする連続鋳造方法。 Q) 鋳造条件のうち冷却水量以外を一定に保持して冷
却水量を制御する特許請求の範囲第1項記載の連続鋳造
方法。 0) −塊厚さを鋳型内寸法厚さの98.8%以上に制
御する特許請求の範囲第1項又は第2項記載の連続鋳造
方法。 (4)  鋳型より歳出した一塊上面と下fJK検知ロ
ールを接触させ、両a−ル関に差動変位針を設け、両ロ
ールの少なくとも一方に鋳塊の変位に熾従するガイドを
取付け、両ロールの鋳塊との接触点を鋳塊長手方向と直
@に保持して鋳塊厚さを測定する特許請求の範囲第1項
、第2項又は第3項記載の連続鋳造方法。
[Scope of Claims] (1) A mold is continuously formed by a rotary mold ring having a concave groove on its circumference and a metal endless belt that comes into contact with the peripheral surface of the ring, and a mold is continuously formed inside the mold. In the method of pouring molten metal from two ends of the mold, spraying cooling water around the base to cool and solidify the molten metal 1k, and taking out a lump from the other end of the mold, the thickness of the taken out ingot is kept constant, A continuous casting method in which the casting conditions are controlled so that the thickness is as close as possible to the internal thickness of the mold.Q) All casting conditions except the amount of cooling water are kept constant The continuous casting method according to claim 1, in which the amount of cooling water is controlled by controlling the amount of cooling water. Continuous casting method according to item 2. (4) The upper surface of the ingot cast from the mold is brought into contact with the lower fJK detection roll, and a differential displacement needle is provided at both a-rules, and at least one of both rolls is provided with an ingot according to the displacement of the ingot. Claims 1, 2, or 3, in which the ingot thickness is measured by attaching a following guide and holding the contact points of both rolls with the ingot directly in the longitudinal direction of the ingot. The continuous casting method described.
JP16240581A 1981-10-12 1981-10-12 Continuous casting method Granted JPS5865548A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP16240581A JPS5865548A (en) 1981-10-12 1981-10-12 Continuous casting method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP16240581A JPS5865548A (en) 1981-10-12 1981-10-12 Continuous casting method

Publications (2)

Publication Number Publication Date
JPS5865548A true JPS5865548A (en) 1983-04-19
JPS6127148B2 JPS6127148B2 (en) 1986-06-24

Family

ID=15753974

Family Applications (1)

Application Number Title Priority Date Filing Date
JP16240581A Granted JPS5865548A (en) 1981-10-12 1981-10-12 Continuous casting method

Country Status (1)

Country Link
JP (1) JPS5865548A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6475143A (en) * 1987-09-16 1989-03-20 Furukawa Electric Co Ltd Continuous casting method for heating mold
KR100721924B1 (en) 2005-10-13 2007-05-28 주식회사 포스코 Cooling apparatus for Wheel mold continuous casting of aluminum alloy
JP2010520060A (en) * 2007-03-09 2010-06-10 エス・エム・エス・ジーマーク・アクチエンゲゼルシャフト Apparatus for measuring thickness and method therefor

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6475143A (en) * 1987-09-16 1989-03-20 Furukawa Electric Co Ltd Continuous casting method for heating mold
KR100721924B1 (en) 2005-10-13 2007-05-28 주식회사 포스코 Cooling apparatus for Wheel mold continuous casting of aluminum alloy
JP2010520060A (en) * 2007-03-09 2010-06-10 エス・エム・エス・ジーマーク・アクチエンゲゼルシャフト Apparatus for measuring thickness and method therefor
US9335164B2 (en) 2007-03-09 2016-05-10 Sms Group Gmbh Device for thickness measurement and method therefor

Also Published As

Publication number Publication date
JPS6127148B2 (en) 1986-06-24

Similar Documents

Publication Publication Date Title
CA1135476A (en) Ingot casting method
US4274471A (en) Process for continuous casting of metals and an apparatus therefor
US5227251A (en) Thin continuous cast plate and process for manufacturing the same
US3971123A (en) Process of solidifying molten metal
JPS5865548A (en) Continuous casting method
US5052471A (en) Method of rapidly and uniformly widthwise cooling cast stainless steel strip in continuous casting
US3589430A (en) Process parameters for continuous melting-casting and rolling of copper rod
US4287934A (en) Continuous casting mold
JPS6064754A (en) Method and device for casting continuously light-gage hoop
US3818972A (en) Cast bar draft angle
JPH02247049A (en) Manufacture of cast strip
JPS625702B2 (en)
JPS63171249A (en) Continuous casting method for cast metal strip
US3759314A (en) High capacity continuous casting method
JPS6216722B2 (en)
JP2673079B2 (en) Manufacturing method of composite roll
JPH11309552A (en) Production of continuously cast round billet and producing apparatus thereof
JPH06210410A (en) Single belt type continuous casting apparatus
JP3402250B2 (en) Manufacturing method of round billet slab by continuous casting
JPH09225597A (en) Twin roll thin sheet continuous producing apparatus and method for continuously producing thin sheet
JPH0515404Y2 (en)
JPS6188947A (en) Continuous casting device
JP2720135B2 (en) Slab cutting control method in continuous casting
JPS61229445A (en) Method and apparatus for continuous casting
JPS62248542A (en) Method and apparatus for continuous casting and rolling