JPH03203357A - Semiconductor device - Google Patents

Semiconductor device

Info

Publication number
JPH03203357A
JPH03203357A JP34278289A JP34278289A JPH03203357A JP H03203357 A JPH03203357 A JP H03203357A JP 34278289 A JP34278289 A JP 34278289A JP 34278289 A JP34278289 A JP 34278289A JP H03203357 A JPH03203357 A JP H03203357A
Authority
JP
Japan
Prior art keywords
board
wiring board
semiconductor device
copper
chip
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP34278289A
Other languages
Japanese (ja)
Inventor
Hisao Arai
久夫 新井
Kenji Bono
憲司 坊野
Koji Imai
今井 幸治
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Chichibu Fuji Co Ltd
Original Assignee
Chichibu Fuji Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Chichibu Fuji Co Ltd filed Critical Chichibu Fuji Co Ltd
Priority to JP34278289A priority Critical patent/JPH03203357A/en
Publication of JPH03203357A publication Critical patent/JPH03203357A/en
Pending legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/42Wire connectors; Manufacturing methods related thereto
    • H01L2224/47Structure, shape, material or disposition of the wire connectors after the connecting process
    • H01L2224/48Structure, shape, material or disposition of the wire connectors after the connecting process of an individual wire connector
    • H01L2224/4805Shape
    • H01L2224/4809Loop shape
    • H01L2224/48091Arched
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/42Wire connectors; Manufacturing methods related thereto
    • H01L2224/47Structure, shape, material or disposition of the wire connectors after the connecting process
    • H01L2224/48Structure, shape, material or disposition of the wire connectors after the connecting process of an individual wire connector
    • H01L2224/481Disposition
    • H01L2224/48151Connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive
    • H01L2224/48221Connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked
    • H01L2224/48225Connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked the item being non-metallic, e.g. insulating substrate with or without metallisation
    • H01L2224/48227Connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked the item being non-metallic, e.g. insulating substrate with or without metallisation connecting the wire to a bond pad of the item
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/42Wire connectors; Manufacturing methods related thereto
    • H01L2224/47Structure, shape, material or disposition of the wire connectors after the connecting process
    • H01L2224/49Structure, shape, material or disposition of the wire connectors after the connecting process of a plurality of wire connectors
    • H01L2224/491Disposition
    • H01L2224/49105Connecting at different heights
    • H01L2224/49109Connecting at different heights outside the semiconductor or solid-state body
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/73Means for bonding being of different types provided for in two or more of groups H01L2224/10, H01L2224/18, H01L2224/26, H01L2224/34, H01L2224/42, H01L2224/50, H01L2224/63, H01L2224/71
    • H01L2224/732Location after the connecting process
    • H01L2224/73251Location after the connecting process on different surfaces
    • H01L2224/73265Layer and wire connectors

Abstract

PURPOSE:To improve material utility and effectively manufacture a semiconductor device, by separating a multilayer printed board, as main constitution material, from a large board by dicing, and using the separated board. CONSTITUTION:A semiconductor device is constituted of a semiconductor chip 1, a thermal diffusion plate 2, a wiring board 3, a lead frame 4, through holes 10, blind viaholes 14, and triazine plates 22-24 being insulating boards. When said semiconductor device is manufactured, glass fiber, resin boards like triazine are used, and a copper foil and a printed wiring board plated with copper are used for a package main body. An auxiliary board serves as a chip mounting board of a wiring board wherein copper, aluminum, etc., are used, and the chip is directly buried in a hole formed in the chip mounting board. The multilayer interconnection board as the main material in this constitution is continuously formed in advance, and used by cutting in the case of need.

Description

【発明の詳細な説明】 (産業上の利用分野) 本発明は半導体装置、さらに詳しくは側面より外部リー
ドが延在しているクワッドフラットパッケージ(QFP
)、スモールアウトラインパッケージ(SOP、5OJ
)、リーデツドチップキャリア(LDCC)等の半導体
装置に関し、特にASIC(アプリケーションスベシフ
ァイトIC)、マイコン等の多ビン、高速信号、高放熱
で低コストな集積回路のパッケージに関する。
Detailed Description of the Invention (Field of Industrial Application) The present invention relates to a semiconductor device, more specifically a quad flat package (QFP) in which external leads extend from the sides.
), Small Outline Package (SOP, 5OJ
), leaded chip carriers (LDCCs), etc., and particularly relates to multi-bin, high-speed signal, high heat dissipation, and low-cost integrated circuit packages such as ASICs (application-optimized ICs) and microcomputers.

(従来技術とその技術的課題) 近年、集積回路の大規模化に伴い、信号数の増大が顕著
でかつ高速信号処理と高発熱の放散の要求特性を満足す
る必要が出ている。一方において低コストでこれらの要
求に応える必要があり、外部導出入リードのピッチが0
.5−の表面実装パッケージで特に、リードフレームを
エポキシ等のプラスチック樹脂によりモールド成型した
QFP、  5OPSol  リーデツドチップキャリ
ア等が有効なパッケージとして考えられている。
(Prior Art and its Technical Issues) In recent years, with the increase in the scale of integrated circuits, the number of signals has increased significantly, and it has become necessary to satisfy the required characteristics of high-speed signal processing and high heat dissipation. On the other hand, it is necessary to meet these demands at low cost, and the pitch of the external lead-in/out lead is 0.
.. QFP, 5OPSol leaded chip carrier, etc., in which the lead frame is molded with a plastic resin such as epoxy, are considered to be particularly effective as surface mount packages.

0.5閣リードピツチは表面実装のはんだ付けの限界で
あると言われている(日経エレクトロニクス、1988
年12月号P145〜158)。
0.5 lead pitch is said to be the limit of surface mount soldering (Nikkei Electronics, 1988)
December issue P145-158).

0、5 T1mピッチを前提とすると多ピン化と共にパ
ッケージ本体の側辺長を長く取る必要があり、パッケー
ジが大形になる。これはパッケージ内の配線長の増大を
きたし、高速信号処理の妨げとなる。
Assuming a pitch of 0,5 T1m, it is necessary to increase the number of pins and increase the side length of the package body, resulting in a large package. This increases the length of wiring within the package, which hinders high-speed signal processing.

