JPH03203589A - Drive circuit for brushless motor - Google Patents

Drive circuit for brushless motor

Info

Publication number
JPH03203589A
JPH03203589A JP1340652A JP34065289A JPH03203589A JP H03203589 A JPH03203589 A JP H03203589A JP 1340652 A JP1340652 A JP 1340652A JP 34065289 A JP34065289 A JP 34065289A JP H03203589 A JPH03203589 A JP H03203589A
Authority
JP
Japan
Prior art keywords
voltage
switching element
element group
frequency
armature winding
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP1340652A
Other languages
Japanese (ja)
Inventor
Shigeru Oshiro
滋 大城
Atsushi Kobayashi
淳 小林
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Holdings Corp
Original Assignee
Matsushita Electric Industrial Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Matsushita Electric Industrial Co Ltd filed Critical Matsushita Electric Industrial Co Ltd
Priority to JP1340652A priority Critical patent/JPH03203589A/en
Publication of JPH03203589A publication Critical patent/JPH03203589A/en
Pending legal-status Critical Current

Links

Landscapes

  • Control Of Motors That Do Not Use Commutators (AREA)

Abstract

PURPOSE:To perform starting certainly in a short time by heightening the voltage of synchronous operation over multiple steps, and by making the voltage in stable synchronous operation. CONSTITUTION:At starting, by a start controller 6, synchronous operation with first low constant voltage is specified to a position detecting rotation controller 5. Synchronous voltage is low, and so a magnet rotor 4 starts rotating however great inertia moment may be. Then, initial rotation is obtained and after that, by a start controller 6, voltage is increased in order from the first voltage to a second voltage. Then, the magnet rotor 4 is accelerated according to the increment of the voltage. On a step for stabilizing the synchronous operation with the second voltage, the input of voltage signal generated from an armature winding 3, to a switch element group 1 is provided, and steady-state synchronous-operation is started.

Description

【発明の詳細な説明】 産業上の利用分野 本発明はブラシレスモータにかかり電機子巻線に誘起さ
れる誘起電圧によって磁石回転子と電機子巻線との相対
的位置を検出するブラシレスモータの駆動装置に関する
DETAILED DESCRIPTION OF THE INVENTION Field of Industrial Application The present invention relates to a brushless motor drive that detects the relative position between a magnet rotor and an armature winding by an induced voltage applied to the brushless motor and induced in the armature winding. Regarding equipment.

