JPH03202439A - Manufacture of magnetostrictive rod constituted of rare earth-iron alloy - Google Patents

Manufacture of magnetostrictive rod constituted of rare earth-iron alloy

Info

Publication number
JPH03202439A
JPH03202439A JP34257189A JP34257189A JPH03202439A JP H03202439 A JPH03202439 A JP H03202439A JP 34257189 A JP34257189 A JP 34257189A JP 34257189 A JP34257189 A JP 34257189A JP H03202439 A JPH03202439 A JP H03202439A
Authority
JP
Japan
Prior art keywords
rare earth
refractory
iron alloy
cylindrical refractory
mold
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP34257189A
Other languages
Japanese (ja)
Inventor
Giichi Amahiro
義一 天弘
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Aichi Steel Corp
Original Assignee
Aichi Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Aichi Steel Corp filed Critical Aichi Steel Corp
Priority to JP34257189A priority Critical patent/JPH03202439A/en
Publication of JPH03202439A publication Critical patent/JPH03202439A/en
Pending legal-status Critical Current

Links

Abstract

PURPOSE:To obtain the rod excellent in crystal orientational properties at a high solidifying velocity by subjecting a rare earth-iron alloy base metal charged to a cylindrical refractory on a water-cooled metallic mold in a vacuum chamber to arc melting and thereafter solidifying it by heat elimination from the above mold. CONSTITUTION:A rare earth-iron alloy base metal 26 is charged to the upper end part of a cylindrical refractory 24 in which both ends are opened and placed in a water-cooled metallic mold 22 at the bottom of a vacuum chamber 10. Next, the vacuum chamber 10 is evacuated and is thereafter introduced with an inert gas to melt a pure Ti ingot placed on the mold 22 by arc discharge formed between the ingot and a W electrode 16 and to remove O2 remaining in the chamber 10. After that, the electrode 16 is moved onto the refractory 24, and arc discharge is executed between the base metal 26 and the electrode 16, by which a molten body 28 of the base metal 26 can be obtd. in the refractory 24 and the temp. of the refractory 24 simultaneously rises. After that, when an electric current in the arc discharge is gradually reduced, by the heat radiated from the mold 22 and the remaining heat in the arc discharge and the refractory 24, a heat flow directed from the lower end to the upper end of in the refractory 24 is generated. Thus, the rod made of a rare earth-iron alloy in which crystals are oriented can be obtd.

Description

【発明の詳細な説明】 [産業上の利用分野] 本発明は磁歪金属ロッドの製法に係り、特に希土類鉄合
金を用いた磁歪材料において、結晶配向性の高い磁歪ロ
ッドを製造する方法に関する。
DETAILED DESCRIPTION OF THE INVENTION [Industrial Application Field] The present invention relates to a method for manufacturing a magnetostrictive metal rod, and particularly to a method for manufacturing a magnetostrictive rod with high crystal orientation in a magnetostrictive material using a rare earth iron alloy.

[従来の技術] 磁歪とは、磁性体を磁化するときに、その磁性体に伸び
あるいは縮みを生ずる現象を言い、その逆に磁性体に寸
法変化を起こさせるような歪を与えると磁性体に磁化が
起こる応力磁気現象と本質的に同じ現象である。この磁
歪現象を利用したものとしては、応力を検出する磁歪セ
ンサーや電気音響変換器としての磁歪振動子などが知ら
れている。
[Prior Art] Magnetostriction refers to a phenomenon in which a magnetic material stretches or contracts when it is magnetized, and conversely, when a strain that causes a dimensional change is applied to the magnetic material, it causes the magnetic material to elongate or contract. This is essentially the same phenomenon as the stress magnetic phenomenon that causes magnetization. As devices that utilize this magnetostriction phenomenon, magnetostrictive sensors that detect stress and magnetostrictive oscillators that serve as electroacoustic transducers are known.

磁歪材料として望まれる磁気特性は磁歪定数が大きいこ
とと同時に電気機械結合係数が大きいことである。電気
機械結合係数とは電気的入力エネルギーから機械的出力
エネルギーへの変換能率および機械的入力エネルギーか
ら電気的出力エネルギーへの変換能率を表す指標となる
もので、磁歪定数が大きいほど、そして透磁率が大きい
ほど大きな値となる。
Desired magnetic properties for a magnetostrictive material are a large magnetostrictive constant and a large electromechanical coupling coefficient. The electromechanical coupling coefficient is an index that represents the conversion efficiency from electrical input energy to mechanical output energy and the conversion efficiency from mechanical input energy to electrical output energy.The larger the magnetostriction constant, the higher the magnetic permeability. The larger the value, the larger the value.

