JPH03203214A - Capacitor - Google Patents

Capacitor

Info

Publication number
JPH03203214A
JPH03203214A JP34073289A JP34073289A JPH03203214A JP H03203214 A JPH03203214 A JP H03203214A JP 34073289 A JP34073289 A JP 34073289A JP 34073289 A JP34073289 A JP 34073289A JP H03203214 A JPH03203214 A JP H03203214A
Authority
JP
Japan
Prior art keywords
conductive polymer
conductive
polymer film
capacitor
dielectric oxide
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP34073289A
Other languages
Japanese (ja)
Inventor
Isamu Ishikawa
勇 石川
Yukio Kinuta
絹田 幸生
Nobuyuki Kume
久米 信行
Minoru Fukuda
実 福田
Hideo Yamamoto
秀雄 山本
Isao Isa
伊佐 功
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Japan Carlit Co Ltd
Panasonic Holdings Corp
Original Assignee
Japan Carlit Co Ltd
Matsushita Electric Industrial Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Japan Carlit Co Ltd, Matsushita Electric Industrial Co Ltd filed Critical Japan Carlit Co Ltd
Priority to JP34073289A priority Critical patent/JPH03203214A/en
Publication of JPH03203214A publication Critical patent/JPH03203214A/en
Pending legal-status Critical Current

Links

Landscapes

  • Polyoxymethylene Polymers And Polymers With Carbon-To-Carbon Bonds (AREA)
  • Adhesives Or Adhesive Processes (AREA)

Abstract

PURPOSE:To obtain a high-voltage capacitor with improved high-frequency characteristics by using a conductive macromolecular film which is doubly formed as a solid electrolyte and by laminating with a conductive material. CONSTITUTION:An oxide is grown on valve metals 11 and 21 and dielectric oxide coatings 12 and 22 are created. Then, conductive macromolecular films 13 and 23 are formed on the dielectric oxide films 12 and 22 and strong conductive macromolecular films 14 and 24 which are subjected to electrolytic oxidation polymerization can be obtained on the conductive macromolecular films 13 and 23 by performing electrolytic oxidation polymerization within a electrolyte with the conductive macromolecular film as an anode. Then, the conductive macromolecular film 14 and the valve metal 21 are laminated by a conductive material. Then, exterior finish is made by an epoxy resin, etc., with the valve metal 11 as one electrode and the conductive macromolecular film 24 which is subjected to electrolytic oxidation polymerization as the other electrode, thus obtaining a high voltage capacitor with improved high frequency characteristics.

Description

【発明の詳細な説明】 産業上の利用分野 本発明は、電気機器、電子機器の電子回路などに使用す
るコンデンサに関するものである。
DETAILED DESCRIPTION OF THE INVENTION Field of Industrial Application The present invention relates to a capacitor used in electrical equipment, electronic circuits of electronic equipment, and the like.

従来の技術 機器の小形・軽量化志向、高集積回路の採用による電子
回路の高密度化、あるいは自動挿入の普及などに伴い、
電子部品に対する高性能化の要望が1すます強くなって
きている。その中にあって、コンデンサも同様に、高周
波特性の優れた大容量コンデンサの開発が種々試みられ
ている。高周波特性の優れたコンデンサには、フィルム
、マイカ、セラミック等を誘電体としたコンデンサがあ
るが、1μF以上の静電容量を得ようとすると、形状が
大きくなり1価格も高くなるため、実用上不向きである
With the trend toward smaller and lighter conventional technological equipment, the increased density of electronic circuits through the adoption of highly integrated circuits, and the spread of automatic insertion,
Demand for higher performance electronic components is becoming increasingly strong. Among these, various attempts have been made to develop large capacity capacitors with excellent high frequency characteristics. Capacitors with excellent high frequency characteristics include capacitors using films, mica, ceramics, etc. as dielectric materials, but if you try to obtain a capacitance of 1 μF or more, the size will be large and the price will be high, so it is not practical. Not suitable.