従来より高速処理する必要のある集積回路にとって低下
する電気特性をもつパッケージとなることは大きな問題
となる。一方において集積回路の消費電力もIW以下か
ら2〜5Wクラスとなり、6〜25Wクラスのものまで
開発されつつあり、放熱構造を有するパッケージが必須
となる問題解決のためにはもちろんリードピッチを0,
4−1(1,35mm、OJ−と小さくすればよいが多
ピン化の進歩もまた急激であり、高速信号処理と高効率
放熱はパッケージに課せられた大きな課題であることは
明白である。
For integrated circuits that need to be processed at higher speeds than in the past, packaging with degraded electrical characteristics poses a major problem. On the other hand, the power consumption of integrated circuits has gone from less than IW to 2 to 5 W class, and even 6 to 25 W class ones are being developed.
4-1 (1.35 mm, OJ-), but progress in increasing the number of pins is also rapid, and it is clear that high-speed signal processing and high-efficiency heat dissipation are major challenges for packages.

このために近年種々な対応案が考えられている。For this reason, various countermeasures have been considered in recent years.

U、 S、 P、 468(1613号明細書には、接
地電位のパッケージ配線内でのゆらぎによるノイズ発生
防止に対して、グランドプレーンをリードフレーム配線
層の下部に設け、多層リード構造とする提案がある。
U, S, P, 468 (In the specification of No. 1613, there is a proposal to provide a ground plane under the lead frame wiring layer and create a multilayer lead structure in order to prevent noise generation due to fluctuations in the ground potential within the package wiring. There is.

又、U、 S、P、 4113512[1号明細書には
、接地電位の他に電源電位のゆらぎも改良するためパワ
ープレーンを追加し三層リードフレーム構造としたもの
が提案されている。
Further, U, S, P, 4113512 [1] proposes a three-layer lead frame structure in which a power plane is added in order to improve not only the ground potential but also the fluctuation of the power supply potential.

又、放熱構造については特開昭63−73541号、同
59−28364号公報でヒートブロックがリードフレ
ームの下に挿入された2層構造を提案している。この変
形は日経マイクロデバイス誌1988年11月号P74
〜75に記載されており、プリント回路基板へ実装後の
形で特別の配慮をせず2〜3.5Wの放熱か可能である
と指摘している。
Regarding the heat dissipation structure, Japanese Patent Laid-Open Nos. 63-73541 and 59-28364 propose a two-layer structure in which a heat block is inserted under the lead frame. This transformation is shown in Nikkei Microdevice Magazine, November 1988 issue, P74.
75, which points out that it is possible to dissipate heat of 2 to 3.5 W without special consideration after mounting on a printed circuit board.

多ピン化に際してはもう一つの問題がある。半導体チッ
プの電極は周辺より取り出しているかチップサイズか小
さく、多ピンの電極を設置しようとするとその電極間ピ
ッチはせまくなり、通常の金線ホールホンデングで接続
する限界ピッチ(φ32μmで130μmピッチ)より
小さくなる。
There is another problem when increasing the number of pins. The electrodes of a semiconductor chip are either taken out from the periphery or the chip size is small, and if you try to install an electrode with many pins, the pitch between the electrodes becomes narrow, and the pitch between the electrodes becomes narrow, which is the limit pitch for connecting with ordinary gold wire hole wires (130 μm pitch for φ32 μm). become smaller.

またチップ電極に対向したインナーリード先端ピッチも
小さくしなければならない。前者に対してはテープキャ
リアを使用したボンデングが提案されている。例えば特
開昭60−241241号や同61−95539号がそ
の例であり、外部導出入リードをテープキャリアで兼ね
た案が特開昭61−242051号がある。後者に対し
てはリードフレームの内部配線をメタライズした絶縁基
板を介することにより、微細加工を遠戚している例が特
開昭58−122765号に見られる。
Furthermore, the pitch between the tips of the inner leads facing the tip electrodes must also be reduced. For the former, bonding using a tape carrier has been proposed. For example, JP-A-60-241241 and JP-A-61-95539 are examples of this, and JP-A-61-242051 is a proposal in which a tape carrier also serves as an external lead-in/output lead. Regarding the latter, a distantly related example of microfabrication is seen in JP-A-58-122765, in which the internal wiring of the lead frame is passed through a metalized insulating substrate.

日経マイクロデバイス誌1989年12月号P、42の
図1及び図2に提案されているガラスエポキシプリント
基板を多層構造に用いた例がある。プリント基板は多層
構造が容易に作れ、誘電率も低く高速配線に適切であり
、銅コアを入れることにより放熱も十分満足できる基板
であるが外部導出入IJ−ドフレームを取り付ける方法
に良い案を提案している。すなわちリードフレームをガ
ラスエポキンでサンドウィッチ状にはさみ込み、スルー
ホールでリードフレームと電気的に導通させた後、外部
導出入リードフレーム部のガラスエポキシプリント基板
を剥離して一体構造としている。欠点はガラスエポキシ
プリント基板の全面積を利用できないことリードフレー
ムとの位置整合がむずかしいことでコスト高になり、多
層構成の自由度がリードフレーム挿入のため制限される
欠点がある。
There is an example in which a glass epoxy printed circuit board is used in a multilayer structure, as shown in FIGS. 1 and 2 of Nikkei Microdevice Magazine, December 1989 issue P, 42. Printed circuit boards can easily have a multilayer structure, have a low dielectric constant and are suitable for high-speed wiring, and have a copper core that satisfies heat dissipation.However, I have no idea how to attach an external IJ-board frame. is suggesting. That is, the lead frame is sandwiched between glass epoxy resins, electrical conduction is established between the lead frame and the lead frame through a through hole, and then the glass epoxy printed circuit board of the lead frame portion is peeled off to form an integrated structure. The disadvantages are that the entire area of the glass epoxy printed circuit board cannot be used, that alignment with the lead frame is difficult, resulting in high costs, and that the degree of freedom in multilayer configuration is limited due to the insertion of the lead frame.

