JPH03202444A - Film forming source and its production - Google Patents

Film forming source and its production

Info

Publication number
JPH03202444A
JPH03202444A JP34104189A JP34104189A JPH03202444A JP H03202444 A JPH03202444 A JP H03202444A JP 34104189 A JP34104189 A JP 34104189A JP 34104189 A JP34104189 A JP 34104189A JP H03202444 A JPH03202444 A JP H03202444A
Authority
JP
Japan
Prior art keywords
target
film
forming source
magnetic film
film forming
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP34104189A
Other languages
Japanese (ja)
Inventor
Shinichi Katsuta
伸一 勝田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
NEC Home Electronics Ltd
NEC Corp
Original Assignee
NEC Home Electronics Ltd
Nippon Electric Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NEC Home Electronics Ltd, Nippon Electric Co Ltd filed Critical NEC Home Electronics Ltd
Priority to JP34104189A priority Critical patent/JPH03202444A/en
Publication of JPH03202444A publication Critical patent/JPH03202444A/en
Pending legal-status Critical Current

Links

Landscapes

  • Physical Vapour Deposition (AREA)

Abstract

PURPOSE:To uniformize the Ti in a film and to lower the noise level by forming the sputtering target for the recording film of a magneto-optical disk with FeCoTi and forming the intermetallic compd. of Ti and Fe or Co. CONSTITUTION:At least one between the intermediate compds. of Ti and Fe or Ti and Co and the Fe and Co are melted and then cooled to produce a film forming source (target). The intermetallic compd. of Ti and Fe or Co such as TiFe, TiFe2, TiCo and TiCo2 is formed in the target. Consequently, when the target is sputtered, only Ti is not liberated, the variation of the amt. of Ti liberated is reduced, and the noise level is lowered.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明は、磁性膜を形成するためのill!(ソース)
に係り、特に光磁気ディスクの記録膜を形成するための
スパンタリング用ターゲントに好適な成膜用源およびそ
の製造方法に関する。
DETAILED DESCRIPTION OF THE INVENTION [Industrial Application Field] The present invention provides ill! for forming a magnetic film. (sauce)
In particular, the present invention relates to a film forming source suitable for a sputtering target for forming a recording film of a magneto-optical disk, and a method for manufacturing the same.

〔従来の技術〕[Conventional technology]

近年、情報を高密度、大容量で記録することができる光
磁気ディスクが普及してきている。この光磁気ディスク
は、磁気記録膜にテルビウム鉄コバル) (TbFeC
o)等の磁気光学効果を有する希土類−遷移金属合金薄
膜が用いられている。
In recent years, magneto-optical disks that can record information with high density and large capacity have become popular. This magneto-optical disk has a magnetic recording film of terbium iron cobal (TbFeC).
A rare earth-transition metal alloy thin film having a magneto-optical effect such as (o) is used.

そして、これらの磁性膜は、−iにスパッタリングによ
って形成している。
These magnetic films are formed on -i by sputtering.

磁性膜として代表的なTbF eCo磁性膜をスパッタ
リングによって形成する場合、第3図に示したように、
磁性膜を形成する基Fi10の下方にTbFeCo合金
ターゲット12を配WL/、この合金ターゲット12を
スバ・ン夕して磁性膜を底膜する方法がある。
When forming a typical TbFeCo magnetic film by sputtering, as shown in FIG.
There is a method in which a TbFeCo alloy target 12 is disposed below the base Fi 10 forming the magnetic film, and this alloy target 12 is spun down to form a magnetic film.

このTbFeCoからなる合金ターゲフト12をスパッ
タリングする方法は、基板10を一方向に移動させ、合
金ターゲフト12の上方に次々と送り込むことにより、
多数の基板10を連続的にIi膜することが可能であり
、将来の大量生産に適している。しかし、TbFeCo
合金ターゲット12をスパッタすると、合金ターゲット
12中のTbは、ターゲフトの周辺部に向けて放出され
る性質のあることが知られている。このため、合金ター
ゲット12から放出される粒子中14のTbは、ターゲ
ット中心部で濃度が低く、ターゲット周辺部で高くなり
、成膜したTbFeCo磁性膜中のTbが、第3図の上
部に示したような分布となる。従って、基板10に成膜
した磁性膜は、磁気特性に大きく影響するTbが一様の
組成とならず、磁気特性が不均一になる欠点がある。
The method for sputtering the alloy target ft 12 made of TbFeCo is to move the substrate 10 in one direction and send it one after another above the alloy target ft 12.
It is possible to continuously coat a large number of substrates 10 with Ii film, and it is suitable for future mass production. However, TbFeCo
It is known that when the alloy target 12 is sputtered, Tb in the alloy target 12 has a property of being released toward the periphery of the target. Therefore, the concentration of Tb in the particles 14 released from the alloy target 12 is low in the target center and high in the target periphery, and the Tb in the formed TbFeCo magnetic film is as shown in the upper part of FIG. The distribution is as follows. Therefore, the magnetic film formed on the substrate 10 has the disadvantage that Tb, which greatly affects magnetic properties, does not have a uniform composition, resulting in non-uniform magnetic properties.

