JPH03202902A - Controller for two degrees of freedom - Google Patents

Controller for two degrees of freedom

Info

Publication number
JPH03202902A
JPH03202902A JP1344366A JP34436689A JPH03202902A JP H03202902 A JPH03202902 A JP H03202902A JP 1344366 A JP1344366 A JP 1344366A JP 34436689 A JP34436689 A JP 34436689A JP H03202902 A JPH03202902 A JP H03202902A
Authority
JP
Japan
Prior art keywords
target value
freedom
coefficient
output
degree
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP1344366A
Other languages
Japanese (ja)
Other versions
JP2845534B2 (en
Inventor
Kazuo Hiroi
広井 和男
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toshiba Corp
Original Assignee
Toshiba Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toshiba Corp filed Critical Toshiba Corp
Priority to JP1344366A priority Critical patent/JP2845534B2/en
Priority to AU62028/90A priority patent/AU611839B1/en
Priority to DE69026324T priority patent/DE69026324T2/en
Priority to US07/577,558 priority patent/US5105138A/en
Priority to EP90117107A priority patent/EP0417635B1/en
Priority to KR1019900014322A priority patent/KR940003149B1/en
Priority to CN 90107699 priority patent/CN1024953C/en
Publication of JPH03202902A publication Critical patent/JPH03202902A/en
Application granted granted Critical
Publication of JP2845534B2 publication Critical patent/JP2845534B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Landscapes

  • Feedback Control In General (AREA)

Abstract

PURPOSE:To generate a derivative action as a whole and to set P and D into two degrees of freedom by combining a PI adjustment means and a target value filter means having two primary delay elements in the P(proportion)/I (integration)/D(derivative) adjustment device of a two degrees of freedom-form. CONSTITUTION:The target value filter means 10 has a coefficient multiplication means 11 multiplying the targe value SV by the two degrees of freedom coeffi cient of a proportional gain Kp and the two degrees of freedom coefficient of derivative time, and a derivative term sharing means sharing the derivative term of the tartget value SV and a controlled variable PV by subtracting the controlled variable being the object of control from the output of the coefficient multiplication means 11 and setting it to pass through the primary delay elements. Thus, time elements can be reduced and D can be made into two degrees of freedom.

Description

【発明の詳細な説明】 [発明の目的コ (産業上の利用分野) 本発明は、2自由度形のP(比例)I(積分)D(微分
)調節装置に係わり、特にP1m節手段と2個の1次遅
れ要素を持つ目標値フィルタ手段とを組合わせることに
より、全体として微分動作を生みだし、PとDとの2自
由度化を実現する2自由度調節装置に関する。
Detailed Description of the Invention [Objective of the Invention (Industrial Application Field) The present invention relates to a two-degree-of-freedom P (proportional) I (integral) D (differential) adjusting device, and particularly relates to a P1m node means and a P1m node means. The present invention relates to a two-degree-of-freedom adjustment device that generates a differential operation as a whole by combining target value filter means having two first-order lag elements, and realizes two degrees of freedom in P and D.

(従来の技術) PIまたはPID調節装置は、プロセス制御の有史以来
あらゆる産業分野で店く利用されており、もはや計装分
野ではPID調節装置なしには成り立たなくなって来て
いる。
(Prior Art) PI or PID regulators have been widely used in all industrial fields since the beginning of process control, and it has become impossible to do without PID regulators in the instrumentation field.

従来から種々の調節方式が提案されており、現71:で
はアナログ式に代わってディジタル式の調節演算方式が
採用されてきているが、PID調節装置の王座は少しも
変わっておらず、プラント運転制御の基盤をなしている
Various adjustment methods have been proposed in the past, and in the current 71: digital adjustment calculation method has been adopted in place of the analog method, but the throne of the PID adjustment device has not changed in the slightest, and it is important for plant operation. It forms the basis of control.

このようなPID、1節の基本式は、 で表される。但し、MV(s)は操作信号、E (s)
は偏差、Krは比例ゲイン、TIは積分時間、Toは微
分時間、Sはラプラス演算子、(1/η)は微分ゲイン
である。この(1)式は偏差信号E (s)をPID、
11節演算するもので、偏差PID調節と呼ばれている
The basic formula of such a PID, clause 1, is expressed as follows. However, MV (s) is the operation signal, E (s)
is the deviation, Kr is the proportional gain, TI is the integral time, To is the differential time, S is the Laplace operator, and (1/η) is the differential gain. This equation (1) defines the deviation signal E (s) as PID,
This is an 11-section calculation and is called deviation PID adjustment.

通常、王業的に使用するPID;i13節演算方式は、
多品種少量生産その他ユーザの多岐にわたる要望から目
標値SVがステップ的に変化することが多く、この場合
にD(微分)動作が働いていると偏差E (s)が拡大
し、それに伴ってPID調節演算出力である操作信号M
V(s)が急激な変化を起こす。その結果、制御対象に
ショックを与えたり、或いは目標値追従特性がオーバシ
ュートしたりすることなどから、プロセス値(測定値)
Pvのみについて微分動作を実行する。いわゆる「測定
値微分先行形PIDJ!J節方式」が採用されている。
Usually, the PID used professionally; i13 clause calculation method is:
The target value SV often changes in steps due to high-mix, low-volume production and a wide range of user requests. In this case, if the D (differential) operation is working, the deviation E (s) will expand, and the PID will increase accordingly. Operation signal M which is the adjustment calculation output
V(s) causes a sudden change. As a result, the process value (measured value)
Perform a differential operation on Pv only. The so-called "measured value differential preceding type PIDJ!J clause method" is adopted.

この測定値微分先行形p r D:J3ffi方式は、
偏差の急峻な変動およびその拡大を防ぐために、プロセ
ス値PVに対してのみ微分項を働かせて目標値の変動を
焦損する方式であって、下記する(2)式の演算式で表
わすことができる。
This measured value differential leading form p r D: J3ffi method is
In order to prevent steep fluctuations in deviations and their expansion, this is a method in which a differential term is applied only to the process value PV to focus the fluctuations in the target value, and can be expressed by the calculation formula (2) below. .

但し、上式においてP V (s)はプロセス値である
However, in the above formula, P V (s) is a process value.