以上の紹介した公知例は何れもモールド形パッケージを
前提としたものである。
All of the known examples introduced above are based on molded packages.

樹脂モールド形パッケージは単層のリードフレームにチ
ップを搭載しモールド工程を経て完成という単純な構造
由に低コスト化が達成できる。所が多ピン化に伴う、大
形化による樹脂モールド歪の増大を来たし、その歪を吸
収する構造や樹脂の選択、プロセスの最適化に多くの改
良を必要とし、コスト高になる。さらに上記したような
フレームの多層化や放熱構造は、この問題をさらに複雑
化すると共に構造を作るコストも高くなる。利点であっ
た構造プロセスの単純性はもはや無くなったといえる。
Resin molded packages can achieve low costs due to their simple structure, in which the chip is mounted on a single-layer lead frame and completed through a molding process. However, as the number of pins increases, the distortion of the resin mold increases due to the larger size, and many improvements are required in the structure to absorb the distortion, the selection of resin, and the optimization of the process, resulting in high costs. Furthermore, the multi-layered frame and heat dissipation structure described above further complicates this problem and increases the cost of creating the structure. It can be said that the simplicity of the construction process, which was an advantage, is no longer present.

この対策として樹脂ボッティングタイプの構造が各種考
案されている。例えばlMC1986P+ocepdi
ngs、  KOhn May 28〜30.  P1
86〜193)  電子材料、1988年9月号F59
〜64、日経マイクロデバイス1989年9月号P68
〜70及び特開昭55−95348号があり、何れも多
層構造を容易に作れるポテンシャルをもっているがそれ
ぞれについて欠点が指摘できる。lMC1986の例は
セラミック基板であり、一般に誘電率が樹脂の2倍以上
高く、高速配線構造材としては不適である。また放熱構
造を取るためには高価なシリコンカーバイトやアルミニ
ウムナイトライドを使用する必要がある。
As a countermeasure to this problem, various resin botting type structures have been devised. For example, lMC1986P+ocepdi
ngs, KOhn May 28-30. P1
86-193) Electronic Materials, September 1988 issue F59
~64, Nikkei Microdevice September 1989 issue P68
-70 and Japanese Patent Application Laid-Open No. 55-95348, both of which have the potential to easily produce a multilayer structure, but each has drawbacks. An example of lMC1986 is a ceramic substrate, which generally has a dielectric constant more than twice as high as resin, making it unsuitable as a high-speed wiring structure material. Also, in order to have a heat dissipation structure, it is necessary to use expensive silicon carbide or aluminum nitride.

電子材料、1988.9の例ではプリント基板をベース
とした材料にチップを取り付ける構造であり、多層化は
容易で、放熱構造も銅のヒートシンク付プリント基板を
用意すれば良い等多くの利点があるが微細ピッチの外部
導出入リードを付けることは技術的に未完成の分野であ
り、大面積を有する電極へのリードの接続という形で比
較的ピン数の少ない領域で使用されている。日経マイク
ロデバイス1989.4. P68−7[)の例はテー
プキャリアをベースにし、ポツテングしたタイプでテー
プキャリアパッケージとして多ビン化に適した構造であ
る。但しテープキャリア技術(TAB)における多層化
は技術的に確立していない。200ピンの導出入力をも
つTABでリードフレームと同等の単価であるが2層で
3倍、3層で5倍のコストになろうと考えられ、技術の
未確立はコスト高の原因となっている。以上チップまわ
りの配線ピッチの微細化に対しても種々の欠点があり、
多ピン化、高速化、高電力消費化に伴うよいパッケージ
は提案されていない。
Electronic materials, in the example of 1988.9, the chip is attached to a material based on a printed circuit board, and it has many advantages, such as easy multilayering and a heat dissipation structure that only requires the preparation of a printed circuit board with a copper heat sink. However, the provision of fine-pitch external lead-in/out leads is a technologically undeveloped field and is used in areas with relatively low pin counts in the form of lead connections to electrodes with large areas. Nikkei Microdevice 1989.4. The example P68-7 [) is based on a tape carrier and has a potted type structure suitable for multi-bin use as a tape carrier package. However, multilayering in tape carrier technology (TAB) has not been technically established. A TAB with a 200-pin output input has the same unit price as a lead frame, but it is thought that the cost will be three times as much for two layers and five times as much for three layers, and the unestablished technology is the cause of the high cost. . As mentioned above, there are various drawbacks to the miniaturization of the wiring pitch around the chip.
No good package has been proposed for increasing the number of pins, increasing speed, and increasing power consumption.

さらに、リードフレームと多層配線基板とを一体的構造
とする回路基板が、日経マイクロデバイス、1989年
12月号P、34〜36に提案されているが、この基板
構造によれば、多層配線基板の材料取り(収率)がリー
ドフレーム部を無駄にすること、不要基板の剥離作業と
いう手数を要する作業工程が必要となり製造コストが高
価となる不具合がある。
Furthermore, a circuit board having an integral structure of a lead frame and a multilayer wiring board is proposed in Nikkei Microdevice, December 1989 issue P, 34-36; There are disadvantages in that the material removal (yield) of the lead frame part is wasted, and the laborious work process of peeling off unnecessary substrates is required, resulting in high manufacturing costs.

而して本発明は前述の従来不具合を解消して、多ピンの
入出力端子をもち、高速信号伝播可能であり、かつ高放
熱能力をもつ半導体装置を低コストで提供することを目
的とするものである。
SUMMARY OF THE INVENTION It is an object of the present invention to solve the above-mentioned conventional problems and to provide a semiconductor device having multi-pin input/output terminals, capable of high-speed signal propagation, and having high heat dissipation ability at a low cost. It is something.