そこで、このような欠点を避けるために、第4図のよう
にTbターゲット(希土類ターゲット)I6とFeCo
ターゲット(遷移金属ターゲット)18とを同時にスパ
ッタし、回転している基板10に希土類と遷移金属とを
積層していく方法がある。この方法は、第4図の上部に
示したように、成膜したTbFeCo磁性膜のTb量を
半径方向にほぼ一様にすることができる。しかも、高価
なTbのfす用効率を高めることができるとともに、成
膜した磁性膜の組成比を自由に変えることができる利点
がある。
Therefore, in order to avoid such drawbacks, as shown in Fig. 4, Tb target (rare earth target) I6 and FeCo
There is a method of simultaneously sputtering a target (transition metal target) 18 and laminating the rare earth and transition metal on the rotating substrate 10. With this method, as shown in the upper part of FIG. 4, the amount of Tb in the formed TbFeCo magnetic film can be made almost uniform in the radial direction. Furthermore, there are advantages in that it is possible to increase the efficiency of use of expensive Tb and to freely change the composition ratio of the formed magnetic film.

[発明が解決しようとする課題〕 しかし、TbFeCoの磁性膜は酸化されやすく、しか
も酸化されると酸化部の表面が凸凹に隆起する変化を生
じ、この隆起が磁性膜を覆っている保護膜を破損し、酸
化が一層促進される欠点がある。このため、TbFeC
o磁性膜に耐食性のあるチタンTiのような第四元素を
入れて、酸化に基づく磁性膜表面の隆起を抑制すること
が行われている。このTbFeCoにTiを添加したT
bFecoTi磁性膜は、TbターゲットとFeCoT
i合金ターゲットとをスパッタして形成するが、FeC
oTjターゲットを作成する際に、Tiが偏析を起こし
やすい。
[Problems to be Solved by the Invention] However, the TbFeCo magnetic film is easily oxidized, and when it is oxidized, the surface of the oxidized part becomes bumpy, and these bumps damage the protective film covering the magnetic film. It has the disadvantage that it is damaged and oxidation is further accelerated. For this reason, TbFeC
o A quaternary element such as titanium, which has corrosion resistance, is added to the magnetic film to suppress the protrusion of the magnetic film surface due to oxidation. This TbFeCo with Ti added
The bFecoTi magnetic film consists of a Tb target and FeCoT.
It is formed by sputtering with an i alloy target, but FeC
When creating an oTj target, Ti tends to cause segregation.

すなわち、FeとCoとは、原子半径がほぼ同じで密度
も近いところから、第5図の状態図に示したように、両
者は変態の前後においても完全に溶解し、任意の割合の
固溶体を形成する。ところが、FeとTiまたはCoと
Tiは、原子半径や密度が大きく異なり、第6図、第7
図に示した状態図のようにいくつかの変態を有し、母材
中のTiが偏析することがある。このため、FeCoT
i合金ターゲットを作成する際に、単体のFe、C01
Tiを混合して溶融し、冷却するとFeC0の結晶粒界
付近にTiが偏析し、FeCoTtターゲットとをスパ
ッタすると、Tiが放出される部分とそうでない部分と
を生じ、得たTbFeCoTim性膜中のTi濃度にバ
ラツキを生し、第2図の実線のように書込みまたは読み
出し時の低周波領域においてノイズレベルが異常に大き
くなる欠点がある。
In other words, since Fe and Co have almost the same atomic radius and similar density, as shown in the phase diagram in Figure 5, both are completely dissolved before and after transformation, and can form a solid solution of any proportion. Form. However, Fe and Ti or Co and Ti have very different atomic radii and densities, and as shown in Figures 6 and 7,
As shown in the phase diagram shown in the figure, there are several transformations, and Ti in the base material may segregate. For this reason, FeCoT
When creating an i-alloy target, single Fe, C01
When Ti is mixed and melted and cooled, Ti segregates near the grain boundaries of FeC0, and when sputtered with a FeCoTt target, there are parts where Ti is released and parts where it is not, and the resulting TbFeCoTi film is This has the disadvantage that the Ti concentration varies and the noise level becomes abnormally large in the low frequency region during writing or reading, as shown by the solid line in FIG.