従来の技術 従来この種のブラシレスモータ(よ 特公昭59−36
519にも見られる第5図に示すような構成となってい
る。同図に於て1はスイッチング素子猟 2はブラシレ
スモー久 3は電機子巻線 4は磁石回転子、 5は位
置検出回転制御装置をそれぞれ示している。位置検出回
転制御装置5には電機子巻線3に接続され 磁石回転子
4が回転することによって発生する誘起電圧を入力すも
 位置検出回転制御装置5は入力された誘起電圧を基に
回転制御信号を生威しスイッチング素子群1におくり磁
石回転子4を回転させも 回転信号の発生方法は特公昭
59−36519に詳細に述べられているのでここでは
省略する。この様な構成に於て運転開始時には磁石回転
子4は停止しており位置検出回転制御装置5に電機子巻
線3からの信号が入力されないので磁石回転子4を回転
することができなL〜 そこで特公昭59−36520
に見られるように前記構成に加え同期信号発生装置と位
相比較装置を設は回転制御装置5に周波数が増大する同
期信号を入力し磁石回転子4を同期信号による電機子巻
線3の回転磁界により一旦同期回転させ、この回転によ
り発生する電機子巻線3の誘起電圧を発生させこの誘起
電圧と前記同期信号とを比較し両者の位相差が零になる
ことを検出して定常運転に切り替えていた 発明が解、決しようとする課題 上記従来の構成では同期信号と電機子巻線の誘起電圧の
信号とを比較する比較器が必要でありシステムが非常に
複雑になっていも また同期信号による運転から定常運
転に切り替える時点では同期信号の周波数が増大してお
り、不安定な状態にて切り替えられるためスムーズな切
り替えができなかった つまり位置検出回転制御装置5
の回転制御信号が乱れ 磁石回転子4が回転を停止すム
いわゆる脱調におちいりブラシレスモータの運転が出来
なくなってしまう。さらに脱調に陥るとブラシレスモー
タが異常振動や音を発生したり、ひいては 大電流がス
イッチング素子群1を流れスイッチング素子群1を破損
したりスイッチング素子群1に電力を供給する電源装置
を破損するといった重大な欠点があっtも 課題を解決するための手段 かかる問題点を解決するために本発明は3段層の起動運
転制御を持ちのスイッチング素子群への信号周波数を固
定して起動運転制御を順次切り替えてスムーズな起動を
行t、X、定常運転の切り替えを行うものであも また
本発明は3段階の起動運転制御を持ちのスイッチング素
子群の印加電圧を固定して起動運転制御を順次切り替え
てスムーズな起動を行L\ 定常運転の切り替えを行う
ものである。また本発明は3段階の起動運転制御を持ち
のスイッチング素子群への信号周波数とスイッチング素
子群1へ印加される電圧を操作して起動運転制御を順次
切り替えてスムーズな起動を行へ定常運転の切り替えを
行うものであも 作用 本発明1よ 第一起動運転として低い一定の第一電圧で
一定時間同期運転すん 第二起動運転として電圧を徐々
に 第一起動運転の第一電圧よりも高い第二電圧まで増
加しながら同期運転をすもそして第3起動運転として、
第二電圧で一定時間同期運転をして磁石回転子を起動し
 安定同期運転させた後に前記電機子巻線より生ずる電
圧信号を前記スイッチング素子群へ入力し 定常回転さ
せるものであも また本発明(よ 第一起動運転として
低い一定の第一周波数で一定時間同期運転する。第二運
転として周波数を徐々に 第一起動運転の第一周波数よ
りも高い第二周波数まで増加しながら同期運転をすら 
そして第3起動運転として、第二周波数で一定時間同期
運転をして磁石回転子を起動し 安定同期運転させた後
に前記電機子巻線より生ずる電圧信号を前記スイッチン
グ素子群へ入力し 定常回転させるものであも また本
発明(よ 第一起動運転として低い一定の第一電圧と低
い一定の第一周波数で一定時間同期回転する。第二起動
運転として電圧と周波数を徐々番へ第一起動運転の第一
電圧よりも高い第二電比 第一周波数よりも高い第二周
波数まで増加しながら同期運転をする。そして第3起動
運転として、第二電圧 第二周波数で一定時間同期運転
をして磁石回転子を起動し 安定同期運転させた後に前
記電機子巻線より生ずる電圧信号を前記スイッチング素
子群へ入力し 定常回転させるものであも実施例 第11fl  第2図により本発明の第1の実施例につ
いて説明すも 第1図は本発明の構成図を示す。
Conventional technology Conventionally, this type of brushless motor
It has a configuration as shown in FIG. 5, which is also seen in 519. In the figure, 1 is a switching element, 2 is a brushless motor, 3 is an armature winding, 4 is a magnet rotor, and 5 is a position detection rotation control device. The position detection rotation control device 5 is connected to the armature winding 3 and receives the induced voltage generated when the magnet rotor 4 rotates.The position detection rotation control device 5 controls the rotation based on the input induced voltage. A signal is generated and sent to the switching element group 1 to rotate the magnet rotor 4. The method of generating the rotation signal is described in detail in Japanese Patent Publication No. 59-36519, and will not be described here. In such a configuration, at the start of operation, the magnet rotor 4 is stopped and the signal from the armature winding 3 is not input to the position detection rotation control device 5, so the magnet rotor 4 cannot be rotated. ~ Therefore, special public service No. 59-36520
In addition to the above configuration, a synchronizing signal generator and a phase comparator are installed as shown in FIG. This rotation causes the armature winding 3 to rotate synchronously, generates an induced voltage in the armature winding 3, compares this induced voltage with the synchronizing signal, detects that the phase difference between the two becomes zero, and switches to steady operation. The above conventional configuration requires a comparator to compare the synchronization signal with the signal of the induced voltage in the armature winding, and even if the system becomes very complex, the synchronization signal At the time of switching from operation to steady operation, the frequency of the synchronization signal increases, and the switching is performed in an unstable state, so smooth switching was not possible.In other words, position detection rotation control device 5
The rotation control signal is disturbed, and the magnet rotor 4 stops rotating, resulting in so-called step-out, and the brushless motor cannot operate. If it goes out of step further, the brushless motor may generate abnormal vibrations or noise, and a large current may flow through the switching element group 1, damaging the switching element group 1 or damaging the power supply device that supplies power to the switching element group 1. In order to solve these problems, the present invention has a three-layer starting operation control, and fixes the signal frequency to the switching element group to control the starting operation. In addition, the present invention has a three-stage starting operation control, and fixes the applied voltage of the switching element group to perform starting operation control. It is used to switch sequentially to ensure smooth startup and to switch between steady-state operations. In addition, the present invention has a three-stage startup operation control, and sequentially switches the startup operation control by manipulating the signal frequency to the switching element group and the voltage applied to the switching element group 1 to perform steady operation for smooth startup. According to the present invention 1, a device that performs switching operates synchronously for a certain period of time at a low constant first voltage as a first startup operation.As a second startup operation, the voltage is gradually increased at a voltage higher than the first voltage of the first startup operation. Sumo synchronized operation while increasing up to two voltages, and then as a third startup operation,
The magnet rotor may be started by performing synchronous operation for a certain period of time with a second voltage, and after stable synchronous operation, the voltage signal generated from the armature winding is input to the switching element group to cause steady rotation. (As the first start-up operation, synchronous operation is performed at a constant low first frequency for a certain period of time. As the second operation, the frequency is gradually increased to a second frequency higher than the first frequency of the first start-up operation, and the synchronous operation is continued.
Then, as a third start-up operation, the magnet rotor is started by synchronous operation at the second frequency for a certain period of time, and after stable synchronous operation, the voltage signal generated from the armature winding is input to the switching element group, and the rotor is rotated steadily. In addition, according to the present invention, as a first starting operation, synchronous rotation is performed for a certain period of time at a low constant first voltage and a low constant first frequency.As a second starting operation, the voltage and frequency are gradually changed to the first starting operation. The second voltage ratio is higher than the first voltage, and the synchronous operation is performed while increasing to the second frequency, which is higher than the first frequency.Then, as the third startup operation, the synchronous operation is performed for a certain period of time at the second voltage and second frequency. Embodiment No. 11 fl. FIG. DESCRIPTION OF THE EMBODIMENTS FIG. 1 shows a configuration diagram of the present invention.