(課題を解決するための手段) 斯る本発明の半導体装置は、1個又は複数個の半導体を
内面所定位置に搭載収納するチップ搭載基板と、電気的
に半導体回路に接続しかつ外部端子へ導出する樹脂多層
状の配線基板と、配線基板の側面に延在し該基板に電気
的に接続したビームリード又はテープキャリア状の外部
接続リードとから構成されることを基本構成とし、前記
配線基板と外部接続リードとの接合部が溶接又はろう接
によりなされるとともに外力の直接的影響を受けないよ
うに有機接着材又は有機補強板で接合固定されたことを
特徴とする。
(Means for Solving the Problems) The semiconductor device of the present invention includes a chip mounting board on which one or more semiconductors are mounted and housed at a predetermined position on the inner surface, and a chip mounting board that is electrically connected to a semiconductor circuit and connected to an external terminal. The basic structure is composed of a resin multilayer wiring board to be led out, and external connection leads in the form of beam leads or tape carriers extending on the side surface of the wiring board and electrically connected to the board. The joint between the external connection lead and the external connection lead is made by welding or brazing, and the joint is fixed with an organic adhesive or an organic reinforcing plate so as not to be directly affected by external force.

上記樹脂多層状の配線基板はプリント配線基板の製造工
程により作製される。
The resin multilayer wiring board is manufactured by a printed wiring board manufacturing process.

ガラス繊維又はクロス、シリカガラス繊維又はクロス、
ゲブラー繊維(アラミツド)又はクロス等で強化された
、エポキシ、アラミツドやシリコーンやポリイミドやマ
レイミド等で変成したエポキシ、トリアジン又はマレイ
ミド、ポリイミド、弗素樹脂等の樹脂基板を使用し銅箔
又は銅めっき又は銅物理的被覆層で構成されたプリント
配線基板がこのパッケージ本体として使用される。配線
基板には放熱特性を付与するため、補助基板として銅又
は銅合金、アルミニウム又はアルミニウム合金を本体に
貼り付けた構造をも含むもので、この場合には、前記補
助基板が配線基板のチップ搭載基板を兼用し、配線基板
にチップの外形よりやや大きな孔が穿孔され、チップは
その搭載基板に直接取り付けられる。
Glass fiber or cloth, silica glass fiber or cloth,
Uses a resin substrate made of epoxy, triazine or maleimide, polyimide, fluororesin, etc. modified with epoxy, aramid, silicone, polyimide, maleimide, etc., reinforced with Gevlar fiber (aramid) or cloth, etc., and coated with copper foil or copper plating or copper. A printed wiring board consisting of a physical covering layer is used as the body of this package. The wiring board also includes a structure in which copper or copper alloy, aluminum or aluminum alloy is attached to the main body as an auxiliary board in order to impart heat dissipation properties.In this case, the auxiliary board is the chip mounting board of the wiring board. The wiring board also serves as a board, with a hole slightly larger than the chip's outer diameter being drilled, and the chip is directly attached to the mounting board.

(実施例) 本発明の実施例を図面により説明すると、第1図は本発
明半導体装置の断面図を示し、第2図は樹脂多層状の配
線基板3の断面図である。
(Example) An example of the present invention will be described with reference to the drawings. FIG. 1 shows a cross-sectional view of a semiconductor device of the present invention, and FIG. 2 is a cross-sectional view of a resin multilayer wiring board 3.

先ず、配線基板3の好ましい製造方法の一例を示しなが
ら該基板3の構成を説明する。
First, the structure of the wiring board 3 will be explained while showing an example of a preferred method for manufacturing the wiring board 3.

両面銅張りガラス繊維入りトリアジン板22と片面銅張
り同質板23及び24を用意する。板23はブラインド
ビヤホール14及び15を加工し無電解銅めつきの後電
気銅めっきでピアホール内面の導通を取った後裏面(断
面図はすべて裏面が上面に位置されて書かれている)の
電源層16及び内面電源層17が所定パターンでエツチ
ング加工される。続いて板23及び24については信号
層j8と表層パターンが個々にエツチングされ、チップ
取付はキャビティ20を形成するためルータ−加工又は
レーザー等のNC加工でそれぞれ角孔2fl″、2G”
′があけられる。同時に板23.24に対応するプリプ
レーグもそれぞれ20”、20”よりわずかに大きい角
孔があけられ、加工済の板22.23.24及びプリプ
レーグは位置合せされた後加圧、加熱積層される。以上
の加工はすべて配線基板3が多列に配位された大形板で
行われることはいうまでもない。配線基板3は続いてス
ルーホール10が加工され、無電解めっきのための活性
化処理を行う。続いて、感光性フィルムレジスト25を
上下面に全面に貼り付けめっきマスクとする。露光後現
像でスルーホール及びその周辺ランド部のみ開孔し無電
解銅めっきの後裏面銅電源層を通じて電気銅めっきかな
される。
A double-sided copper-clad glass fiber-containing triazine plate 22 and single-sided copper-clad homogeneous plates 23 and 24 are prepared. The board 23 is a power supply layer on the back side (all cross-sectional views are drawn with the back side facing up) after processing the blind via holes 14 and 15, electroless copper plating, and electrolytic copper plating to make the inner surface of the peer holes conductive. 16 and the inner power supply layer 17 are etched in a predetermined pattern. Next, the signal layer j8 and the surface pattern of the plates 23 and 24 are individually etched, and the square holes 2fl'' and 2G'' are formed by router machining or NC machining such as a laser to form the cavity 20 for chip mounting.
' is opened. At the same time, square holes slightly larger than 20" and 20" are drilled in the prepregs corresponding to the plates 23 and 24, respectively, and the processed plates 22, 23, 24 and the prepregs are aligned, then pressed and laminated by heating. . It goes without saying that all of the above processing is performed on a large board in which the wiring boards 3 are arranged in multiple rows. The wiring board 3 is then processed with through holes 10 and subjected to an activation process for electroless plating. Subsequently, a photosensitive film resist 25 is applied to the entire upper and lower surfaces to serve as a plating mask. After exposure and development, only the through holes and their surrounding land areas are opened, and after electroless copper plating, electrolytic copper plating is applied through the back side copper power layer.