金属系の磁歪材料としては、Niが最も古い歴史を持ち
、その他にNi−Co合金などが知られているが、近年
は希土類ReとFeとの金属間化合物であるReFe、
で巨大な磁歪現象が見出だされ、常温での飽和磁歪定数
λSが300X10−’以上の材料が開発されている。
As a metal-based magnetostrictive material, Ni has the oldest history, and Ni-Co alloys are also known, but in recent years, ReFe, which is an intermetallic compound of rare earths Re and Fe,
A huge magnetostriction phenomenon has been discovered in materials, and materials with a saturation magnetostriction constant λS of 300×10−′ or more at room temperature have been developed.

「発明が解決しようとする課題] また、ReFex合金の磁歪定数λI0゜は、λに比較
すると極めて小さく、殆ど無視することができる。たと
えばDyFe2では1^、1/λtoo 1〉600で
あり、多結晶の磁歪は殆どλ、、に起因するものである
。従って、希土類鉄合金から磁歪ロッドを製造するに際
しては、結晶の配向を高めることが必要不可欠となる。
“Problems to be Solved by the Invention” Furthermore, the magnetostriction constant λI0° of the ReFex alloy is extremely small compared to λ and can be almost ignored. For example, in DyFe2, it is 1^, 1/λtoo 1>600, and many Most of the magnetostriction of crystals is due to λ. Therefore, when manufacturing magnetostrictive rods from rare earth iron alloys, it is essential to improve the orientation of the crystals.

また、ロッド軸方向の結晶配向は磁歪定数を高めるだけ
でなく、粒界における内部損失を低減する。
Furthermore, the crystal orientation in the rod axis direction not only increases the magnetostriction constant but also reduces internal loss at grain boundaries.

従来から結晶配向ロッドの製造方法としては、ブリッジ
マン法やゾーンメルティング法が知られているが、これ
らの方法はいずれも生産速度が極めて遅く、工業的な製
造には適していない、すなわち、これらの方法により結
晶配向を確保するために必要とする通常の凝固速度は、
数センチ/時間であって、到底工業的な生産に適用する
ことはできない。
Conventionally, the Bridgman method and the zone melting method are known as methods for producing crystal-oriented rods, but both of these methods have extremely slow production rates and are not suitable for industrial production. The typical solidification rate required to ensure crystal orientation by these methods is:
The rate is several centimeters per hour, and cannot be applied to industrial production at all.

さらに、これら従来法の欠点は、溶融した合金を、凝固
が完了するまで坩堝等の容器に長時間保持するため、坩
堝などからの汚染が避けられないことである。もし仮に
ゾーンメルティング法において、容器を使用しない浮遊
式ゾーンメルティング法が用いられ、容器からの汚染が
避けられたとしても、この方法には所定の直径のロッド
を準備する必要があり、このロッドを作製する際に坩堝
からの汚染が避けられないし、工程も複雑となり工業的
生産には適しない。
Furthermore, a drawback of these conventional methods is that since the molten alloy is held in a container such as a crucible for a long time until solidification is completed, contamination from the crucible is unavoidable. Even if a floating zone melting method without a container is used in the zone melting process and contamination from the container is avoided, this method still requires the preparation of rods of a certain diameter, and Contamination from the crucible is unavoidable when producing the rod, and the process is complicated, making it unsuitable for industrial production.

本発明は希土類鉄合金からなる磁歪ロッドを製造する際
の前記のごとき問題点に鑑みてなされたものであって、
生産性に優れ、坩堝等の容器からの汚染が少なく、かつ
結晶配向性の優れた磁歪ロッドを得ることができる磁歪
ロッドの製造方法を提供することを目的とする。
The present invention has been made in view of the above-mentioned problems when manufacturing magnetostrictive rods made of rare earth iron alloys, and includes:
It is an object of the present invention to provide a method for manufacturing a magnetostrictive rod that has excellent productivity, has little contamination from a container such as a crucible, and can obtain a magnetostrictive rod with excellent crystal orientation.