しかし、以上述べたようなPID調節は1自由度PID
調節演算方式と呼ばれ、PIDパラメータが1組しか設
定できない、いわゆる1自由度方式であり、当然外乱抑
制特性と目標値追従特性との両方を同時に最適化させる
ことはできない。
However, the PID adjustment described above is a PID with one degree of freedom.
This is called an adjustment calculation method and is a so-called one-degree-of-freedom method in which only one set of PID parameters can be set, and it is naturally impossible to optimize both the disturbance suppression characteristic and the target value tracking characteristic at the same time.

般に、PIまたはPID制御を用いた制御系においては
、外乱抑制特性と目標値追従特性との両機能を満足させ
る必要がある。前者の外乱抑制特性は外乱が変化したと
きに外乱の影響をいかに最適に抑制するかであり、後者
の目標値追従特性は目標値を変化させたときにプロセス
値がいかに最適に目標値に追従するかを示すものである
。通常のPIまたはPID制御系は、外乱変化の影響を
最適に抑制するPIまたはPIDパラメータ値と目標値
変化に対して最適に追従するPIまたはPIDパラメー
タ値とは大きく異なっており、この両者の特性をl1i
l n!7に最適化することができず、二律背反の関係
にある。つまり、外乱変化の影響を最適に抑制するよう
にPIDパラメータ値を設定すると目標値追従特性が振
動的となり、逆に目標値変化に対して最適に追従するよ
うにPIDパラメータ値を設定すると外乱抑制特性が非
常に甘くなってしまう。
Generally, in a control system using PI or PID control, it is necessary to satisfy both the disturbance suppression characteristics and the target value tracking characteristics. The former disturbance suppression characteristic is how to optimally suppress the influence of disturbance when the disturbance changes, and the latter target value tracking characteristic is how the process value optimally follows the target value when the target value is changed. This shows whether the In a normal PI or PID control system, the PI or PID parameter value that optimally suppresses the influence of disturbance changes and the PI or PID parameter value that optimally follows target value changes are significantly different, and the characteristics of both are very different. l1i
l n! 7 cannot be optimized, and there is a trade-off between them. In other words, if the PID parameter value is set to optimally suppress the influence of disturbance changes, the target value tracking characteristic will become oscillatory, and conversely, if the PID parameter value is set to optimally follow the target value change, the disturbance will be suppressed. The characteristics become very weak.

そこで、この種のPID調節装置においては、外乱抑制
特性と目標値追従特性とを同時に最適化する技術の出現
が望まれていた。
Therefore, in this type of PID adjustment device, it has been desired to develop a technology that simultaneously optimizes the disturbance suppression characteristics and the target value tracking characteristics.

これに対して、1963年、I 5sac、 M。On the other hand, in 1963, I5sac, M.

Horovitzによって2組のPIDパラメータをそ
れぞれ独立して設定できる2自由度PIまたはPIDア
ルゴリズム(TwODcgrccs  P 1(または
P I D ) A IgorlLha二以下、2DO
FPIDと総称する)の基本概念が発表され、近年、我
が国でも上記基本概念の下に2DOF  PIDが突圧
化されてきており、プラント運転制御の高度化に大きく
貢献しつつある。
Two degrees of freedom PI or PID algorithm (TwODcgrccs P 1 (or P I D ) A IgorlLha 2 or less, 2 DO
The basic concept of FPID (collectively referred to as FPID) was announced, and in recent years, 2DOF PID has been developed in Japan based on the above basic concept, and is greatly contributing to the advancement of plant operation control.

第6図は従来の2DOF  PI調節装置のブロック構
成を示す図である。この装置は、測定値微分先行形PI
D調節装置の入力端に目標値フィルタ手段H(s)を付
加した構成である。この目標値フィルタ手段H(s)1
は、目標値SVに対して進みまたは遅れをもたせる進み
/遅れ要素1□、目標値SVに対して微分動作を遅らす
シリアル接続された不完全微分要素12.13、前記進
み/遅れ要$1.の出力と不完全微分要素1jの出力と
を加算する加算手段14″Jで構成され、この目標値フ
ィルタ手段H(S)1からの出力Svoを測定値微分先
行形PIDの偏差演算手段2に供給する。
FIG. 6 is a diagram showing a block configuration of a conventional 2DOF PI adjustment device. This device is a measurement value differential leading type PI
This configuration has a target value filter means H(s) added to the input end of the D adjustment device. This target value filter means H(s)1
is a lead/lag element 1□ that leads or lags the target value SV, a serially connected incomplete differential element 12.13 that delays the differential operation with respect to the target value SV, and the lead/lag element $1. The output Svo from the target value filter means H(S)1 is sent to the deviation calculation means 2 of the measured value differential type PID. supply

この測′)JA値微分先行形PIDは、偏差演算手段2
にて目標値フィルタ手段H(s)1の出力SV。
This measurement') JA value differential leading type PID is calculated by the deviation calculating means 2.
The output SV of the target value filter means H(s)1.

と制御対象3からの制御量PVとの偏差Eを求めた後、
この偏差Eを非線形手段4に導入し、ここで不感・jl
)処理、偏差自乗処理、方向性処理などの非線形処理を
行ってPI調節手段5に導き、前記(2)式の前段側の
PI調節演算を行う。そして、このPI調節演算手段5
で得られたPI調節演算出力を減算手段6に供給する。
After finding the deviation E between and the controlled variable PV from the controlled object 3,
This deviation E is introduced into the nonlinear means 4, and here the insensitivity jl
) processing, deviation squaring processing, directionality processing, and other non-linear processing, and is guided to the PI adjustment means 5, where the PI adjustment calculation on the first stage side of the equation (2) is performed. Then, this PI adjustment calculation means 5
The PI adjustment calculation output obtained in is supplied to the subtracting means 6.

また、制御対象3からの制御量Pvを不完全微分要素7
に導き、ここで前記(2)式の後段側の不完全微分演算
を行い、得られた不完全微分演算出力を減算手段6に導
入する。いわゆる微分バイパスを行う。この減算手段6
では前記PI調節演算出力から不完全微分演算出力を成
算し、得られた信号を操作信号MVとして加算手段8に
導き、ここで外乱信号りと加算合成して制御対象3に印
加することにより、目標値5Vo−制御fiPVとなる
ように制御する。
In addition, the control amount Pv from the controlled object 3 is determined by the incomplete differential element 7.
Here, an incomplete differential operation is performed on the latter side of the equation (2), and the obtained incomplete differential operation output is introduced into the subtracting means 6. A so-called differential bypass is performed. This subtraction means 6
Then, the incomplete differential calculation output is calculated from the PI adjustment calculation output, and the obtained signal is led to the addition means 8 as the operation signal MV, where it is added and combined with the disturbance signal and applied to the controlled object 3. , target value 5Vo-control fiPV.