本発明は、前記従来技術の欠点を解消するためになされ
たもので、磁性膜のノイズレベルを低減することができ
る成膜用源を提供することを目的とし、またその製造方
法を提供することを目的としている。
The present invention has been made in order to eliminate the drawbacks of the prior art, and aims to provide a film forming source capable of reducing the noise level of a magnetic film, and also to provide a manufacturing method thereof. It is an object.

〔課題を解決するための手段〕[Means to solve the problem]

上記目的を達成するために、本発明に係る成膜用源は、
組成が鉄、コバルトおよびチタンからなる成膜用源にお
いて、前記チタンは、鉄またはコバルトの少なくとも何
れか一方と金属間化合物を形成していることを特徴とし
ている。
In order to achieve the above object, the film forming source according to the present invention includes:
The film forming source having a composition of iron, cobalt and titanium is characterized in that the titanium forms an intermetallic compound with at least one of iron and cobalt.

また、上記の成膜用源を作成する本発明の成膜用源の製
造方法は、チタンと鉄またはチタンとコバルトとの金属
間化合物の少なくとも何れか一方と鉄およびコバルトと
を溶融し、冷却することを特徴としている。
In addition, the method for producing the film-forming source of the present invention for producing the above-mentioned film-forming source melts at least one of the intermetallic compounds of titanium and iron or titanium and cobalt, and iron and cobalt, and then cools the mixture. It is characterized by

〔作用〕[Effect]

上記の如く構成した成膜用源(ターゲソ))Lチタンが
鉄またはコバルトとTiFe、7iF6、、T1Co、
T1Co□等の金属間化合物を形成している。このため
、このターゲットをスパッタした場合、従来のTiが偏
析している場合と異なり、Tiのみが放出されることが
なく、形成したTbFeCo磁性膜のTiの濃度分布が
小さくなって、ノイズレベルを低下させることができる
The film forming source (target source) configured as above) L titanium is iron or cobalt and TiFe, 7iF6, T1Co,
Intermetallic compounds such as T1Co□ are formed. Therefore, when this target is sputtered, unlike conventional cases where Ti is segregated, only Ti is not released, and the Ti concentration distribution in the formed TbFeCo magnetic film becomes smaller, reducing the noise level. can be lowered.

また、TiをFeまたはCOとの金属間化合物にしてF
e、Coとともに溶融してFeCoTiのターゲットを
作成すると、FeまたはCoとの金属間化合物にして加
えたTiが、冷却されて凝固する際に、再びFe、Co
と金属間化合物を形成する。このため、FeCoTiを
ターゲットにしてスパッタすると、Tiのみが放出され
ることがない。
In addition, Ti can be made into an intermetallic compound with Fe or CO and F
When a FeCoTi target is created by melting together with e and Co, when the Ti added as an intermetallic compound with Fe or Co is cooled and solidified, it becomes Fe, Co again.
and form intermetallic compounds. Therefore, when sputtering is performed using FeCoTi as a target, only Ti is not released.

Fe、Coに加えるTiとFeまたはCoとの金属間化
合物は、TiFe5TiFez、”rico、TiCo
z、Tiz Coを用いることができる。そして、これ
らの金属間化合物の量を調節することにより、FeCo
に添加するTiの量を、Tiを偏析させることなく制御
することができる。
Intermetallic compounds of Ti and Fe or Co added to Fe and Co include TiFe5TiFez, "rico, TiCo
z, Tiz Co can be used. By adjusting the amount of these intermetallic compounds, FeCo
The amount of Ti added can be controlled without causing Ti to segregate.

〔実施例) 以下、本発明の成膜用源およびその製造方法の好ましい
実施例を詳説する。
[Example] Hereinafter, preferred examples of the film forming source and the manufacturing method of the present invention will be described in detail.

粒径が50μm〜数mmのFe、CoおよびTiFez
、TiCozを混合し、これを1550°C〜1600
°Cにおいて真空溶解した後、放冷して85a t%F
e、12at、%C013at%TiのFeCoTi合
金を得た。その後、このFeCoTi合金を熱間処理で
圧延し、直径が20.32cm(8インチ)、厚さが2
.5mmの円板にした。
Fe, Co and TiFez with particle size of 50 μm to several mm
, TiCoz and heated it to 1550°C to 1600°C.
After vacuum melting at °C, let it cool to 85a t%F.
A FeCoTi alloy of 12at%C013at%Ti was obtained. This FeCoTi alloy is then hot rolled to a diameter of 20.32 cm (8 inches) and a thickness of 2
.. It was made into a 5mm disc.