スルーホール10からめつき導通パターン26が設置さ
れ大形板全体が1電極になっていることはいうまでもな
い(第6図)。その後、フィルムレジスト25を剥離し
はんだレジスト27を印刷した後、金属露出面全面にニ
ッケルめっき及び金めつきが施され、めっき導通線28
がルータ−加工等で除去され、キャビティ20の形成の
ため角孔20′ がルータ−加工等であけられる。尚、
ピアホール15はルータ−加工で半月状に開孔し、第3
図斜視図で示されたようになる。ピアホール14は本加
工でもブラインド構造となっている。引き続き、ソルダ
ーレジスト29が必要ならば施される。多層配線基板3
の最終工程として、21に示す線でダイシングがなされ
大形板より個々の多層配線基板3に分割される。分割さ
れた基板3はあらかじめ高鉛はんだボール33がリード
4のインナ一部に第4図に示したように盛り付けされて
おり基板3のスルーホール部に整合させた後、リフロー
され、第5図のようにスルーホールlO内に半田柱11
が形成されると共に、あらかじめ加工されていたリード
先端孔12にもはんだが充填され、強固な接合を得る。
Needless to say, the plated conductive pattern 26 is installed from the through hole 10, and the entire large plate becomes one electrode (FIG. 6). After that, after peeling off the film resist 25 and printing a solder resist 27, nickel plating and gold plating are applied to the entire exposed metal surface, and the plated conductive wire 28
is removed by router machining or the like, and a square hole 20' is made by router machining or the like to form the cavity 20. still,
The pier hole 15 is made into a half-moon shape by router processing, and the third
The figure is shown in perspective view. The pier hole 14 has a blind structure even in this process. Subsequently, a solder resist 29 is applied if necessary. Multilayer wiring board 3
As the final step, dicing is performed along the lines shown at 21, and the large board is divided into individual multilayer wiring boards 3. The divided board 3 has high lead solder balls 33 placed on the inner part of the leads 4 as shown in FIG. 4 in advance, and after aligning them with the through-holes of the board 3, is reflowed and soldered as shown in FIG. Solder pillar 11 is placed inside the through hole lO as shown in the figure.
At the same time, the lead tip hole 12, which had been processed in advance, is also filled with solder to obtain a strong bond.

尚、リードフレーム4はあらかじめ、フラ・ソシュ金め
つきが施されていると、はんだの濡れは良好となる。
Note that if the lead frame 4 is previously plated with Fura Soche gold plating, the solder will be well wetted.

はんだボール盛り付けの好ましい方法として、半導体素
子の接続でよく使用されている金線ボールボンダーを利
用した方法、例えば特開昭63−301535号の方法
等を利用すれば容易であり、その他に特開昭63−12
2133号、同60−89951号、同61−2332
9号、同63−104431号、同511−17583
8号、同60−134444号、同59−20875号
、同62−281435号等が同様手段でボール状バン
プ付けの方法を提案しているがそれでもよく、さらにそ
れ以外の例えば転写バンプ(特開昭6(1−86840
号)を利用してよいことはもちろんである。上記公知例
はすべてチ・ツブ電極に関するもので、パッケージにつ
いてみれば新規であることはいうまでもない。
A preferred method for placing solder balls is a method using a gold wire ball bonder, which is often used for connecting semiconductor elements, such as the method disclosed in Japanese Patent Application Laid-open No. 63-301535. 1986-12
No. 2133, No. 60-89951, No. 61-2332
No. 9, No. 63-104431, No. 511-17583
No. 8, No. 60-134444, No. 59-20875, No. 62-281435, etc. propose a method of attaching ball-shaped bumps by the same means, but this method is also sufficient. Showa 6 (1-86840
Of course, you may use the following. All of the above-mentioned known examples relate to chip/tube electrodes, and it goes without saying that the package is new.

リードフレーム4を配線基板3にはんだ又はろう材で接
続するだけで、リードフレームの接続強度を十分にする
ことは、微細面積で接合されているため実際上困難であ
る。
It is actually difficult to achieve sufficient connection strength of the lead frame by simply connecting the lead frame 4 to the wiring board 3 with solder or brazing material because the connection is made over a minute area.

そのため、プラスチックの補強材13が最終的に被覆さ
れる。補強材13はプリント基板で一般的に使用されて
いるソルダーレジスト印刷(エポキシ)や半導体モール
ド用エポキシを角リング状のタブレットにしくBステー
ジレジン)加熱流動させて被覆させ、あるいはポツティ
ング用エポキシ、ポツティング用シリコーンゴムをコー
トして形成する。又、角リング状のガラス繊維なしのプ
リプレーグ(Bステージレジン)等もよく、さらに補強
板を取付ける構造とすることもよい。
Therefore, the plastic reinforcing material 13 is finally covered. The reinforcing material 13 can be made of solder resist printing (epoxy) commonly used for printed circuit boards, epoxy for semiconductor molds made into square ring-shaped tablets (B-stage resin), heated and fluidized, or coated with epoxy for potting, or epoxy for potting. coated with silicone rubber. Also, a square ring-shaped prepreg without glass fiber (B stage resin) or the like may be used, and a structure to which a reinforcing plate is attached may also be used.

以上でパッケージが完成するが、リードフレーム外周先
端の変形を防止するためスライドキャリア30が必要で
あれば取り付けられる。もちろんスライドキャリア取り
付は前にリードを切断し、電気的に独立させテストのた
めの孔31より電気テスト、バーインプローブをあてる
ことも可能である。
The package is completed as described above, but a slide carrier 30 can be attached if necessary to prevent deformation of the outer peripheral tip of the lead frame. Of course, it is also possible to cut the leads before attaching the slide carrier and apply a burn-in probe for electrical testing through the test hole 31 to make the leads electrically independent.

また説明はリードフレームで行ったがテープキャリア(
TAB)をリードフレームの代わりに用いてもよいこと
はいうまでもない。
Also, although the explanation was given using the lead frame, the tape carrier (
It goes without saying that TAB) may be used instead of the lead frame.