[課題を解決するための手段] 本発明の希土類鉄合金からなる磁歪ロッドの製造方法は
、不活性ガスを封入した真空室内で下端部を水冷金属モ
ールドに接した筒形耐火物中に希土類鉄合金(ReFe
x;ただし式中Reは1種または2種以上の希土類金属
であり、Feは鉄であり、かつXは1.5〜2.0であ
る。〉を装入し、前記希土類鉄合金を前記筒形耐火物の
上部よりアーク溶解し、その後前記水冷金属モールドか
らの抜熱により溶融した前記希土類鉄合金を下端部より
凝固せしめることを要旨とする。
[Means for Solving the Problems] A method for manufacturing a magnetostrictive rod made of a rare earth iron alloy according to the present invention is to manufacture a magnetostrictive rod made of a rare earth iron alloy in a cylindrical refractory whose lower end is in contact with a water-cooled metal mold in a vacuum chamber filled with an inert gas. Alloy (ReFe
x; However, in the formula, Re is one or more rare earth metals, Fe is iron, and X is 1.5 to 2.0. ), arc melting the rare earth iron alloy from the upper part of the cylindrical refractory, and then solidifying the molten rare earth iron alloy from the lower end by removing heat from the water-cooled metal mold. .

本発明方法は通常鉄と希土類元素の磁歪合金へ適用でき
る。結晶性合金化合物は一般式Re F e 2を持つ
0式中希土類(Re)は任意の希土類金属を包含する。
The method of the invention is generally applicable to magnetostrictive alloys of iron and rare earth elements. The crystalline alloy compound has the general formula Re Fe 2 where rare earth (Re) includes any rare earth metal.

ReFe2合金には磁気異方性定数の符号が正のものと
負のものが存在するので、適当な2種以上の希土類元素
を組み合わせた希土類鉄合金を選ぶことにより、磁歪定
数を大きく保ち磁気異方性を小さくすることが行なわれ
ている。かかる2種以上の希土類元素を含む希土類鉄合
金にも本発明が適用されること勿論である。
ReFe2 alloys have positive and negative magnetic anisotropy constants, so by selecting a rare earth iron alloy that combines two or more appropriate rare earth elements, the magnetostriction constant can be kept large and the magnetic anisotropy constant can be reduced. Efforts are being made to reduce the polarity. Of course, the present invention is also applicable to rare earth iron alloys containing two or more kinds of rare earth elements.

合金を製造するために金属類を調整する際に、その金属
類の表面を洗浄しなければならない9次に所定量の金属
成分を秤量し、慣用のアーク装置により合金する。秤量
および割合は正確な所望の合金組成を得るために正確で
なければならない。
When preparing metals to produce alloys, the surfaces of the metals must be cleaned.Next, predetermined amounts of metal components are weighed and alloyed using conventional arc equipment. Weighings and proportions must be accurate to obtain the exact desired alloy composition.

このように調整されたボタン状または断片状の合金をア
ーク溶解および凝固を反復することにより完全に均一化
する。
The button-shaped or piece-shaped alloy thus prepared is completely homogenized by repeating arc melting and solidification.

一方、不活性ガスを充填した真空室内には水冷された金
属モールドに下端を接して、筒形耐火物を設置する。こ
の筒形耐火物は両端が開放となっている。この筒形耐火
物の材質はB N 、 Y 20 x、Cab、MgO
,Al2O3,5iOzなどの高純度のもの、または適
当なバインダーにより焼結されたこれら成分を含むセラ
ミックスとすることが好ましい、この筒形耐火物の肉厚
は後述される溶融体の凝固が耐火物の壁面から起こらな
いように充分厚いことが望ましい、また、耐火物の壁面
からの凝固を防止するために、筒形耐火物のまわりに発
熱体を設置して加熱しても良い。
Meanwhile, a cylindrical refractory is installed in a vacuum chamber filled with inert gas, with its lower end touching a water-cooled metal mold. Both ends of this cylindrical refractory are open. The materials of this cylindrical refractory are B N , Y 20 x, Cab, MgO
, Al2O3, 5iOz, etc., or ceramics containing these components sintered with an appropriate binder. It is desirable that the cylindrical refractory be sufficiently thick so that solidification does not occur from the wall surface of the refractory.In order to prevent solidification from the wall surface of the refractory, a heating element may be installed around the cylindrical refractory to heat it.