次に、上記の円板を遷移金属ターゲットとし、純Tbタ
ーゲット(直径20.32mm)とともにスパッタリン
グを行った。すなわち、到達真空度が2X10−’To
rrのチャンバ内を1×10−”Torrのアルゴンガ
ス圧にし、FeCoTiターゲットに対して1kW、T
bターゲットに対して、3 o o wo)′r1.力
を投入し、50rpm程度で回転している基板に約10
00人のTbFeC。
Next, sputtering was performed using the above disk as a transition metal target together with a pure Tb target (diameter 20.32 mm). In other words, the ultimate degree of vacuum is 2X10-'To
The argon gas pressure in the rr chamber was set to 1 × 10-” Torr, and 1 kW and T were applied to the FeCoTi target.
b target, 3 o o wo)'r1. Apply force to the board rotating at about 50 rpm for about 10 minutes.
00 TbFeC.

Ti磁性膜を形成した。なお、基板にはポリカーボネー
トを用い、TbFeCoTita性膜の上下にS i 
N系の誘電体保護膜を数800人設けた。
A Ti magnetic film was formed. Note that polycarbonate is used for the substrate, and Si
Several 800 people installed N-based dielectric protection films.

このようにして形成したTbFeCoTi磁性膜のノイ
ズレヘルの特性を測定したところ、第1図ムこ示す結果
が得られ、書込み、読み出し時の低周波領域におけるノ
イズレベルの低減を図ることができた。すなわち、実施
例のFeCoTiターゲットを用いたTbFeCoTi
[性膜は、第2図の破線に示す如く、実線で示した従来
の磁性膜よりノイズレヘルを低減することができる。ま
た、TbFeCoTi磁性膜を電子顕微鏡により観察し
たところ、従来より均一なものであることが確認された
When the noise level characteristics of the TbFeCoTi magnetic film thus formed were measured, the results shown in FIG. 1 were obtained, and it was possible to reduce the noise level in the low frequency region during writing and reading. That is, TbFeCoTi using the FeCoTi target of Example
[The magnetic film, as shown by the broken line in FIG. 2, can reduce the noise level more than the conventional magnetic film shown by the solid line. Furthermore, when the TbFeCoTi magnetic film was observed using an electron microscope, it was confirmed that it was more uniform than the conventional film.

なお、前記実施例においては、溶融してFeCoTiタ
ーゲットを形成する場合について説明したが、粒径が5
0am〜数mm程度のFe、C。
In the above example, the case where the FeCoTi target was formed by melting was explained, but when the particle size was 5.
Fe, C of about 0 am to several mm.

およびTiとFeまたはCoとの金属間化合物を、ホン
トプレスまたは熱間静水圧処理(HIP)等の焼結によ
って、TiとFeまたはCOとの金属間化合物を有する
FeCoTiターゲットを形成してもよい。この場合、
粒径は微細なほどよい力匁コストが上昇する。また、粒
径が数mmを超えると、FeCoTiの1JII戒の均
一性を損なうおそれがある。
And a FeCoTi target having an intermetallic compound of Ti and Fe or CO may be formed by sintering the intermetallic compound of Ti and Fe or Co by real pressing or hot isostatic pressure treatment (HIP). . in this case,
The finer the particle size, the higher the force cost. Moreover, if the particle size exceeds several mm, there is a risk that the uniformity of FeCoTi's 1JII precept may be impaired.

C発明の効果〕 以上に説明したように、本発明の成膜用源によれば、F
eCoTiからなるターゲットのTiを、FeまたはC
Oとの金属間化合物としたことにより、スパッタリング
の際にターゲットから放出されるTi量の変動が少なく
なり、磁性膜中のTiの分布を均一にでき、ノイズレヘ
ルを低減できる。
C Effects of the Invention] As explained above, according to the film forming source of the present invention, F
Target Ti consisting of eCoTi is replaced with Fe or C
By forming an intermetallic compound with O, fluctuations in the amount of Ti emitted from the target during sputtering can be reduced, the distribution of Ti in the magnetic film can be made uniform, and the noise level can be reduced.