同図に於て、 1はスイッチング素子珠 2はブラシレ
スモー久 3は電機子巻亀 4は磁石回転子、5は位置
検出回転制御装[6は起動制御装置をそれぞれ示してい
も 第2図(友 本発明の第1実施例を示すタイムチャ
ートであも 第1図に於て第一起動制御として起動制御
装置6は位置検出回転制御装置5に対して低い一定の第
一電圧flでの同期運転を指示すも このとき磁石回転
子4は同期電圧が低いためどんなに慣性をモーメントが
大きくても回転を始めも この第1起動制御を一定時間
続けることにより磁石回転子4の初期回転はより確実な
ものになも 第2図に於て、第一起動制御を説明する。
In the figure, 1 is a switching element bead, 2 is a brushless motor, 3 is an armature winding turtle, 4 is a magnet rotor, and 5 is a position detection rotation control device [6 is a starting control device. This is a time chart showing the first embodiment of the present invention. In FIG. 1, as a first start control, the start control device 6 synchronizes with the position detection rotation control device 5 at a low constant first voltage fl. At this time, the synchronous voltage of the magnet rotor 4 is low, so no matter how large the moment of inertia is, the initial rotation of the magnet rotor 4 is more reliable by continuing this first startup control for a certain period of time. The first activation control will be explained with reference to FIG.