従って、以上のような構成によれば、対外乱抑制制御ア
ルゴリズムCo(s)は、 で表され、一方、対l」標値制御アルゴリズムC5(s
)は、 で表される。この式においてαは比例ゲインの2自由度
化係数、γ0は積分時間の2自画度化係数となり、前記
(3)式に基づいて外乱抑制特性が最適となるようにに
、、T+ 、Toを決定した後、さらに前記(4)式に
基づいて目標値追従特性が最適となるような2自由度化
係数α、γ。を決定するので、2自由度化が達成できる
Therefore, according to the above configuration, the disturbance suppression control algorithm Co(s) is expressed as follows, while the anti-disturbance control algorithm C5(s)
) is represented by . In this equation, α is a two-degree-of-freedom coefficient for the proportional gain, and γ0 is a two-degree-of-freedom coefficient for the integral time. Based on the above equation (3), T+ and To are set to optimize the disturbance suppression characteristic. After determining, the two-degree-of-freedom coefficients α and γ that optimize the target value tracking characteristic are further determined based on the above equation (4). , it is possible to achieve two degrees of freedom.

(発明カリq決しようとする課題) しかしながら、以上述べた2DOF  PI調節装置は
種々の特長を持っていながら、一方では次のような欠陥
をもっている。
(Problems to be Solved by the Invention) However, although the 2DOF PI adjustment device described above has various features, it also has the following defects.

■、本来、2自由度化係数αとγ。は相互に関連を持た
なければならないが、従来の制御方式では(4)式に示
すようにαとγ。は全く独立しているので、比例ゲイン
の2自由度化係数αを変えたとき、それに伴って別個に
γ。も変えなければならず、非常に調整に時間がかかる
■ Originally two degrees of freedom coefficients α and γ. must have a relationship with each other, but in the conventional control method, α and γ must have a relationship with each other, as shown in equation (4). are completely independent, so when the two-degree-of-freedom coefficient α of the proportional gain is changed, γ is changed separately accordingly. It also takes a lot of time to make adjustments.

■、また、この種の計装プラントにおいては、数十〜数
千個の制御ループを使用している場合が多いが、これら
各制御ループにそれぞれ2DOFPI化のために4個の
時間的要素(進み/遅れ要素11.不完全微分手段1□
、1..7)を用いていることになり、コスト的に非常
に高くなり、システム全体の負荷が増大し、またデータ
処理の高速化および低容量化を果たせない問題がある。
■Also, in this type of instrumentation plant, tens to thousands of control loops are often used, and each of these control loops has four time elements ( Lead/lag element 11. Imperfect differentiator 1□
, 1. .. 7), the cost becomes very high, the load on the entire system increases, and there are problems in that it is not possible to achieve high-speed data processing and low-capacity data processing.

■、さらに、実際のプラント制御では偏差に対して非線
形処理を行うことが多いが、この非線形処理が簡単、正
確、かつ、自由自作にできない。
(2) Furthermore, in actual plant control, nonlinear processing is often performed on deviations, but this nonlinear processing cannot be easily, accurately, and freely created.

すなわち、実際のプラント制御においては、制御対象3
の特性に応じて偏差Eのみでは対応できず、px:Ar
t1手段5の入力側に非線形手段4を設けて、偏差信号
Eに対して不感シ1)、偏差自乗、方向性、ギャップな
どの非線形処理を多用しているが、不完全微分要素7が
PI調ff1f−段5の出力側にバイパスされているの
で、非線形処理の対象外となり、そのため非線形処理が
正確に行えず、これに伴って制御性を低下させている問
題がある。
In other words, in actual plant control, the controlled object 3
Depending on the characteristics of px:Ar
A nonlinear means 4 is provided on the input side of the t1 means 5, and nonlinear processing such as insensitivity 1), squared deviation, directionality, and gap is used for the deviation signal E, but the incomplete differential element 7 is Since it is bypassed to the output side of the tuning ff1f-stage 5, it is not subject to nonlinear processing, and therefore nonlinear processing cannot be performed accurately, resulting in a problem of reduced controllability.

特に、今後、益々プラント運転制御システムの高精度化
、速応化、最適化、安全化が求められてくるが、これら
の′Ii請に十分応えるためにもプラントに多用されて
いるファンダメンタルズなPIDの2DOF  PID
化が必須であり、そのためには以上のような欠陥を除虫
することが要望されている。
In particular, in the future, plant operation control systems will increasingly be required to have higher precision, faster response, optimization, and safety, and in order to fully meet these demands, fundamental PID, which is often used in plants, is required. 2 DOF PID
Therefore, it is necessary to eliminate the above-mentioned defects.

本発明は上記実情に鑑みてなされたもので、比例ゲイン
の2自由度化係数αを変更したとき微分項のゲインも自
動的に変化でき、より少ない時間的要素を用いて負荷の
低減化、高速化処理を可能とする2自由度調節装置を提
供することを目的とする。
The present invention has been made in view of the above-mentioned circumstances, and when the two-degree-of-freedom coefficient α of the proportional gain is changed, the gain of the differential term can also be changed automatically, and the load can be reduced using fewer time elements. An object of the present invention is to provide a two-degree-of-freedom adjustment device that enables high-speed processing.

さらに、本発明の他の目的は、微分動作を含めて非線形
処理を正確、簡単、自由自在に行って制御性を向上させ
得る2自由度調節装置を提供することにある。
Furthermore, another object of the present invention is to provide a two-degree-of-freedom adjustment device that can accurately, easily, and freely perform nonlinear processing including differential operation to improve controllability.

[発明の構成] (課題を解決するための手段) 請求項1に対応する発明は上記課題を解決するために、
目標値を目標値フィルタ手段を通して得られた目標値フ
ィルタ出力と制御対象の制g4量との偏差を受けてP(
比例)およびI(積分)調節手段がP1調節演算を行い
、得られた調節演算出力である操作信号に外乱信号を加
えて前記制御対象に印加する調節装置において、前記目
標値フィルタ手段は、前記目標値に比例ゲインの2自由
度化係数および微分時間の2自由度化係数を乗算する係
数乗算手段と、この係数乗算手段の出力から前記制御対
象の制御量を減算し1次遅れ要素を通すことにより、目
標値および制御量の微分項を共用化する微分項共用化手
段とを備え、微分特181の2自由度化を実現する構成
である。
[Structure of the invention] (Means for solving the problem) In order to solve the above problem, the invention corresponding to claim 1 has the following features:
P(
In the adjustment device in which a proportional) and I (integral) adjustment means performs a P1 adjustment calculation, and a disturbance signal is added to an operation signal that is the obtained adjustment calculation output and applied to the controlled object, the target value filter means a coefficient multiplier for multiplying the target value by a two-degree-of-freedom coefficient for the proportional gain and a two-degree-of-freedom coefficient for the differential time, and subtracting the controlled variable of the controlled object from the output of the coefficient multiplier and passing it through a first-order lag element. By this, the configuration is provided with a differential term sharing means for sharing the differential term of the target value and the control amount, and realizes two degrees of freedom of the differential characteristic 181.