筐た、大容量コンデンサとして知られているアルミ固体
電解コンデンサでは高周波特性が劣るため、固体電解コ
ンデンサで、高周波特性の優れたコンデンサとして、固
体電解質に導電性高分子を用いた固体電解コンデンサが
最近出現してきてい3 ・\ / る。(特開昭83−158829号、特開昭63173
313号) 発明が解決しようとする課題 固体電解質に導電性高分子を用いた固体電解コンデンサ
は、大容量を得るために巻回すると、弁金属上に形成さ
れた誘電体酸化皮膜が応力によりクラックが入りやすく
、しかも高電圧になればなるほど誘電体酸化皮膜が厚く
なるため巻回による応力が大きい。また、巻回により弁
金属上に形成された誘電体酸化皮膜の面積が大きくなシ
、リード線からの距離が増すため、誘導リアクタンスが
増加して、コンデンサ特性を悪くするという欠点を有し
ていた。
Since aluminum solid electrolytic capacitors, which are known as high-capacity capacitors, have poor high-frequency characteristics, solid electrolytic capacitors that use a conductive polymer as a solid electrolyte have recently been developed as solid electrolytic capacitors with excellent high-frequency characteristics. It's starting to appear 3 ・\/. (JP-A No. 83-158829, JP-A-63173
(No. 313) Problems to be Solved by the Invention When a solid electrolytic capacitor using a conductive polymer as a solid electrolyte is wound to obtain a large capacity, the dielectric oxide film formed on the valve metal cracks due to stress. Moreover, the higher the voltage, the thicker the dielectric oxide film becomes, so the stress caused by winding becomes greater. In addition, the area of the dielectric oxide film formed on the valve metal due to winding is large, and the distance from the lead wire increases, which increases inductive reactance and deteriorates capacitor characteristics. Ta.

本発明は、上記従来の問題点を解決するもので、高電圧
で、高周波特性の優れたコンデンサを提供することを目
的とする。
The present invention solves the above conventional problems, and aims to provide a capacitor with high voltage and excellent high frequency characteristics.

課題を解決するための手段 この目的を遠戚するために本発明のコンデンサは、弁金
属の表面に誘電体酸化皮膜を形成し、該誘電体酸化皮膜
上に酸化剤を用いて化学酸化重合した導電性高分子膜を
形成し、更に該導電性高分子膜上に電解重合により得ら
れる導電性高分子膜を形成して、二重に形成された導電
性高分子膜を固体電解質とする固体電解コンデンサ素子
を、導電材料を用いて2個以上積層したものである。
Means for Solving the Problems In order to achieve this object distantly, the capacitor of the present invention is provided by forming a dielectric oxide film on the surface of the valve metal, and chemically oxidizing and polymerizing the dielectric oxide film using an oxidizing agent. A solid that forms a conductive polymer film, and further forms a conductive polymer film obtained by electrolytic polymerization on the conductive polymer film, and uses the double-formed conductive polymer film as a solid electrolyte. Two or more electrolytic capacitor elements are laminated using a conductive material.

作  用 本発明にかかるコンデンサは、第1図に示すようにエツ
チングして表面を粗面化l〜た弁金属11゜21を陽極
酸化または空気酸化によシ弁金属の酸化物を生成させ、
誘電体酸化皮膜12.22を作成する。弁金属としては
アルミニウム、タンタル、ニオブなどが使用できるが安
価で汎用されているアルミニウム、タンタルが好ましい
。ついで誘電体酸化皮膜12 、22上に化学酸化重合
による導電性高分子膜13 、23を形成し、表面を導
電化する。ついで化学酸化重合による導電性高分子膜を
陽極として電解液中にて電解酸化重合を行うど、化学酸
化重合による導電性高分子膜13.23の上に、電解酸
化重合された強靭な導電性高分子膜14.24が得られ
る。導電性高分子としてはボ5 ・\−7 リビロール、ポリチオフェン、ポリアニリン、ポリフラ
ンなどが使用できるが導電性高分子の安定性の点から特
に好曾しくはポリピロールである。
Function The capacitor according to the present invention is produced by etching the valve metal 11 to 21 whose surface has been roughened, as shown in FIG.
A dielectric oxide film 12.22 is created. Aluminum, tantalum, niobium, etc. can be used as the valve metal, but aluminum and tantalum are preferred because they are inexpensive and commonly used. Next, conductive polymer films 13 and 23 are formed on the dielectric oxide films 12 and 22 by chemical oxidation polymerization to make the surfaces electrically conductive. Next, electrolytic oxidative polymerization is performed in an electrolytic solution using a conductive polymer film formed by chemical oxidative polymerization as an anode, and a strong conductive film formed by electrolytic oxidative polymerization is formed on top of the conductive polymer film 13.23 formed by chemical oxidative polymerization. A polymer film 14.24 is obtained. Examples of conductive polymers that can be used include libirole, polythiophene, polyaniline, and polyfuran, but polypyrrole is particularly preferred from the standpoint of stability of the conductive polymer.