同図は横軸に時阻 縦軸に起動信号 位置検出回転制御
装置5よりスイッチング素子群lに入力される同期信号
の周波数 スイッチング素子群lに印加される電圧をそ
れぞれ示している。時刻T1で起動信号が発せられると
する。すると位置検出回転制御装置5からスイッチング
素子群1に対して第一電圧vlがスイッチング素子群1
に印加され磁石回転子4が第一電圧Vlの起動電圧で電
機子巻線3により作られる回転磁界に応じて回転を始め
も この第一電圧vlでの同期運転を時刻T2まで続け
ることにより確実に電機子巻線3の初期回転を得ること
ができも次に第二起動制御として起動制御装置6は位置
検出回転制御装置5に第一電圧vlから第二電圧V2ま
で順次電圧を増加する同期運転を指示すも磁石回転子4
は同期運転の電圧の増加に対応して加速され回転数を増
す。第2図の時刻T2から時刻T3がそれにあたも そ
して第三起動制御では起動制御装置6は第二電圧v2で
一定時間同期運転を指示し 第二電圧v2で一時磁石回
転子4は定速回転をすも 同期運転の周波数とスイッチ
ング素子群lに印加される電圧が固定されるので磁石回
転子4は安定して回転することになa この磁石回転子
4の安定運転中に第2図に於ける時刻T4で電機子巻線
3より生ずる電圧信号をスイッチング素子群1へ入力し
運転する定常回転へ切り替えれば容易に磁石回転子4を
安定して定常運転に切り替えることができ、この後スイ
ッチング素子群1に印加される電圧を上昇するような回
転数制御あるいは出力制御にすばやく移ることができる
。次に本発明の第2の実施例について説明する力交 回
路構成は第1図と同様であるので説明を省略する。以下
第3図により説明すも 第3図に於て、第一起動制御を
説明すも 同図は横軸に時阻縦軸には起動信号 位置検
出回転制御装置5よりスイッチング素子群1に発せられ
る同期回転信号の周波数、スイッチング素子群1に印加
される電圧をそれぞれ示していも 時刻T1で起動信号
が発せられるとすも すると位置検出回転制御装置5か
らスイッチング素子群1に対して第一周波数flの同期
信号が発せられ磁石回転子4が第一周波数flの同期信
号で電機子巻線3により作られる回転磁界に応じて回転
を始めも この第一周波数flでの同期運転を時刻T2
まで続けることにより確実に電機子巻線3の初期回転を
得ることができる。次に第二起動制御として起動制御装
置6は位置検出回転制御装置5に第一周波数flから第
二周波数f2まで順次周波数を増加する同期運転を指示
すも 磁石回転子4は同期運転の周波数の増加に対応し
て加速され回転数を増す。第2図の時刻T2から時刻T
3がそれにあたも そして第三起動制御では起動制御装
置6は第二周波数f2で一定時間同期運転を指示し第二
周波数f2で一時、磁石回転子4は定速回転をtTモ 
 同期運転の周波数とスイッチング素子群1に印加され
る電圧が固定されるので磁石回転子4は安定して回転す
ることになん この磁石回転子4の安定運転中に電機子
巻線3より生ずる電圧信号をスイッチング素子群lへ入
力し運転する定常運転へ切り替えれば容易に磁石回転子
4を安定運転することかでき、この後スイッチング素子
群lに印加される電圧を上昇するような回転数制御ある
いは出力制御にすばやく移ることができも 次に本発明
の第3の実施例について説明する力丈 第2図の実施例
同楓 回路構成は第1図と同様であるので説明を省略す
る。以下第4図により説明すも 第4図に於て、第一起
動制御を説明すも 同図は横軸に時阻縦軸には起動信緑
 位置検出回転制御装置5よりスイッチング素子群1入
力される同期信号の周波数、スイッチング素子群lに印
加される電圧をそれぞれ示していも 時刻T1で起動信
号が発せられるとする。すると位置検出回転制御装置5
からスイッチング素子群1に対して第一電圧vl、第一
周波数flがスイッチング素子群lに印加され磁石回転
子4が第一電圧vl、第一周波数flの起動電圧で電機
子巻線3により作られる回転磁界に応じて回転を始める
。この第一電圧■1、第一周波数flでの同期運転を時
刻T2まで続けることにより確実に電機子巻線3の初期
回転を得ることができる。次に第二起動制御として起動
制御装置6は位置検出回転制御装置5に第一電圧■1、
第一周波数flから第二電圧v2まで順次電圧と周波数
を増加する同期運転を指示すも 磁石回転子4は同期運
転の電圧と周波数の増加に対応して加速され回転数を増
す。第2図の時刻T2から時刻T3がそれにあたも そ
して第三起動制御では起動制御装置6は第二電圧v2、
第二周波数f2で一定時間同期運転を指示し 第二電圧
v2、第二周波数f2で一時磁石回転子4は定速回転を
する。同期運転の周波数とスイッチング素子群1に印加
される電圧と周波数が固定されるので磁石回転子4は安
定して回転することになん この磁石回転子4の安定運
転中に第2図に於ける時刻T4で電機子巻線3より生ず
る電圧信号をスイッチング素子群1へ入力し運転する定
常回転へ切り替えれは容易に磁石回転子4を安定して定
常運転に切り替えることができ、この後スイッチング素
子群lに印加される電圧を上昇するような回転数制御あ
るいは出力制御にすばやく移ることができも発明の効果 上記の説明で明らかなように 本発明の3相結線された
電機子巻線と、 6個の制御電極付き半導体スイッチン
グ素子を3相ブリッジ接続して形成したスイッチング素
子群と、磁石回転子とを有し前記電機子巻線より生ずる
電圧信号を検出して前記スイッチング素子群を制御して
前記磁石回転子を回転させるブラシレスモータに於て、
起動時に前記スイッチング素子群に前記電機子巻線が回
転磁界を発生するある固定された周波、数の信号を入力
し 前記スイッチング素子群に低い一定の第一電圧を一
定時間入力した微 前記信号の電圧を徐々に第一電圧よ
りも高い第二電圧まで増加し 第二電圧を一定時間入力
して前記磁石回転子を起動した後に前記電機子巻線より
生ずる電圧信号を前記スイッチング素子群へ入力し 定
常回転させるブラシレスモータの駆動装置によれば ブ
ラシレスモータの起動を確実に行丸 素早く必要回転数
まで加速することができも さらに複雑な回路を必要と
せず簡単にかつ安価に実現できるなどの利点を有するも
のである。また本発明の3相結線された電機子巻線と、
 6個の制御電極付き半導体スイッチング素子を3相ブ
リッジ接続して形成したスイッチング素子群と、磁石回
転子とを有し 前記電機子巻線より生ずる電圧信号を検
出して前記スイッチング素子群を制御して前記磁石回転
子を回転させるブラシレスモータに於て、起動時に前記
スイッチング素子群に印加される電圧を固定し前記スイ
ッチング素子群に前記電機子巻線が回転磁界を発生する
信号を、低い一定の第一周波数を一定時間入力した後、
前記信号の周波数を徐々に第一周波数よりも高い第二周
波数まで増加し 第周波数を一定時間入力して前記磁石
回転子を起動した後に前記電機子巻線より生ずる電圧信
号を前記スイッチング素子群へ入力し 定常回転させる
ブラシレスモータの駆動装置によれば ブラシレスモー
タの起動を確実に行え 素早く必要回転数まで加速する
ことかできも さらに複雑な回路を必要とせず簡単にか
つ安価に実現できるなどの利点を有するものであも ま
た本発明は3相結線された電機子巻線と、 6個の制御
電極付き半導体スイッチング素子を3相ブリッジ接続し
て形成したスイッチング素子群と、磁石回転子とを有し
前記電機子巻線より生ずる電圧信号を検出して前記スイ
ッチング素子群を制御して前記磁石回転子を回転させる
ブラシレスモータに於て、起動時に前記スイッチング素
子群に前記電機子巻線が回転磁界を発生する固定された
第一周波数の信号を入力すると共にスイッチング素子群
に印加される固定された第一電圧で一定時間運転した後
、前記電圧と前記周波数を徐々に第一電圧よりも高い第
二電圧 第一周波数よりも高い第二周波数まで増加し 
第二周波数 第二電圧で一定時間運転し前記磁石回転子
を起動した後に前記電機子巻線より生ずる電圧信号を前
記スイッチング素子群へ入力し定常回転させるブラシレ
スモータの駆動装置によれば ブラシレスモータの起動
を確実に6丸 素早く必要回転数まで加速することがで
きも さらに複雑な回路を必要とせず簡単にかつ安価に
実現できるなどの利点を有するものであも
In the figure, the horizontal axis shows the time delay, the vertical axis shows the starting signal, the frequency of the synchronizing signal input from the position detection rotation control device 5 to the switching element group 1, and the voltage applied to the switching element group 1, respectively. Assume that a start signal is issued at time T1. Then, the first voltage vl is applied from the position detection rotation control device 5 to the switching element group 1.
Even if the magnet rotor 4 starts rotating in response to the rotating magnetic field created by the armature winding 3 at the starting voltage of the first voltage Vl, it is ensured by continuing the synchronous operation at the first voltage Vl until time T2. Even if the initial rotation of the armature winding 3 can be obtained, as a second start control, the start control device 6 sends the position detection rotation control device 5 a synchronized voltage that sequentially increases the voltage from the first voltage Vl to the second voltage V2. Magnet rotor 4 that commands operation