また、この筒形耐火物の形状は、高さ/内径の比が余り
大き過ぎてはいけない、というのは比が余り大き過ぎる
と後述するアークによる熱エネルギーが筒形耐火物の下
部まで充分伝わらず、合金の未溶解の割合が多くなって
歩留りが低下するからである。
In addition, the shape of this cylindrical refractory must not have a height/inner diameter ratio that is too large, because if the ratio is too large, the heat energy from the arc, which will be described later, will not be sufficiently transmitted to the bottom of the cylindrical refractory. First, the proportion of unmelted alloy increases, resulting in a decrease in yield.

次に、前述の方法により形成されたボタン状または断片
状の希土類鉄合金を筒形耐火物に装入する。筒形耐火物
の上部からアークにより合金を溶解する。溶解が終了し
アークを停止すると、溶融体は筒形耐火物の下部に接し
ている水冷金属モールドより抜熱されて下部より凝固が
上部に向かって進行し、結晶が配向した合金ロッドを得
ることができる。
Next, the button-shaped or piece-shaped rare earth iron alloy formed by the above-described method is charged into the cylindrical refractory. The alloy is melted using an arc from the top of the cylindrical refractory. When the melting is completed and the arc is stopped, the molten body is heat removed from the water-cooled metal mold that is in contact with the bottom of the cylindrical refractory, and solidification progresses from the bottom to the top, resulting in an alloy rod with oriented crystals. I can do it.

[作用] 本発明によれば、筒形耐火物内でアーク放電等により溶
融された希土類鉄合金は筒形耐火物の低端部に接して設
けられた水冷金属モールドにより強制的に抜熱されるた
めに凝固速度が極めて大きく、生産効率が大変良い、ま
た、溶解から凝固に至るまでの時間が大変短いため、筒
形耐火物からの汚染も最小限に抑えることができるため
、事実上汚染は無視し得るほど小さいものとなる。
[Function] According to the present invention, the rare earth iron alloy melted by arc discharge or the like within the cylindrical refractory is forcibly removed by the water-cooled metal mold provided in contact with the lower end of the cylindrical refractory. Therefore, the solidification rate is extremely high, and production efficiency is very high.Also, since the time from melting to solidification is very short, contamination from cylindrical refractories can be minimized, so there is virtually no contamination. It is so small that it can be ignored.

さらに、筒形耐火物の下端部に接して設けられた水冷金
属モールドを通して抜熱するための冷却手段および筒形
耐火物による保温壁が備えられているので、下方への熱
除去経路を確保することにより、溶融物を低部から頂部
に次第に凝固させることが可能となる。先ず、固体−液
体界面が筒形耐火物の低部に形成され、下方への熱の流
れが継続すると、その界面は次第に上方へ移動する。こ
の熱の流れの制御により、所望の軸方向の結晶配向を得
ることが可能となる。
Furthermore, it is equipped with a cooling means for removing heat through a water-cooled metal mold provided in contact with the lower end of the cylindrical refractory and a heat retaining wall made of the cylindrical refractory, ensuring a downward heat removal path. This makes it possible to solidify the melt gradually from the bottom to the top. First, a solid-liquid interface is formed at the bottom of the cylindrical refractory, and as the downward heat flow continues, the interface gradually moves upward. This control of heat flow makes it possible to obtain the desired axial crystal orientation.

[実施例] 本発明の好適な実施例を以下図面に従って説明する。第
1図は本実施例で使用された装置の断面図である。真空
室10の側面には排気管12および不活性ガス導入管1
4がが取り付けられ、排気管12は図示しない真空ポン
プに接続されており、不活性ガス導入管14からは不活
性ガスが導入されるようになっている。また、真空室1
0の天井からはタングステン電極16が垂下されており
、このタングステン電極16の一端はアーク電源18に
接続されている。
[Embodiments] Preferred embodiments of the present invention will be described below with reference to the drawings. FIG. 1 is a sectional view of the device used in this example. An exhaust pipe 12 and an inert gas introduction pipe 1 are provided on the side of the vacuum chamber 10.
4 is attached, the exhaust pipe 12 is connected to a vacuum pump (not shown), and an inert gas is introduced from the inert gas introduction pipe 14. Also, vacuum chamber 1
A tungsten electrode 16 is suspended from the ceiling of 0, and one end of this tungsten electrode 16 is connected to an arc power source 18.