放熱構造を必要とする半導体チップでは熱拡散板2が有
機接着材7で接合される。多層配線基板と熱拡散板の熱
膨張係数が不整合の時は弾性率の小さなシリコーンゴム
例えば東I/シリコーンCY52−223等が接着材7
として使用されるが膨張係数整合時はエポキシ、例えば
長潮チバ T524/R−200等がある。熱拡散機2
として低コストの銅又は銅合金、アルミニウム又はアル
ミニウム合金、銅含浸モリブデン、又はタングステン、
クラツド材(Cu/インバー/ Cu、  Co/Mo
/Cu等)、及びアルミニウムナイトライド、シリコン
カーバイト等が考えられる。熱拡散板にはできるだけ放
熱面積を大きく取る方がよく、多層配線基板3よりおお
きくてもよい。又スルーホール10のはんだ又はろう材
11の盛上りをさけるため小さくてもよい。要は放熱の
必要性の範囲で考えればよいが、不要な時は多層配線基
板3の絶縁m22が20゛ を加工せず閉じたキャビテ
ィ20となってもよく、さらに層を加え絶縁層22の背
面に、同材質の第4層を加えてもよい。
In a semiconductor chip that requires a heat dissipation structure, a heat diffusion plate 2 is bonded with an organic adhesive 7. If the thermal expansion coefficients of the multilayer wiring board and the thermal diffusion plate do not match, use a silicone rubber with a small elastic modulus, such as TOI/Silicone CY52-223, as the adhesive 7.
However, when the expansion coefficient is matched, epoxy, such as Nagashio Ciba T524/R-200, is used. Heat spreader 2
As low cost copper or copper alloy, aluminum or aluminum alloy, copper impregnated molybdenum, or tungsten,
Clad material (Cu/Invar/Cu, Co/Mo
/Cu, etc.), aluminum nitride, silicon carbide, etc. It is better to have as large a heat dissipation area as possible for the heat diffusion plate, and it may be larger than the multilayer wiring board 3. Further, in order to avoid swelling of the solder or brazing material 11 in the through hole 10, it may be small. The point is to think within the scope of the necessity of heat dissipation, but if it is not necessary, the insulation layer 22 of the multilayer wiring board 3 may be formed into a closed cavity 20 without processing 20゛, or an additional layer may be added to form the insulation layer 22. A fourth layer of the same material may be added to the back surface.

パッケージの構造は多層配線基板で絶縁1i3層の構造
を示したがさらに多層、或は2層であってもよく、キャ
ビティ20は一つしか示さなかったが二つ以上の複数で
あってもよい。この場合は、マルチチップモジュールと
なりチップ間配線は多層配線基板3で行われるためブラ
インドビヤホール14又は15、スルーホール10が、
その他の部分に多数設けられると思われる。
Although the structure of the package is shown as a multilayer wiring board with 1i3 layers of insulation, it may have more layers or two layers, and although only one cavity 20 is shown, it may have two or more cavities. . In this case, since it is a multi-chip module and inter-chip wiring is performed on the multilayer wiring board 3, the blind via hole 14 or 15 and the through hole 10 are
It is thought that many other parts will be provided.

次いで、半導体チップ1を搭載する方法について説明す
る。熱拡散板3が銅等チップとの熱膨張不整合の時は弾
性率の小さな接着剤6を用いてチップをキャビティ20
の部分に接合する信越シリコーンのシリコーンゴムK]
R9022、や低弾性エポキシ等が接着材として適切で
ある。整合条件の時はAu−8iやはんだ等熱伝導率の
よい接着剤6が使用できる。続いてチップ1上の電極と
多層配線基板3のキャビティ20の各段に露出した電極
とをワイアボンデング法又はTABで接続され、その後
エポキシポツテング又はシリコーンゲルポツテングを行
い、封止構造8を完成させる。シリコーンゲルは硬いた
め機械的保護としてふた5が接着材9で封止される。こ
のふたには多層配線基板3と熱膨張整合時は硬質エポキ
シ接着剤を使用するとよいが不整合の時はシリコーンゴ
ム等が用いられる。その後、リード4が第1図のように
成形され、プリント配線基板に表面実装される。もちろ
んリード4は多層配線基板3と接合する前に予備はんだ
処理がされていてもよく、チップ1の組立封止完成後予
備はんだされてもよい。後者の場合は接合はんだ11が
高鉛はんだかAu−3n系であれば一般的はんだ(共晶
Pb−5nはんだ)の作業温度で接合部11が再溶解し
ない条件であることはいうまでもない。
Next, a method for mounting the semiconductor chip 1 will be explained. When the thermal expansion plate 3 has a thermal expansion mismatch with the chip such as copper, the chip is attached to the cavity 20 using an adhesive 6 with a small elastic modulus.
Shin-Etsu Silicone's silicone rubber K to be bonded to the part]
R9022, low modulus epoxy, etc. are suitable as adhesives. When matching conditions are met, an adhesive 6 with good thermal conductivity such as Au-8i or solder can be used. Subsequently, the electrodes on the chip 1 and the electrodes exposed at each stage of the cavity 20 of the multilayer wiring board 3 are connected by wire bonding or TAB, and then epoxy potting or silicone gel potting is performed to form a sealing structure 8. complete. Since silicone gel is hard, the lid 5 is sealed with an adhesive 9 for mechanical protection. For this lid, it is preferable to use a hard epoxy adhesive when the thermal expansion is matched with the multilayer wiring board 3, but when the thermal expansion is not matched, silicone rubber or the like is used. Thereafter, the leads 4 are formed as shown in FIG. 1 and surface mounted on a printed wiring board. Of course, the leads 4 may be pre-soldered before being joined to the multilayer wiring board 3, or may be pre-soldered after the chip 1 is assembled and sealed. In the latter case, it goes without saying that if the joining solder 11 is high lead solder or Au-3n based, the joint 11 will not re-melt at the working temperature of general solder (eutectic Pb-5n solder). .