is accelerated and the rotational speed increases in response to an increase in voltage during synchronous operation. The time period from time T2 to time T3 in FIG. Since the frequency of the synchronous operation and the voltage applied to the switching element group l are fixed, the magnet rotor 4 rotates stably.During stable operation of the magnet rotor 4, as shown in FIG. By inputting the voltage signal generated from the armature winding 3 to the switching element group 1 at time T4 and switching the operation to steady rotation, the magnet rotor 4 can be easily switched to steady rotation. It is possible to quickly shift to rotational speed control or output control that increases the voltage applied to the switching element group 1. Next, the configuration of the power exchanger circuit to be described for the second embodiment of the present invention is the same as that shown in FIG. 1, so a description thereof will be omitted. The first starting control will be explained below with reference to FIG. 3. In FIG. If the start signal is issued at time T1, the first frequency is transmitted from the position detection rotation control device 5 to the switching element group 1. A synchronizing signal of fl is generated, and the magnet rotor 4 starts rotating in response to the rotating magnetic field created by the armature winding 3 with the synchronizing signal of the first frequency fl.
By continuing until then, the initial rotation of the armature winding 3 can be reliably obtained. Next, as a second start control, the start control device 6 instructs the position detection rotation control device 5 to perform synchronous operation in which the frequency is increased sequentially from the first frequency fl to the second frequency f2. Corresponding to the increase, it is accelerated and the number of revolutions increases. From time T2 to time T in Figure 2
Then, in the third start control, the start control device 6 instructs synchronous operation at the second frequency f2 for a certain period of time, and temporarily at the second frequency f2, the magnet rotor 4 rotates at a constant speed at tT mode.
Since the frequency of synchronous operation and the voltage applied to the switching element group 1 are fixed, the magnet rotor 4 rotates stably.The voltage generated from the armature winding 3 during stable operation of the magnet rotor 4 The magnet rotor 4 can be easily operated stably by inputting a signal to the switching element group 1 to switch to steady operation, and after that, the rotation speed can be controlled to increase the voltage applied to the switching element group 1 or Next, a third embodiment of the present invention will be described.The circuit configuration of the embodiment shown in FIG. 2 is the same as that of FIG. 1, so a description thereof will be omitted. The first starting control will be explained below with reference to FIG. 4. In FIG. It is assumed that the activation signal is issued at time T1, even though the frequency of the synchronizing signal to be generated and the voltage applied to the switching element group l are shown respectively. Then, the position detection rotation control device 5
, a first voltage vl and a first frequency fl are applied to the switching element group 1, and the magnet rotor 4 is activated by the armature winding 3 at the starting voltage of the first voltage vl and the first frequency fl. It begins to rotate in response to the rotating magnetic field applied to it. By continuing this synchronous operation at the first voltage (1) and the first frequency fl until time T2, the initial rotation of the armature winding 3 can be reliably obtained. Next, as a second activation control, the activation control device 6 applies the first voltage ■1 to the position detection rotation control device 5,
A synchronous operation is instructed in which the voltage and frequency are sequentially increased from the first frequency fl to the second voltage v2. The magnet rotor 4 is accelerated and increases the number of revolutions in response to the increase in the voltage and frequency of the synchronous operation. This applies from time T2 to time T3 in FIG.
Synchronous operation is instructed for a certain period of time at the second frequency f2, and the magnet rotor 4 temporarily rotates at a constant speed at the second voltage v2 and the second frequency f2. Since the frequency of the synchronous operation and the voltage and frequency applied to the switching element group 1 are fixed, the magnet rotor 4 rotates stably. At time T4, the voltage signal generated from the armature winding 3 is input to the switching element group 1, and the magnet rotor 4 can be easily switched to steady rotation operation. Effects of the Invention As is clear from the above explanation, the three-phase connected armature winding of the present invention, 6 It has a switching element group formed by connecting three semiconductor switching elements with control electrodes in a three-phase bridge, and a magnet rotor, and controls the switching element group by detecting a voltage signal generated from the armature winding. In the brushless motor that rotates the magnet rotor,