ついで電解酸化重合された導電性高分子膜14と弁金属
21を導電材料によシ積層を行う。更に弁金属11を一
方の電極とし、電解酸化重合された導電性高分子膜24
を他方の電極とし、エポキシ樹脂などにより外装すると
第1図の構成のコンデンサとなる。
Next, the conductive polymer film 14 that has been electrolytically oxidized and polymerized and the valve metal 21 are laminated using a conductive material. Furthermore, a conductive polymer film 24 is electrolytically oxidized and polymerized using the valve metal 11 as one electrode.
When used as the other electrode and covered with epoxy resin or the like, a capacitor having the structure shown in FIG. 1 is obtained.

以上のような栴或によると、弁金属上に形成された誘電
体酸化皮膜に応力を加えることがなく、かつ、弁金属上
に形成された誘電体酸化皮膜とリード線の距離による誘
導リアクタンスヲ低くテキるため、高電圧で、高周波特
性の優れたコンデンサが得られる。
According to Aru Sen, stress is not applied to the dielectric oxide film formed on the valve metal, and the inductive reactance due to the distance between the dielectric oxide film formed on the valve metal and the lead wire is reduced. Since the voltage is low, a capacitor with high voltage and excellent high frequency characteristics can be obtained.

実施例 以下、本発明の実施例について説明する。Example Examples of the present invention will be described below.

陽極酸化を施して表面に酸化アルミニウム誘電体を形成
させた厚さ60μmで6×5B角のアルミニウム陽極箔
を、過硫酸アンモニウム0.04mo 1 /A の水
溶液に減圧下で10分間浸漬した後、乾燥した。これを
ピロール単量体2mol/Qを含むエタノール溶液に減
圧下で10分間浸漬して、酸化アル□ニウム誘電体上に
ポリピロール薄膜を化学酸化重合法により形成させた。
A 60 μm thick, 6×5B square aluminum anode foil that has been anodized to form an aluminum oxide dielectric on its surface is immersed in an aqueous solution of ammonium persulfate of 0.04 mo 1 /A for 10 minutes under reduced pressure, and then dried. did. This was immersed in an ethanol solution containing 2 mol/Q of pyrrole monomer under reduced pressure for 10 minutes to form a polypyrrole thin film on the aluminum oxide dielectric by chemical oxidative polymerization.