次に、請求項2に対応する発明は、請求項1に対応する
発明に、さらに前記目標値に比例ゲインの2自由度化係
数を乗算するゲイン係数乗算手段、目標値から前記ゲイ
ン係数乗算手段の出力を減算して得られた減算出力に1
次遅れを持たせる第1の1次遅れ要素、この第1の1次
遅れ要素の出力を前記ゲイン係数乗算手段の出力に加算
する手段等からなる比例ゲインの2自由度化手段を付加
したものである。
Next, the invention corresponding to claim 2 is the invention corresponding to claim 1, further comprising: gain coefficient multiplication means for multiplying the target value by a two-degree-of-freedom coefficient of the proportional gain; and gain coefficient multiplication means from the target value. 1 to the subtracted output obtained by subtracting the output of
Added two-degree-of-freedom means for proportional gain consisting of a first first-order lag element that provides a second-order lag, and means for adding the output of the first first-order lag element to the output of the gain coefficient multiplication means. It is.

さらに、請求項3に対応する発明は、制aXの微分項を
目標値フィルタ手段に取り込んだとき、偏差演算手段と
P I :14111手段との間に非線形手段を設け、
微分成分をも非線形処理を行う構成である。
Furthermore, the invention corresponding to claim 3 provides a nonlinear means between the deviation calculation means and the P I :14111 means when the differential term of the control aX is taken into the target value filter means,
This configuration also performs nonlinear processing on differential components.

(作用) 従って、請求項112の発明においては、以上のような
手段を講じたことにより、目標値フィルタ手段の中の比
例ゲインを2自由度化するための進み/遅れ要素および
微分時間を2自由度化するための不完全微分要素を全て
人力に比例する静的要素と人力に関連して1次遅れで変
化する動的要素とに分解し、目標値フィルタ手段の中に
第1゜第2の1次遅れ要素を設け、目標値、制御量の微
分項を前記第1.第2の1次遅れ要素で共用化し、1、
’iJ時に目標値、制御量のゲインh1変の1次遅れを
共用化しつつ、簡1iな構成でPとDの2自由度化を実
現するものである。
(Function) Therefore, in the invention of claim 112, by taking the above measures, the lead/lag element and the differential time for making the proportional gain in the target value filter means have two degrees of freedom. All incomplete differential elements for obtaining degrees of freedom are decomposed into static elements proportional to human power and dynamic elements that change with a first-order lag in relation to human power, and the first 2 first-order delay elements are provided, and the differential term of the target value and control amount is set as the first-order delay element. shared by the second first-order lag element, 1,
While sharing the target value and the first-order delay of the gain h1 change of the controlled variable at the time of iJ, two degrees of freedom of P and D are realized with a simple configuration.

さらに、請求項3の発明では、目標値の微分項だけでな
く、制[1の微分項をも目標値フィルタ手段に取り込ん
で1次遅れ要素を通すことにより、微分動作による非線
形処理を適切に行うものである。
Furthermore, in the invention of claim 3, not only the differential term of the target value but also the differential term of the control [1] is taken into the target value filter means and passed through the first-order lag element, so that the nonlinear processing by the differential operation can be appropriately performed. It is something to do.

(:、ljk例) 以下、本発明の大施例について図面を参照して説明する
。第1図は本発明の2DOF  PID調節装置の構成
を示す図である。なお、本装置において第6図と同一部
分には同一7:)号を付して詳しい説明は省略する。こ
の2DOF  PID調節装置は、目標値SVを受けて
比例ゲインに、と微分時間TOに関して2自由度化する
ための演算処理を行う目標値フィルタ手段1oのほか、
この目標値フィルタ手段20から得られた目標値フィル
タ出力Svoと制御量Pvとを受けて偏差演算手段2に
より偏差E−3Vo−PVを求めた後、この偏差Eを必
要に応じて非線形手段4で非線形処理を行ってPI調節
手段5に導き、ここでPI調節演算を行なって操作信号
MVを得るPIアルゴリズム実行部分と、このPIアル
ゴリズム実行部分によって得られた操作信号MVに加算
手段8にて外乱信号りを加算して制御対象3に印加し、
5v−svo−pvとなるように制御される制御対象部
分とからなっている。
(:, ljk example) Hereinafter, a major example of the present invention will be described with reference to the drawings. FIG. 1 is a diagram showing the configuration of a 2DOF PID adjustment device of the present invention. In this device, the same parts as those in FIG. 6 are given the same reference numeral 7:), and detailed explanation will be omitted. This 2DOF PID adjustment device includes a target value filter means 1o that receives the target value SV and performs arithmetic processing to obtain a proportional gain and two degrees of freedom regarding the differential time TO.
After receiving the target value filter output Svo obtained from the target value filter means 20 and the control amount Pv, the deviation calculation means 2 calculates the deviation E-3Vo-PV, and then calculates the deviation E by the non-linear means 4 as necessary. A PI algorithm execution section performs nonlinear processing and guides it to the PI adjustment means 5, and performs a PI adjustment calculation here to obtain the operation signal MV, and an addition means 8 adds the operation signal MV obtained by this PI algorithm execution section. Adding the disturbance signal and applying it to the controlled object 3,
5v-svo-pv.

前記目標値フィルタ手段10は、比例ゲインの2自由度
化と微分時間の2自由度化とを実現し、かつ、これらの
2自由度化に際し従来のバイパス構成をとる不完全微分
手段7の微分項を当該目標値フィルタ手段10に取り込
むとともに、制御量。
The target value filter means 10 realizes two degrees of freedom for the proportional gain and two degrees of freedom for the differentiation time, and when achieving these two degrees of freedom, the differentiation of the incomplete differentiator 7 that takes a conventional bypass configuration is achieved. The term is taken into the target value filter means 10, and the controlled variable.