A signal of a certain fixed frequency and number that causes the armature winding to generate a rotating magnetic field is input to the switching element group at startup, and a low constant first voltage is input to the switching element group for a certain period of time. The voltage is gradually increased to a second voltage higher than the first voltage, and the second voltage is input for a certain period of time to start the magnet rotor, and then a voltage signal generated from the armature winding is input to the switching element group. A drive device for a brushless motor that rotates steadily has the advantage of not only being able to start the brushless motor reliably and quickly accelerating to the required rotation speed, but also being easily and inexpensively realized without the need for a complicated circuit. It is something that you have. Further, the three-phase connected armature winding of the present invention,
It has a switching element group formed by connecting six semiconductor switching elements with control electrodes in a three-phase bridge, and a magnet rotor, and controls the switching element group by detecting a voltage signal generated from the armature winding. In a brushless motor that rotates the magnet rotor, the voltage applied to the switching element group at startup is fixed, and a low constant voltage is applied to the switching element group to cause the armature winding to generate a rotating magnetic field. After inputting the first frequency for a certain period of time,
The frequency of the signal is gradually increased to a second frequency higher than the first frequency, and after starting the magnet rotor by inputting the second frequency for a certain period of time, the voltage signal generated from the armature winding is applied to the switching element group. A brushless motor drive device that receives input and rotates steadily has the advantage of being able to start the brushless motor reliably, quickly accelerating to the required rotation speed, and being easily and inexpensively realized without the need for a complex circuit. The present invention also includes a three-phase connected armature winding, a switching element group formed by three-phase bridge connection of six semiconductor switching elements with control electrodes, and a magnet rotor. In a brushless motor that detects a voltage signal generated from the armature winding and controls the switching element group to rotate the magnet rotor, the armature winding causes the switching element group to generate a rotating magnetic field at the time of startup. After inputting a signal with a fixed first frequency that generates a signal and operating for a certain period of time with a fixed first voltage applied to the switching element group, the voltage and frequency are gradually increased to a first frequency higher than the first voltage. Two voltages increase to a second frequency higher than the first frequency.
According to a brushless motor drive device that operates at a second frequency for a certain period of time and starts the magnet rotor, a voltage signal generated from the armature winding is input to the switching element group to steadily rotate the brushless motor. It has the advantage of being able to quickly accelerate to the required number of revolutions, and also to be easily and inexpensively realized without the need for complex circuits.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は本発明の第1〜第3の実施例の構成阻第2図C
ヨ  本発明の第1の実施例のタイムチャート、第3図
は本発明の第2の実施例のタイムチャート、第4図は本
発明の第3の実施例のタイムチャート、第5図は従来例
の構成国であも■・・・・スイッチング素子法 2・・
・・ブラシレスモー久 3・・・・電機子巻線 4・・
・・磁石回転子、5・・・・位置検出回転制御装置6・
・・・起動制御装龜
FIG. 1 shows the configuration diagram of the first to third embodiments of the present invention.
y) The time chart of the first embodiment of the present invention, FIG. 3 is the time chart of the second embodiment of the present invention, FIG. 4 is the time chart of the third embodiment of the present invention, and FIG. 5 is the conventional one. In the example constituent countries ■...Switching element method 2...
... Brushless motor 3... Armature winding 4...
... Magnet rotor, 5... Position detection rotation control device 6.
・・・Start control device