ついで上記処理を行ったアルミニウム陽極箔をビロール
単量体0.2 mo 1/fiおよび支持電解質として
パラトルエンスルホン酸テトラブチルアンモニウム0.
05mo l/、f2を含むアセトニトリル中に浸漬し
た。該化学酸化重合したポリピロールを陽極とし、ステ
ンレス板を陰極として電流密度o、smA/cr!の条
件下で150分間定電流電解を行った結果、均一な黒色
のポリピロールの薄膜が表面に形成した。ついで、この
表面と、アルミニウム陽極箔を、銀ペーストによシ積層
して乾燥した。ついで第1図のように電極を取り出し、
エポキシ樹脂によシ外装し、コンデンサを完成した。得
られたコンデンサ特性は120陽において静電容量2.
2μFで誘電正接(tanδ)は1.0%で、100k
Hzにおける専価直列抵抗(ESR)は105m0で、
破壊電圧は170■であった。
Next, the aluminum anode foil subjected to the above treatment was mixed with 0.2 mo 1/fi of pyrrole monomer and 0.0 mo of tetrabutylammonium para-toluenesulfonate as a supporting electrolyte.
It was immersed in acetonitrile containing 05 mol/f2. Using the chemically oxidized polypyrrole as an anode and a stainless steel plate as a cathode, the current density is o, smA/cr! As a result of constant current electrolysis for 150 minutes under these conditions, a uniform black polypyrrole thin film was formed on the surface. This surface and aluminum anode foil were then laminated with silver paste and dried. Next, take out the electrode as shown in Figure 1,
The capacitor was completed by covering it with epoxy resin. The obtained capacitor characteristics are as follows: 120 positives, capacitance 2.
At 2 μF, the dielectric loss tangent (tan δ) is 1.0% and 100k
The dedicated series resistance (ESR) at Hz is 105m0,
The breakdown voltage was 170μ.

比較例 実施例と同様の箔を実施例と同様に電解重合1で行い、
電極を取ジ出し、エポキシ樹脂により外装し、コンデン
サを完成させた。得られたコンデンサ特性は120円に
おいて静電容量4.5μFで誘電正J妾(Ianδ)は
1.0%で、100に田にかける笠価直列抵抗(ESR
)ば103mΩで、破壊電圧はssVであった。
Comparative Example The same foil as in Example was subjected to electropolymerization 1 in the same manner as in Example.
The electrodes were removed and covered with epoxy resin to complete the capacitor. The obtained capacitor characteristics are that at 120 yen, the capacitance is 4.5 μF, the dielectric positive J value (Ian δ) is 1.0%, and the Kasada series resistance (ESR) is applied to 100 yen.
) was 103 mΩ, and the breakdown voltage was ssV.

発明の効果 以上のように本発明は、弁金属の表面に誘電体酸化皮膜
を形威し、該誘電体酸化皮膜上に酸化剤を用いて化学酸
化重合した導電性高分子膜を形成し、更に該導電性高分
子膜上に電解重合によシ得られる導電性高分子膜を形成
して、二重に形成された導電性高分子膜を固体電解質と
して用いたものに、導電材料で積層することによシ、同
じ陽極箔でも、高電圧で、高周波特性の優れたコンデン
サを実現できるものである。
Effects of the Invention As described above, the present invention forms a dielectric oxide film on the surface of a valve metal, and forms a conductive polymer film chemically oxidized and polymerized using an oxidizing agent on the dielectric oxide film, Further, a conductive polymer membrane obtained by electrolytic polymerization is formed on the conductive polymer membrane, and a conductive material is laminated on the double formed conductive polymer membrane used as a solid electrolyte. By doing so, it is possible to realize a capacitor with high voltage and excellent high frequency characteristics even with the same anode foil.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は本発明のコンデンサの一実施例を示す断面図で
ある。 11.21・・・・・・弁金属、12.22・・・・・
・誘電体酸化皮膜、13 、23・・・・・・化学酸化
重合により形成した導電性高分子膜、14 、24・・
・・・・電解重合により得られた導電性高分子膜、5・
・・・・・導電材料。
FIG. 1 is a sectional view showing an embodiment of a capacitor of the present invention. 11.21... Valve metal, 12.22...
・Dielectric oxide film, 13, 23... Conductive polymer film formed by chemical oxidative polymerization, 14, 24...
... Conductive polymer membrane obtained by electrolytic polymerization, 5.
...Conductive material.