また放熱構造として熱拡散板2の上部には放熱フィン又
は水冷、空冷ヒートシンクを必要に応じて取り付けられ
ることは云うまでもない。
It goes without saying that as a heat dissipation structure, a heat dissipation fin or a water-cooled or air-cooled heat sink can be attached to the upper part of the heat diffusion plate 2 as required.

(発明の効果) 本発明によれば、前述した日経マイクロデバイス198
9年12月号P、34〜36に提案した装置に較べて製
造コストを安価ならしめ得る。
(Effects of the Invention) According to the present invention, the above-mentioned Nikkei Microdevice 198
The manufacturing cost can be lowered compared to the device proposed in December 1999 issue P, 34-36.

すなわち、本発明は、主要構成材料である多層配線基板
をダイシングにより大形基板から分離して使用するため
、材料取りが良く、効率的に製造可能である。リードフ
レームと多層配線基板共に多ピン化高速化に伴い複雑化
し、硬度な加工技術とり、一体化すると、それぞれの製
造歩留(良品率)の掛算となり最終歩留が落ちる欠点が
あるが、それぞれを別々に作ることは歩留を独立させる
ことになり、大きなコスト低減ができる。接続のための
コスト、それに伴う信頼度確保が、本発明では欠点とな
るが、金属接合はTAB技術の進展と共に自動的に技術
レベルが向上し、自動化されたものが提供されているた
め高インデックスで製造可能であり信頼性もコスト的に
も大きな欠点がない。
That is, in the present invention, since the multilayer wiring board, which is the main constituent material, is separated from the large board by dicing, material removal is easy and efficient manufacturing is possible. Both lead frames and multilayer wiring boards have become more complex as the number of pins increases and speed increases, and when they are integrated using hard processing techniques, the manufacturing yield (good product rate) of each has to be multiplied and the final yield decreases. Separate production makes the yield independent, resulting in a significant cost reduction. The cost of connection and the associated reliability are disadvantages of the present invention, but the technology level of metal bonding has automatically improved with the advancement of TAB technology, and automated methods are now available, so it has a high index. It can be manufactured using the following methods, and there are no major drawbacks in terms of reliability or cost.

多層配線基板は有機物でありセラミックに比べ誘電率が
低く、高速信号伝送に関し、有利な材料である。またこ
の配線に銅の金属導体を使用しているため低抵抗でこの
2点で多ピン化に伴うパッケージの大形化に対して十分
な高速信号伝送路を提供するものである。なおかつ、自
由な多層構造が作れるため低インダクタンス、容量、抵
抗特性をもつ構造でさらに加えインピーダンス整合かで
き高速伝送及びノイズ低減可能な構造を容易に提供でき
ることが判明する。
The multilayer wiring board is an organic material and has a lower dielectric constant than ceramic, making it an advantageous material for high-speed signal transmission. Furthermore, since a copper metal conductor is used for this wiring, the resistance is low, and these two points provide a high-speed signal transmission path sufficient for increasing the size of the package due to the increase in the number of pins. Furthermore, it has been found that since a free multilayer structure can be created, it is possible to easily provide a structure with low inductance, capacitance, and resistance characteristics, which can also perform impedance matching, high-speed transmission, and noise reduction.

熱拡散板という構造が容易に設置でき、高出力の半導体
に対しても十分搭載可能なパッケージを提供することが
できる。これは、前記した日経マイクロデバイス198
9.12月号P、34〜36の提案は全体をモールドす
ることに対し、本実は多層配線基板と共に構造体として
外壁を作ることを目的としているため、熱拡散板片面全
体を放熱面として利用でき高効率なものである。さらに
全体をモールドする案に対してコストも低減できる内容
である。
The structure of the thermal diffusion plate can be easily installed, and it is possible to provide a package that can be sufficiently mounted even for high-output semiconductors. This is the Nikkei Micro Device 198 mentioned above.
9. The proposal in December issue P, 34-36 is to mold the whole thing, but the actual purpose is to make an outer wall as a structure together with the multilayer wiring board, so the entire one side of the heat diffusion plate is used as a heat radiation surface. It is highly efficient. Furthermore, the cost can be reduced compared to the idea of molding the entire structure.

又、配線基板と外部接続リードとの接合部が有機接着材
又は補強板により、その接合強度が改善され耐久性を高
め得る。
Further, by using an organic adhesive or a reinforcing plate at the joint between the wiring board and the external connection lead, the joint strength can be improved and durability can be increased.

従って高速で高パワーの半導体をその特性を生かし、低
コストでパッケージ構造を提供できる。
Therefore, by taking advantage of the characteristics of high-speed, high-power semiconductors, it is possible to provide a package structure at low cost.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は本発明半導体装置の断面図、第2図は多層状配
線基板の断面図、第3図はそのキャビティ部の斜視図、
第4図は外部接続リードの端面斜視図、第5図は外部接
続リードを接続した配線基板の断面図、第6図はスルー
ホールの導通パターンを示す斜視図である。 図中、 1・・・半導体チップ、 2・・・熱拡散板、3・・・
配線基板、   4・・・リードフレーム10・・・ス
ルーホール、13・・・補強材(4・・・ブラインドビ
アオール、 22、23.24・・・j・リアジン板(絶縁板)第1
図 第2図 第3図 特 許 出 願 人    株式会社秩父富士代 理 人 重用 政名
FIG. 1 is a sectional view of the semiconductor device of the present invention, FIG. 2 is a sectional view of a multilayer wiring board, and FIG. 3 is a perspective view of a cavity portion thereof.
FIG. 4 is an end perspective view of the external connection lead, FIG. 5 is a sectional view of the wiring board to which the external connection lead is connected, and FIG. 6 is a perspective view showing the conduction pattern of the through hole. In the figure, 1... semiconductor chip, 2... thermal diffusion plate, 3...
Wiring board, 4...Lead frame 10...Through hole, 13...Reinforcement material (4...Blind via all, 22, 23.24...j.Reasin board (insulating board) 1st
Figure 2 Figure 3 Patent applicant: Chichibufuji Co., Ltd. Agent Masana Jyuyo

Claims (6)