目標値の微分および目標値の比例ゲイン、微分時間の1
次遅れ等の」(用化を実現するために、次のような構成
としたものである。
Differential of target value, proportional gain of target value, 1 of differential time
In order to realize the practical use of "second delay, etc.", the following configuration was adopted.

先ず、比例ゲインの2自由度化構成について述べる。l
:I標値SVに比例ゲインの2自由化係数αを乗するゲ
イン係数乗算手段11を有し、ここで係数αを乗算して
滉られた出力は加算手段12および減算手段13に送ら
れる。この減算手段13は目標値SVからゲイン係数乗
算手段11の出力α・SVを減算し、得られた減算出力
は減算手段14.1次遅れ要素15および加算手段16
に経由して加算手段12に導入し、この加算手段12に
て加算手段16の出力を先のゲイン係数乗算手段11の
出力に加算合成することにより、比例ゲインの2自由度
化を実現する。
First, a two-degree-of-freedom configuration of the proportional gain will be described. l
:I has a gain coefficient multiplication means 11 which multiplies the standard value SV by a proportional gain 2 liberalization coefficient α, and the output obtained by multiplying the coefficient α here is sent to the addition means 12 and the subtraction means 13. This subtraction means 13 subtracts the output α·SV of the gain coefficient multiplication means 11 from the target value SV, and the obtained subtraction output is obtained by subtracting means 14, first-order lag element 15 and addition means 16.
The output of the adding means 16 is added and synthesized by the adding means 12 to the output of the gain coefficient multiplication means 11, thereby realizing two degrees of freedom of the proportional gain.

次に、微分時間の2a由度化構成について述べる。前6
己ゲイン係数乗算手段11のゲイン係数乗算出力を微分
時間の2自由度化係数γを設定してなる目間係数乗算手
段17に導き、ここでゲイン係数乗算出力に微分時間の
2自由度化係数γを乗算し、得られた時間係数乗算手段
17の出力を減算手段18に導入する。この減算手段1
8では時間係数乗算手段17の出力から制御対象3の制
御14 P Vを減算した後、除算手段19に導入する
Next, a configuration in which the differential time is given a 2a degree of freedom will be described. front 6
The gain coefficient multiplication output of the self-gain coefficient multiplication means 11 is guided to the interval coefficient multiplication means 17, which is configured by setting a two-degree-of-freedom coefficient γ of the differential time, and here, the gain coefficient multiplication output is multiplied by the two-degree-of-freedom coefficient γ of the differential time. γ is multiplied, and the obtained output of the time coefficient multiplication means 17 is introduced into the subtraction means 18. This subtraction means 1
In step 8, the control 14 P V of the controlled object 3 is subtracted from the output of the time coefficient multiplication means 17 and then introduced into the division means 19.

この除算手段1つの出力は2分岐され、その一方は直接
減算手段20に導入され、他方は1次遅れ要素21を経
由して減算手段21に送られ、ここで先の除算手段19
の出力から1次遅れ要素21の出力を減算する。そして
、この減算手段20の減算出力を2分岐し、その一方は
加算手段16に直接入力し、他方は減算手段14で減算
した後、1次遅れ要素15を経由して加算手段16に導
く。
The output of one dividing means is branched into two, one of which is directly introduced into the subtracting means 20, and the other is sent to the subtracting means 21 via the first-order delay element 21, where it is sent to the subtracting means 21 from the previous dividing means 19.
The output of the first-order lag element 21 is subtracted from the output of . Then, the subtracted output of the subtracting means 20 is branched into two branches, one of which is input directly to the adding means 16, and the other is subtracted by the subtracting means 14 and then guided to the adding means 16 via the first-order delay element 15.

ここで、1次遅れ要素15の出力と減算手段20の出力
とを加算合成し、この加算合成値が最終的に前記加算手
段12にて前記ゲイン係数乗算手段11の出力と加算し
、目標値フィルタ出力S V 。
Here, the output of the first-order lag element 15 and the output of the subtracting means 20 are added and combined, and this summed value is finally added to the output of the gain coefficient multiplication means 11 in the adding means 12 to obtain a target value. Filter output SV.

を得、前記偏差演算手段2に導入する構成となっている
is obtained and introduced into the deviation calculation means 2.

次に、以上のような目標値フィルタ手段10の構成を採
用した理由について説明する。従来例である第6図に示
す進み/遅れ要素11 (第2図a)を等価変換すると
、第2図(b)の如く構成となる。つまり、進み/遅れ
要素IIは、 (1+α・T1 ・s)/ (1,+T+  ・S)で
表されるが、この式は(5)式のように置換できる。
Next, the reason why the configuration of the target value filter means 10 as described above is adopted will be explained. When the lead/lag element 11 (FIG. 2a) shown in FIG. 6, which is a conventional example, is equivalently converted, it has a configuration as shown in FIG. 2(b). That is, the lead/lag element II is expressed as (1+α·T1·s)/(1,+T+·S), but this equation can be replaced as in equation (5).

と、 ・・・(5) 従って、この(5)式を等価的な機能ブロックで表せば
第2図(b)のようになる。
(5) Therefore, if this equation (5) is expressed as an equivalent functional block, it becomes as shown in FIG. 2(b).

次に、第6図に示す不完全微分要素13 (第3図a)
は、 (T I  ・s)/(1+T+  ・S)で表される
が、この式を変形すると ・・・(7) となる。そこで、この式を機能ブロックで表せば第4図
(b)のようになる。
Next, the incomplete differential element 13 shown in Fig. 6 (Fig. 3 a)
is expressed as (T I ·s)/(1+T+ ·S), but when this formula is transformed, it becomes...(7). Therefore, if this equation is expressed as a functional block, it will become as shown in FIG. 4(b).

従って、第2図ないし第4図の機能ブロックについて目
標値フィルタ手段10に適用すると、第1図のような構
成となり、このときの対外乱制御アルゴリズムCo(s
)は、 となる。そこで、この式を機能ブロックで表せば第3図
(b)のようになる。従って、この第2図と第3図とか
ら明らかなように1次遅れ要素15を共用化できる。
Therefore, when the functional blocks shown in FIGS. 2 to 4 are applied to the target value filter means 10, the configuration shown in FIG. 1 is obtained, and the disturbance control algorithm Co(s
) becomes . Therefore, if this equation is expressed as a functional block, it will be as shown in FIG. 3(b). Therefore, as is clear from FIGS. 2 and 3, the primary lag element 15 can be shared.