Claims (3)

【特許請求の範囲】[Claims] (1)3相結線された電機子巻線と、6個の制御電極付
き半導体スイッチング素子を3相ブリッジ接続して形成
したスイッチング素子群と、磁石回転子とを有し、前記
電機子巻線より生ずる電圧信号を検出して前記スイッチ
ング素子群を制御して前記磁石回転子を回転させるブラ
シレスモータにおいて、起動時に前記スイッチング素子
群に前記電機子巻線が回転磁界を発生する固定された周
波数の信号を入力し、前記スイッチング素子群に低い一
定の第一電圧を一定時間印加した後、前記電圧を徐々に
第一電圧よりも高い第二電圧まで増加し、前記第二電圧
を一定時間印加して前記磁石回転子を起動した後に前記
電機子巻線より生ずる電圧信号を前記スイッチング素子
群へ入力し、定常回転させるブラシレスモータの駆動装
置。
(1) It has an armature winding connected in three phases, a switching element group formed by connecting six semiconductor switching elements with control electrodes in a three-phase bridge, and a magnet rotor, and the armature winding In a brushless motor that rotates the magnetic rotor by detecting a voltage signal generated by After inputting a signal and applying a low constant first voltage to the switching element group for a certain period of time, the voltage is gradually increased to a second voltage higher than the first voltage, and the second voltage is applied for a certain period of time. A brushless motor driving device that inputs a voltage signal generated from the armature winding to the switching element group after starting the magnet rotor to cause steady rotation.
(2)3相結線された電機子巻線と、6個の制御電極付
き半導体スイッチング素子を3相ブリッジ接続して形成
したスイッチング素子群と、磁石回転子を有し、前記電
機子巻線より生ずる電圧信号を検出して前記スイッチン
グ素子群を制御して前記磁石回転子を回転させるブラシ
レスモータにおいて、起動時に前記スイッチング素子群
に印加される電圧を固定し、前記スイッチング素子群に
前記電機子巻線が回転磁界を発生する信号を、低い一定
の第一周波数を一定時間入力した後、前記信号の周波数
を徐々に第一周波数よりも高い第二周波数まで増加し、
第二周波数を一定時間入力して前記磁石回転子を起動し
た後に前記電機子巻線より生ずる電圧信号を前記スイッ
チング素子群へ入力し、正常回転させるブラシレスモー
タの駆動装置。
(2) A three-phase connected armature winding, a switching element group formed by three-phase bridge connection of six semiconductor switching elements with control electrodes, and a magnet rotor, In a brushless motor that detects a generated voltage signal and controls the switching element group to rotate the magnet rotor, the voltage applied to the switching element group at startup is fixed, and the switching element group is connected to the armature winding. After inputting a signal in which the wire generates a rotating magnetic field at a low constant first frequency for a certain period of time, the frequency of the signal is gradually increased to a second frequency higher than the first frequency,
A brushless motor driving device which inputs a second frequency for a certain period of time to start the magnet rotor, and then inputs a voltage signal generated from the armature winding to the switching element group to rotate the brushless motor normally.
(3)3相結線された電機子巻線と、6個の制御電極付
き半導体スイッチング素子を3相ブリッジ接続して形成
したスイッチング素子群と、磁石回転子とを有し、前記
電機子巻線より生ずる電圧信号を検出して前記スイッチ
ング素子群を制御して前記磁石回転子を回転させるブラ
シレスモータにおいて、起動時に前記スイッチング素子
群に前記電機子巻線が回転磁界を発生する固定された第
一周波数の信号を入力すると共にスイッチング素子群に
印加される固定された第一電圧で一定時間運転した後、
前記電圧と前記周波数を徐々に第一電圧よりも高い第二
電圧、第一周波数よりも高い第二周波数まで増加し、第
二周波数、第二電圧で一定時間運転し前記磁石回転子を
起動した後に前記電機子巻線より生ずる電圧信号を前記
スイッチング素子群へ入力し、定常回転させるブラシレ
スモータの駆動装置。
(3) It has an armature winding connected in three phases, a switching element group formed by connecting six semiconductor switching elements with control electrodes in a three-phase bridge, and a magnet rotor, and the armature winding In a brushless motor that detects a voltage signal generated by a magnet rotor and controls the switching element group to rotate the magnet rotor, the armature winding generates a rotating magnetic field in the switching element group at startup. After inputting a frequency signal and operating for a certain period of time with a fixed first voltage applied to the switching element group,
The voltage and the frequency were gradually increased to a second voltage higher than the first voltage and a second frequency higher than the first frequency, and the magnetic rotor was started by operating at the second frequency and the second voltage for a certain period of time. A drive device for a brushless motor that subsequently inputs a voltage signal generated from the armature winding to the switching element group and causes steady rotation.
JP1340652A 1989-12-29 1989-12-29 Drive circuit for brushless motor Pending JPH03203589A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP1340652A JPH03203589A (en) 1989-12-29 1989-12-29 Drive circuit for brushless motor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP1340652A JPH03203589A (en) 1989-12-29 1989-12-29 Drive circuit for brushless motor