【特許請求の範囲】[Claims] (1)1個又は複数個の半導体チップを内面所定位置に
搭載収納するチップ搭載基板と、電気的に半導体回路に
接続しかつ外部端子へ導出する樹脂多層状の配線基板と
、配線基板に電気的に接続したビームリード状又はテー
プキャリア状の外部接続リードとを有し、前記配線基板
と外部接続リードとの電気的接合部が溶接又はろう接に
よりなされるとともに外力の直接的影響を受けないよう
に有機接着材又は有機補強板で接合固定されたことを特
徴とする半導体装置。
(1) A chip mounting board that mounts and stores one or more semiconductor chips at a predetermined position on its inner surface, a resin multilayer wiring board that electrically connects to the semiconductor circuit and leads to external terminals, and and external connection leads in the form of beam leads or tape carriers, which are electrically connected to each other by welding or brazing, and are not directly affected by external forces. A semiconductor device characterized in that it is bonded and fixed with an organic adhesive or an organic reinforcing plate.
(2)上記チップ搭載基板が銅など放熱性のよい材料で
ある請求項1項記載の半導体装置。
(2) The semiconductor device according to claim 1, wherein the chip mounting substrate is made of a material with good heat dissipation such as copper.
(3)上記チップ搭載板と配線基板とが一体的複合構造
で構成され、その複合体が繊維強化エポキシ、トリアジ
ン、マレイミド、ポリイミド、弗素樹脂、アラミッド−
エポキシ系等の各変成樹脂等及び銅配線で形成されたプ
リント配線基板である請求項1項又は3項記載の半導体
装置。
(3) The chip mounting board and the wiring board have an integral composite structure, and the composite is made of fiber-reinforced epoxy, triazine, maleimide, polyimide, fluororesin, aramid, etc.
4. The semiconductor device according to claim 1, wherein the semiconductor device is a printed wiring board formed of modified resin such as epoxy resin and copper wiring.
(4)上記配線基板と外部接続リードとの接合部が、基
板面の同一平面上に配列され、その接合部より延在する
配線基板側はスルーホール又はブラインドビヤホールを
介して多層配線構造を有し、一方外部接続リードは単層
又は多層であって配線基板との接合部は同一平面上で単
列又は多列に配設され、さらに外周先端の回路基板に取
付ける構造も同一平面上で単列又は多列の表面実装構造
である請求項1〜3項の何れか1項記載の半導体装置。
(4) The joints between the wiring board and the external connection leads are arranged on the same plane of the board surface, and the wiring board side extending from the joint has a multilayer wiring structure via through holes or blind via holes. However, the external connection leads are single-layer or multi-layer, and the joints with the wiring board are arranged in a single row or in multiple rows on the same plane, and the structure for attaching them to the circuit board at the tip of the outer periphery is also single-layer on the same plane. 4. The semiconductor device according to claim 1, which has a row or multi-row surface mounting structure.
(5)上記請求項1項記載において有機接着材が高鉛系
半田又はAu−Sn合金である半導体装置。
(5) The semiconductor device according to claim 1, wherein the organic adhesive is a high lead solder or an Au-Sn alloy.
(6)上記配線基板と外部接続リードとの接合部におい
て、基板の接合部中にスルーホールが設けられている請
求項1〜5項の何れか1項記載の半導体装置。
(6) The semiconductor device according to any one of claims 1 to 5, wherein a through hole is provided in the bonding portion of the substrate at the bonding portion between the wiring board and the external connection lead.
JP34278289A 1989-12-29 1989-12-29 Semiconductor device Pending JPH03203357A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP34278289A JPH03203357A (en) 1989-12-29 1989-12-29 Semiconductor device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP34278289A JPH03203357A (en) 1989-12-29 1989-12-29 Semiconductor device

Publications (1)

Publication Number Publication Date
JPH03203357A true JPH03203357A (en) 1991-09-05

Family

ID=18356459

Family Applications (1)

Application Number Title Priority Date Filing Date
JP34278289A Pending JPH03203357A (en) 1989-12-29 1989-12-29 Semiconductor device

Country Status (1)

Country Link
JP (1) JPH03203357A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5550403A (en) * 1994-06-02 1996-08-27 Lsi Logic Corporation Improved laminate package for an integrated circuit and integrated circuit having such a package

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5550403A (en) * 1994-06-02 1996-08-27 Lsi Logic Corporation Improved laminate package for an integrated circuit and integrated circuit having such a package

Similar Documents

Publication Publication Date Title
US5638597A (en) Manufacturing flexible circuit board assemblies with common heat spreaders
KR100268205B1 (en) Attaching heat sinks directly to flip chips and ceramic chip carriers
US6124637A (en) Carrier strip and molded flex circuit ball grid array and method of making
US5841194A (en) Chip carrier with peripheral stiffener and semiconductor device using the same
JP3400877B2 (en) Semiconductor device and manufacturing method thereof
JP3481444B2 (en) Semiconductor device and manufacturing method thereof
US5895967A (en) Ball grid array package having a deformable metal layer and method
TWI452661B (en) Package structure with circuit directly connected to chip
EP1796163B1 (en) Semiconductor device and electronic control unit using the same
US20020038908A1 (en) Thermal enhanced ball grid array package
JP2011082533A (en) Structure and method for fabricating structure for receiving first and second semiconductor dies
JP2003522401A (en) Stacked integrated circuit package
JPH1070233A (en) Multi-electronic device package
EP1571706B1 (en) Electronic device
US20050116322A1 (en) Circuit module
KR100678878B1 (en) A method of manufacturing an integrated circuit package and integrated cirucit package
JPH0878572A (en) Semiconductor package and manufacturing method thereof as well as circuit board and electronic equipment using the same
JP2891426B2 (en) Semiconductor device
JPH03203357A (en) Semiconductor device
KR100239387B1 (en) Ball grid array semiconductor package and the manufacture method
JP3561671B2 (en) Semiconductor device
JP3938017B2 (en) Electronic equipment
JPH08153826A (en) Semiconductor integrated circuit device
JP3373084B2 (en) Semiconductor package
JPH09246416A (en) Semiconductor device