次に、fiI6図に示す不完全微分要素7(第4図a)
は、 (To−s)/ (1+η・TD−8)で表されるが、
この不完全1微分要:A7を変形するとなり、一方、対
目標値制御アルゴリズムC5v(S)は、 l  a゛r°T°” S > =Kp  (α+□+ TI IIS 1+η・’ro @s となる。その結果、これら(8)式および(9)式とか
ら明らかなように、比例ゲインの2自由度化係数αを変
えたとき、対外乱制御アルゴリズムの比例ゲインに、は
そのままで、対目標値比例ゲインに1・・αを変えるこ
とができ、一方、微分時間の2自由度化係数γを変えた
とき、対外乱制御アルゴリズムの微分時間はそのままで
、対目標値の微分時間のみを変えることができる。つま
り、PとDの完全2自由度化を実現できることになる。
Next, the incomplete differential element 7 shown in fiI6 (Figure 4a)
is expressed as (To-s)/(1+η・TD-8),
This incomplete differential requires: A7 is transformed, and on the other hand, the target value control algorithm C5v(S) is: As a result, as is clear from these equations (8) and (9), when the two-degree-of-freedom coefficient α of the proportional gain is changed, the proportional gain of the disturbance control algorithm remains unchanged, The proportional gain relative to the target value can be changed by 1...α, and on the other hand, when the two-degree-of-freedom coefficient γ of the differential time is changed, the differential time of the disturbance control algorithm remains the same, but only the differential time relative to the target value is changed. In other words, it is possible to realize complete two degrees of freedom for P and D.

従って、以上のような実施例によれば、目標値および制
御量を除算手段19および1次遅れ手段21を経由させ
て目標値、制御量の微分項を共用化し、さらに従来の進
み/遅れ要素1および不完全微分要素1.の1次遅れを
1次遅れ要素15にて共用化することにより、従来の4
pIの時間要素をその半分である2個に減らすことがで
き、これによってコストの低減化が図れ、かつ、制御シ
ステムの負荷の減少、高速化および低容量化を実現でき
、しかも時間要素の数を半減させつつPとDの完全2自
由度化を実現できる。
Therefore, according to the embodiment described above, the target value and the controlled variable are passed through the dividing means 19 and the first-order delay means 21 to share the differential term of the target value and the controlled variable, and the conventional lead/lag element is 1 and incomplete differential element 1. By sharing the first-order delay in the first-order delay element 15, the conventional four
It is possible to reduce the time element of pI to 2, which is half of that, which reduces costs, reduces the load on the control system, increases speed, and reduces capacity, and also reduces the number of time elements. It is possible to achieve complete two degrees of freedom for P and D while reducing the amount by half.

また、比例ゲインの2自由度化係数αと微分時間の2自
由度化係数γがそれぞれ独立設定方式であるので、係数
の設定作業が非常に容易である。
Further, since the two-degree-of-freedom coefficient α of the proportional gain and the two-degree-of-freedom coefficient γ of the differential time are set independently, the work of setting the coefficients is very easy.

しかも、比例ゲインの2自由度化係数αを変更したとき
、(9)式に示すように微分項のゲインも自動修正され
、係数の調整が非常に簡単となる。
Furthermore, when the two-degree-of-freedom coefficient α of the proportional gain is changed, the gain of the differential term is also automatically corrected as shown in equation (9), making adjustment of the coefficient very simple.

さらに、PI#節手段の後続にバイパスされていた従来
の不完全微分要素7を除去し、制御量の微分項を目標値
フィルタ手段10に取り込むことにより、微分成分を的
確に非線形処理を行うことができる。
Furthermore, by removing the conventional incomplete differential element 7 that was bypassed after the PI# node means and taking the differential term of the controlled variable into the target value filter means 10, the differential component can be accurately nonlinearly processed. I can do it.

従って、本発明装置は全面的に2自由度化時代に移行さ
せることが可能であり、種々の産業分野において大きく
貢献させることができる。
Therefore, the device of the present invention can completely transition to the era of two degrees of freedom, and can make a significant contribution to various industrial fields.

なお、上記実施例では、ゲイン係数乗算手段11の出力
に微分時間の2自由度化係数γを乗算するようにしたが
、例えば第5図に示すように目標値SVに微分■、7間
の2自由度化係数γを直接乗算する構成でもよい。従っ
て、このような構成によれば、前記(8)式に対応する
式は全く同一であり、(9)式に対応する式は、 ・・・(10) となり、比例ゲインの2自由度化係数αを変えたとき、
微分項のゲインは自動修正されなくなるという点が異な
る。
In the above embodiment, the output of the gain coefficient multiplication means 11 is multiplied by the two-degree-of-freedom coefficient γ of the differential time, but for example, as shown in FIG. A configuration in which the two-degree-of-freedom coefficient γ is directly multiplied may also be used. Therefore, according to such a configuration, the equation corresponding to the above equation (8) is exactly the same, and the equation corresponding to equation (9) is as follows. When changing the coefficient α,
The difference is that the gain of the differential term is no longer automatically corrected.

その他、本発明はその要旨を逸脱しない範囲で種々変形
して実施できる。
In addition, the present invention can be implemented with various modifications without departing from the gist thereof.

[発明の効果] 以上説明したように本発明によれば次のような種々の効
果を奏する。
[Effects of the Invention] As explained above, the present invention provides the following various effects.

先ず、請求項1の発明においては、目標値と制御量との
微分項のノ(相比を図ることができ、これにより時間要
素を減らすことができ、しかもDの2自由度化を実現で
きる。
First, in the invention of claim 1, it is possible to obtain the phase ratio of the differential term between the target value and the controlled amount, thereby reducing the time element and realizing two degrees of freedom in D. .

次に、請求項2の発明では、目標値と制御量との微分項
の共用化のみならず、従来の進み/遅れ要素および不完
全微分要素の1次遅れを1次遅れ要素にて共用化でき、
これにより時間要素を半減させてコストの低減化および
負荷の軽減化、処理の高速化が図れ、しかもPとDの完
全2自由度化を実現できる。また、比例ゲインの2自由
度化係数の変更により、微分項のゲインを自動修正でき
、係数の:J8整の簡素化を図ることができる。
Next, in the invention of claim 2, not only the differential term between the target value and the controlled variable is shared, but also the first-order lag of the conventional lead/lag element and the incomplete differential element is shared by the first-order lag element. I can do it,
As a result, it is possible to reduce the time factor by half, reduce costs, reduce the load, and speed up processing, and moreover, it is possible to achieve complete two degrees of freedom in P and D. Furthermore, by changing the two-degree-of-freedom coefficient of the proportional gain, the gain of the differential term can be automatically corrected, and the :J8 adjustment of the coefficient can be simplified.