Publications (1)

Publication Number Publication Date
JPH03203589A true JPH03203589A (en) 1991-09-05

Family

ID=18339022

Family Applications (1)

Application Number Title Priority Date Filing Date
JP1340652A Pending JPH03203589A (en) 1989-12-29 1989-12-29 Drive circuit for brushless motor

Country Status (1)

Country Link
JP (1) JPH03203589A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH06307719A (en) * 1993-04-23 1994-11-01 Toshiba Corp Controlling method for start-up of compressor in air conditioner

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH06307719A (en) * 1993-04-23 1994-11-01 Toshiba Corp Controlling method for start-up of compressor in air conditioner

Similar Documents

Publication Publication Date Title
JP3204644B2 (en) Driving device and driving method for electric motor
JP2704081B2 (en) Sensorless spindle motor control circuit
JPH11164584A (en) Motor controller
JPH03203589A (en) Drive circuit for brushless motor
JPH06133584A (en) Controller for brushless dc motor using no position sensor
JPH10191682A (en) Drive control device for blower
JP2722750B2 (en) Drive device for brushless motor
JP2005176453A (en) Driver of brushless motor
JP2002136174A (en) Control method and control apparatus for sensorless dc brushless motor
JPS61244291A (en) Brushless motor drive device
JP2682164B2 (en) Brushless motor starting method and starting device
JP2887320B2 (en) Starting method and starting device for brushless motor
JP4269920B2 (en) Brushless motor drive device
JPH10285983A (en) Operation controller for brushless motor
JPH0515179A (en) Starting method for synchronous motor
JPH10313585A (en) Operation control device of brushless motor
JP3244800B2 (en) Starting the sensorless motor
JPH09261993A (en) Control method of brushless motor
JPH03251098A (en) Brushless motor drive
JPS63194587A (en) Commutatorless motor
JPH1141973A (en) Start controller and control method for dc brushless motor
JPS61135383A (en) Brushless motor drive device
JPH08322285A (en) Control method of brushless motor
JPS61135389A (en) Brushless motor drive device
JP2789808B2 (en) How to start a brushless motor