また、本発明の成膜用源の製造方法によれば、TiをF
eまたはCoとの金属間化合物の状態で添加するため、
形成したFeCoTi合金中ΦTiが、FeまたはGo
との金属間化合物の状態で存在し、スパッタリングの際
におけるTiの放出のバラツキを小さくすることができ
る。
Further, according to the method for manufacturing a film forming source of the present invention, Ti is replaced with F.
Because it is added in the form of an intermetallic compound with e or Co,
ΦTi in the formed FeCoTi alloy is Fe or Go
It exists in the state of an intermetallic compound with Ti, and can reduce variations in Ti release during sputtering.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は本発明に係る成膜用源を用いて形成したTbF
eCoTi磁性膜の書込読出周波数とノイズレベルとの
関係を示す図、第2図は従来のFeCoTiターゲット
とTbターゲットとを用いて作成したTbFeCoTi
磁性膜の書込読出周波数とノイズレヘルとの関係を示す
図、第3図、第4図はスパッタリングにより磁性膜を形
成する方法の説明図、第5図はCo−Feの合金状態鬼
第6図はT i −F eの合金状態図、第7図はT1
Coの合金状態図である。
Figure 1 shows TbF formed using the film forming source according to the present invention.
A diagram showing the relationship between write/read frequency and noise level of an eCoTi magnetic film.
A diagram showing the relationship between the read/write frequency of a magnetic film and the noise level. Figures 3 and 4 are explanatory diagrams of a method of forming a magnetic film by sputtering. Figure 5 shows the state of the Co-Fe alloy. Figure 6 is the alloy phase diagram of T i -F e, and Figure 7 is T1
It is an alloy phase diagram of Co.

Claims (2)

【特許請求の範囲】[Claims] (1)組成が鉄、コバルトおよびチタンからなる成膜用
源において、前記チタンは、鉄またはコバルトの少なく
とも何れか一方と金属間化合物を形成していることを特
徴とする成膜用源。
(1) A film forming source having a composition of iron, cobalt and titanium, wherein the titanium forms an intermetallic compound with at least either iron or cobalt.
(2)チタンと鉄またはチタンとコバルトとの金属間化
合物の少なくとも何れか一方と鉄およびコバルトとを溶
融し、冷却することを特徴とする成膜用源の製造方法。
(2) A method for producing a film forming source, which comprises melting at least one of an intermetallic compound of titanium and iron or titanium and cobalt, and iron and cobalt, followed by cooling.
JP34104189A 1989-12-29 1989-12-29 Film forming source and its production Pending JPH03202444A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP34104189A JPH03202444A (en) 1989-12-29 1989-12-29 Film forming source and its production

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP34104189A JPH03202444A (en) 1989-12-29 1989-12-29 Film forming source and its production

Publications (1)

Publication Number Publication Date
JPH03202444A true JPH03202444A (en) 1991-09-04

Family

ID=18342686

Family Applications (1)

Application Number Title Priority Date Filing Date
JP34104189A Pending JPH03202444A (en) 1989-12-29 1989-12-29 Film forming source and its production

Country Status (1)

Country Link
JP (1) JPH03202444A (en)

Similar Documents

Publication Publication Date Title
US5843569A (en) Magnetic recording medium and device
US5098649A (en) Rare earth metal-iron group metal target, alloy powder therefor and method of producing same
JPH06104120A (en) Sputtering target for magnetic recording medium and its production
KR0129795B1 (en) Target for magneto optical recording media & method for production the same
TW200407450A (en) Fabrication of nanocomposite thin films for high density magnetic recording media
JP3494302B2 (en) Co-Cr-Pt magnetic recording medium target
JP3076141B2 (en) Magnetic thin film target material and method of manufacturing the same, Fe-MC soft magnetic film and method of manufacturing the same, and magnetic head and magnetic recording / reproducing apparatus using the same
JPS6270550A (en) Material for target
JPH03202444A (en) Film forming source and its production
JPH0790567A (en) Target material for magneto-optical recording medium and its production
JP2986291B2 (en) Sputtering target for magneto-optical recording medium and method for producing the same
JP2002212716A (en) Sintered sputtering target material for forming recording layer of magneto-optical recording medium exhibiting excellent cracking resistance under high sputtering power
JPS6032964B2 (en) Method for manufacturing magnetic recording media
JPH02180003A (en) Ferromagnetic ultrafine particle and manufacture thereof, and magnetic recording medium and thermo magnetic recording medium
JPS6313256B2 (en)
JP3127070B2 (en) Method for producing soft magnetic thin film
JPH0950618A (en) Magnetic recording medium and its production
JP2771664B2 (en) Soft magnetic alloy film
JP2802852B2 (en) Target material and method for producing the same
JPS61264533A (en) Sputtering target for photomagnetic recording and its production
JPH04155618A (en) Perpendicular magnetic recording medium
JPH01159373A (en) Target for sputtering
JPS61115317A (en) Manufacture of thin film material for magnetooptics recording and reproducing
JPS6126131B2 (en)
JP2002115050A (en) Sintered sputtering target material