さらに、請求項3の発明は、P■のみならず、Dについ
ても的確に非線形処理でき、種々の制御に十分対処でき
る。
Furthermore, the invention according to claim 3 can perform nonlinear processing not only for P■ but also for D, and can sufficiently deal with various types of control.

【図面の簡単な説明】[Brief explanation of drawings]

第1図ないし第4図は本発明に係わる2自由度調節装置
の実施例を説明するために示したもので、第1図は2自
由度調節装置の機能ブロック図、第2図ないし第4図は
時間要素の等価食換を示す機能ブロック図、第5図は本
発明装置の変形例を示す目標値フィルタ手段の機能ブロ
ック図、第6図は従来装置の機能ブロック図である。 2・・・偏差演算子8段、3・・・制御対象、4・・・
非線形手段、5・・・PI調節手段、8・・・加算手段
、10・・・目標値フィルタ手段、11・・・ゲイン係
数乗算手段、12.16・・・加算手段、13,14,
18.20・・・減算手段、15・・・1次遅れ要素、
17.17a・・・肋間係数乗算手段、1つ・・・除算
手段、21・・・1次遅れ要素。 第2図
1 to 4 are shown to explain an embodiment of a two-degree-of-freedom adjusting device according to the present invention, and FIG. 1 is a functional block diagram of the two-degree-of-freedom adjusting device, and FIG. FIG. 5 is a functional block diagram showing an equivalent replacement of time elements, FIG. 5 is a functional block diagram of a target value filter means showing a modification of the device of the present invention, and FIG. 6 is a functional block diagram of a conventional device. 2...8 stages of deviation operators, 3...Controlled object, 4...
Nonlinear means, 5... PI adjustment means, 8... Adding means, 10... Target value filtering means, 11... Gain coefficient multiplication means, 12.16... Adding means, 13, 14,
18.20... Subtraction means, 15... First-order lag element,
17.17a... Intercostal coefficient multiplication means, one... Division means, 21... First-order lag element. Figure 2

Claims (3)

【特許請求の範囲】[Claims] (1)目標値を目標値フィルタ手段を通して得られた目
標値フィルタ出力と制御対象の制御量との偏差を受けて
P(比例)およびI(積分)調整手段がPI調節演算を
行い、得られた調節演算出力である操作信号を前記制御
対象に印加する調節装置において、 前記目標値フィルタ手段は、 前記目標値に比例ゲインの2自由度化係数および微分時
間の2自由度化係数を乗算する係数乗算手段と、この係
数乗算手段の出力から前記制御対象の制御量を減算し1
次遅れ要素を通すことにより、目標値および制御量の微
分項を共用化する微分項共用化手段とを備え、微分時間
の2自由度化を実現することを特徴とする2自由度調節
装置。
(1) The P (proportional) and I (integral) adjusting means performs PI adjustment calculation in response to the deviation between the target value filter output obtained through the target value filter means and the controlled variable of the controlled object, and the target value is obtained. In the adjustment device that applies an operation signal that is an adjustment calculation output to the controlled object, the target value filter means multiplies the target value by a two-degree-of-freedom coefficient of a proportional gain and a two-degree-of-freedom coefficient of a differential time. a coefficient multiplication means, and subtracting the control amount of the controlled object from the output of the coefficient multiplication means;
A two-degree-of-freedom adjustment device characterized by comprising a differential term sharing means for sharing a differential term of a target value and a controlled variable by passing a second delay element, thereby achieving two degrees of freedom in differential time.
(2)目標値を目標値フィルタ手段を通して得られた目
標値フィルタ出力と制御対象の制御量との偏差を受けて
P(比例)およびI(積分)調節手段がPI調節演算を
行い、得られた調節演算出力である操作信号を前記制御
対象に印加する調節装置において、 前記目標値フィルタ手段は、 前記目標値に比例ゲインの2自由度化係数を乗算するゲ
イン係数乗算手段、前記目標値から前記ゲイン係数乗算
手段の出力を減算して得られた減算出力に1次遅れを持
たせる第1の1次遅れ要素、この第1の1次遅れ要素の
出力を前記ゲイン係数乗算手段の出力に加算する手段を
有する比例ゲインの2自由度化手段と、 前記目標値に前記比例ゲインの2自由度化係数および微
分時間の2自由度化係数を乗算する係数乗算手段、この
係数乗算手段の出力から前記制御対象の制御量を減算し
て得られた出力を第2の1次遅れ要素および前記第1の
1次遅れ要素を経由する手段を有する微分時間の2自由
度化手段とを備えたことを特徴とする2自由度調節装置
(2) The P (proportional) and I (integral) adjustment means performs PI adjustment calculations in response to the deviation between the target value filter output obtained through the target value filter means and the controlled variable of the controlled object. In the adjustment device that applies an operation signal that is an adjustment calculation output to the controlled object, the target value filter means includes: a gain coefficient multiplier that multiplies the target value by a two-degree-of-freedom coefficient of a proportional gain; a first first-order lag element that provides a first-order lag to the subtracted output obtained by subtracting the output of the gain coefficient multiplication means; an output of the first first-order lag element is set as an output of the gain coefficient multiplication means; a proportional gain two-degree-of-freedom means having a means for adding; a coefficient multiplication means for multiplying the target value by a two-degree-of-freedom coefficient for the proportional gain and a two-degree-of-freedom coefficient for the differential time; an output of the coefficient multiplication means; means for converting the output obtained by subtracting the control amount of the controlled object from the second first-order lag element and the second first-order lag element into two degrees of freedom for differential time. A two-degree-of-freedom adjustment device characterized by:
(3)目標値を目標値フィルタ手段を通して得られた目
標値フィルタ出力と制御対象の制御量との偏差を受けて
P(比例)およびI(積分)調整手段がPI調整演算を
行い、得られた調節演算出力である操作信号を前記制御
対象に印加する調節装置において、 前記目標値フィルタ手段として、前記目標値に比例ゲイ
ンの2自由度化係数および微分時間の2自由度化係数を
乗算する係数乗算手段と、この係数乗算手段の出力から
前記制御対象の制御量を減算し1次遅れ要素を通すこと
により、目標値および制御量の微分項を共用化する微分
項共用化手段とを有し、 少なくとも制御量の微分項を前記目標値フィルタ手段に
取り込んだとき前記偏差に対し非線形処理を行って前記
PおよびI調節手段に導入する非線形手段を設けたこと
を特徴とする2自由度調節装置。
(3) The P (proportional) and I (integral) adjustment means performs PI adjustment calculations in response to the deviation between the target value filter output obtained through the target value filter means and the controlled variable of the controlled object. In the adjustment device that applies an operation signal that is an adjustment calculation output to the controlled object, the target value filter means multiplies the target value by a two-degree-of-freedom coefficient of a proportional gain and a two-degree-of-freedom coefficient of a differential time. It has a coefficient multiplication means and a differential term sharing means for sharing the differential term of the target value and the controlled quantity by subtracting the controlled quantity of the controlled object from the output of the coefficient multiplication means and passing it through a first-order lag element. and a two-degree-of-freedom adjustment characterized in that nonlinear means is provided for performing nonlinear processing on the deviation when at least a differential term of the controlled variable is taken into the target value filter means and introducing it into the P and I adjustment means. Device.
JP1344366A 1989-09-11 1989-12-28 2-DOF adjustment device Expired - Lifetime JP2845534B2 (en)