Claims (4)

【特許請求の範囲】[Claims] (1)弁金属の表面に誘電体酸化皮膜を形成し、該誘電
体酸化皮膜上に酸化剤を用いて化学酸化重合した導電性
高分子膜を形成し、更に該導電性高分子膜上に電解重合
により得られる導電性高分子膜を形成して、二重に形成
された導電性高分子膜を固体電解質とする固体電解コン
デンサ素子を、導電材料を用いて2個以上積層したこと
を特徴とするコンデンサ。
(1) A dielectric oxide film is formed on the surface of the valve metal, a conductive polymer film is formed on the dielectric oxide film by chemical oxidation polymerization using an oxidizing agent, and then a conductive polymer film is formed on the conductive polymer film. A conductive polymer film obtained by electrolytic polymerization is formed, and two or more solid electrolytic capacitor elements are stacked using a conductive material, using the double-formed conductive polymer film as a solid electrolyte. capacitor.
(2)酸化剤を用いて化学酸化重合した導電性高分子膜
がポリピロールである請求項1記載のコンデンサ。
(2) The capacitor according to claim 1, wherein the conductive polymer film chemically oxidized and polymerized using an oxidizing agent is polypyrrole.
(3)電解重合により得られる導電性高分子膜がポリピ
ロールである請求項1記載のコンデンサ。
(3) The capacitor according to claim 1, wherein the conductive polymer film obtained by electrolytic polymerization is polypyrrole.
(4)導電材料がポリピロールまたは、カーボンまたは
銀ペーストである請求項1記載のコンデンサ。
(4) The capacitor according to claim 1, wherein the conductive material is polypyrrole, carbon, or silver paste.
JP34073289A 1989-12-29 1989-12-29 Capacitor Pending JPH03203214A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP34073289A JPH03203214A (en) 1989-12-29 1989-12-29 Capacitor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP34073289A JPH03203214A (en) 1989-12-29 1989-12-29 Capacitor

Publications (1)

Publication Number Publication Date
JPH03203214A true JPH03203214A (en) 1991-09-04

Family

ID=18339781

Family Applications (1)

Application Number Title Priority Date Filing Date
JP34073289A Pending JPH03203214A (en) 1989-12-29 1989-12-29 Capacitor

Country Status (1)

Country Link
JP (1) JPH03203214A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1073074A3 (en) * 1999-07-30 2006-06-14 Nec Tokin Corporation Solid electrolytic capacitors and method for manufacturing the same

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1073074A3 (en) * 1999-07-30 2006-06-14 Nec Tokin Corporation Solid electrolytic capacitors and method for manufacturing the same

Similar Documents

Publication Publication Date Title
JPH09293639A (en) Solid electrolytic capacitor and manufacture thereof
US20090147446A1 (en) Solid electrolytic capacitor and manufacturing method thereof
JP2950670B2 (en) Solid electrolytic capacitors
KR20210061616A (en) Solid Electrolyte Capacitor and fabrication method thereof
JP2010278360A (en) Solid electrolytic capacitor and method of manufacturing the same
JP4845781B2 (en) Manufacturing method of solid electrolytic capacitor
JP3356018B2 (en) Capacitor and manufacturing method thereof
JP2007180404A (en) Solid electrolytic capacitor and manufacturing method thereof
JP2002299181A (en) Solid electrolyte capacitor
JPH03203214A (en) Capacitor
JPH06168855A (en) Multilayer solid electrolytic capacitor and fabrication thereof
JP3490868B2 (en) Method for manufacturing solid electrolytic capacitor
JP3036787B2 (en) Manufacturing method of electrolytic capacitor
JP3548040B2 (en) Solid electrolytic capacitors
JP3800829B2 (en) Capacitor manufacturing method
JP2775762B2 (en) Solid electrolytic capacitors
JP4115359B2 (en) Electrolytic capacitor and manufacturing method thereof
JP3401447B2 (en) Solid electrolytic capacitor and method of manufacturing the same
JP2012142321A (en) Solid electrolytic capacitor and method for producing the same
JP2004319646A (en) Electrolytic capacitor and method of manufacturing thereof
JP4084862B2 (en) Manufacturing method of solid electrolytic capacitor
JP3851294B2 (en) Electrolytic capacitor
JP3232841B2 (en) Capacitor and method of manufacturing the same
JP2022144218A (en) Electrolytic capacitor and manufacturing method therefor
JP2004128048A (en) Solid electrolytic capacitor