Priority Applications (7)

Application Number Priority Date Filing Date Title
JP1344366A JP2845534B2 (en) 1989-12-28 1989-12-28 2-DOF adjustment device
AU62028/90A AU611839B1 (en) 1989-09-11 1990-08-31 Two degree of freedom controller
US07/577,558 US5105138A (en) 1989-09-11 1990-09-05 Two degree of freedom controller
EP90117107A EP0417635B1 (en) 1989-09-11 1990-09-05 Two degree of freedom controller
DE69026324T DE69026324T2 (en) 1989-09-11 1990-09-05 Regulator with two degrees of freedom
KR1019900014322A KR940003149B1 (en) 1989-09-11 1990-09-11 Two degree of freedom controller
CN 90107699 CN1024953C (en) 1989-09-11 1990-09-11 Two degree of freedom controller

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP1344366A JP2845534B2 (en) 1989-12-28 1989-12-28 2-DOF adjustment device

Publications (2)

Publication Number Publication Date
JPH03202902A true JPH03202902A (en) 1991-09-04
JP2845534B2 JP2845534B2 (en) 1999-01-13

Family

ID=18368683

Family Applications (1)

Application Number Title Priority Date Filing Date
JP1344366A Expired - Lifetime JP2845534B2 (en) 1989-09-11 1989-12-28 2-DOF adjustment device

Country Status (1)

Country Link
JP (1) JP2845534B2 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005276169A (en) * 2004-02-24 2005-10-06 Omron Corp Target value processing unit, temperature controller, control process implementing system, process controlling method, target value processing program, and recording medium
WO2016084183A1 (en) * 2014-11-27 2016-06-02 理化工業株式会社 Temperature control device and temperature control method

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6121892A (en) * 1984-07-09 1986-01-30 Tokyo Keiki Co Ltd Single-loop steering machine
JPS61196302A (en) * 1985-02-27 1986-08-30 Toshiba Corp Controller
JPS629405A (en) * 1985-07-06 1987-01-17 Toshiba Corp Process controller
JPS63140301A (en) * 1986-12-03 1988-06-11 Fuji Electric Co Ltd Electric final control element controller
JPS63165903A (en) * 1986-12-27 1988-07-09 Toshiba Corp Adaptive controller
JPH01152504A (en) * 1987-12-09 1989-06-15 Toshiba Corp Control device

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6121892A (en) * 1984-07-09 1986-01-30 Tokyo Keiki Co Ltd Single-loop steering machine
JPS61196302A (en) * 1985-02-27 1986-08-30 Toshiba Corp Controller
JPS629405A (en) * 1985-07-06 1987-01-17 Toshiba Corp Process controller
JPS63140301A (en) * 1986-12-03 1988-06-11 Fuji Electric Co Ltd Electric final control element controller
JPS63165903A (en) * 1986-12-27 1988-07-09 Toshiba Corp Adaptive controller
JPH01152504A (en) * 1987-12-09 1989-06-15 Toshiba Corp Control device

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005276169A (en) * 2004-02-24 2005-10-06 Omron Corp Target value processing unit, temperature controller, control process implementing system, process controlling method, target value processing program, and recording medium
WO2016084183A1 (en) * 2014-11-27 2016-06-02 理化工業株式会社 Temperature control device and temperature control method
JPWO2016084183A1 (en) * 2014-11-27 2017-07-13 理化工業株式会社 Temperature control apparatus and temperature control method

Also Published As

Publication number Publication date
JP2845534B2 (en) 1999-01-13

Similar Documents

Publication Publication Date Title
JPH04601A (en) Two-freedon degree regulator
KR940003149B1 (en) Two degree of freedom controller
JPH06119001A (en) Controller
JPH03202902A (en) Controller for two degrees of freedom
US5796608A (en) Self controllable regulator device
JP2721186B2 (en) Fuzzy control method
Zhmud et al. The two methods of reverse overshoot suppression in automation systems
JP2839626B2 (en) 2-DOF adjustment device
US5200681A (en) Process control system
JP3124169B2 (en) 2-DOF adjustment device
JP2772059B2 (en) 2-DOF PID controller
Lima et al. First-order dead-time compensation with feedforward action
JP2635786B2 (en) 2-DOF adjustment device
JPH03296802A (en) Device for controlling two degrees of freedom
JPS61190602A (en) Regulator
JPS629405A (en) Process controller
JPH0792687B2 (en) Adjuster
JPS61198302A (en) Regulator
JP3034404B2 (en) 2-DOF PID adjustment device
JP3448210B2 (en) Closed loop process controller including PID regulator
Fan et al. DC Motor Velocity Control With Integral Retarded Controller Under Unintentional Delay
JPH0570841B2 (en)
JPH04312101A (en) Two-frredom degree type adjustment device
JPH09134203A (en) Distribution controller
JP2809849B2 (en) 2-DOF adjustment device

Legal Events

Date Code Title Description
R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313111

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20081030

Year of fee payment: 10

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20081030

Year of fee payment: 10

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20091030

Year of fee payment: 11

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20091030

Year of fee payment: 11

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20101030

Year of fee payment: 12

EXPY Cancellation because of completion of term
FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20101030

Year of fee payment: 12