真空室10の底部には水冷管20を内蔵した銅製の水冷
金属モールド22が設置され、その上には両端が開放さ
れた筒形耐火物24が開放端の一端を接して置かれてい
る。この筒形耐火物24の寸法は内径20vam、外径
50mm、高さ30m5の中空円筒であって、材質は9
9%のCaO質である。
A copper water-cooled metal mold 22 containing a water-cooled pipe 20 is installed at the bottom of the vacuum chamber 10, and a cylindrical refractory 24 with both ends open is placed on top of the mold 22 with one open end in contact with the mold. The dimensions of this cylindrical refractory 24 are a hollow cylinder with an inner diameter of 20 vam, an outer diameter of 50 mm, and a height of 30 m5, and the material is 9.
It is 9% CaO.

この筒形耐火物24に、Tbo、27DFo、t3Fe
+、*、の組成にyi整されたアークメルト法により溶
製された塊状の希土類鉄合金母材26を上端部まで装入
した1次に、真空室10内を排気管12に接続した真空
ポンプにより1O−5Torrまで真空に引いた後、不
活性ガス導入管14よりArを0.7気圧導入した。続
いて、真空室10内の水冷金属モールド22に予め置か
れた純Ti塊をタングステン電極16との間に形成され
るアーク放電により溶解し、真空室10内に残る酸素を
除去した。
In this cylindrical refractory 24, Tbo, 27DFo, t3Fe
The inside of the vacuum chamber 10 is connected to the exhaust pipe 12, and the inside of the vacuum chamber 10 is connected to the exhaust pipe 12. After evacuating to 10-5 Torr with a pump, 0.7 atm of Ar was introduced through the inert gas introduction pipe 14. Subsequently, the pure Ti lump previously placed in the water-cooled metal mold 22 in the vacuum chamber 10 was melted by an arc discharge formed between it and the tungsten electrode 16, and oxygen remaining in the vacuum chamber 10 was removed.

その後、筒形耐火物24の上にタングステン電極16を
移動し、筒形耐火物24の中にある希土類鉄合金母材2
6とタングステン電極16との間にアーク放電を行った
。これにより、筒形耐火物24の内で希土類鉄合金の溶
融体28が得られると同時に、熱が筒形耐火物24に伝
わり筒形耐火物24の温度が上昇した。
Thereafter, the tungsten electrode 16 is moved onto the cylindrical refractory 24, and the rare earth iron alloy base material 2 inside the cylindrical refractory 24 is moved.
Arc discharge was performed between 6 and the tungsten electrode 16. As a result, a molten body 28 of the rare earth iron alloy was obtained within the cylindrical refractory 24, and at the same time, heat was transmitted to the cylindrical refractory 24 and the temperature of the cylindrical refractory 24 rose.

溶融体28が得られた後、アーク放電の電流を徐々に減
少させた。この操作により水冷金属モールド22からの
抜熱とアーク放電および筒形耐火物24の余熱により、
筒形耐火ej24の下端より上端に向かう熱演が生じた
。そのため、凝固界面が下端より上端に進行し、結晶配
向したTb、、2゜D Fa、ysF el 、1%の
組成の合金ロッドが得られた。
After the melt 28 was obtained, the current of the arc discharge was gradually reduced. Through this operation, heat is removed from the water-cooled metal mold 22, arc discharge occurs, and residual heat from the cylindrical refractory 24 causes
A heated action occurred from the lower end of the cylindrical refractory ej24 toward the upper end. Therefore, the solidification interface progressed from the lower end to the upper end, and an alloy rod having a composition of Tb, 2°D Fa, ysF el and 1% with crystal orientation was obtained.

本実施例では、直径2〇−鴎、高さ25開の希土類鉄合
金の磁歪ロッドを得るのに、0.1時間を要した。従来
法であるゾーンメルティング法により同一組成で同一形
状の希土類鉄合金の磁歪ロッドを得るのに1時間を要す
るのに比較して、本実施例では約0.1時間の短い時間
で製造でき、本発明方法は極めて生産性に優れているこ
とが確認された。
In this example, it took 0.1 hour to obtain a rare earth iron alloy magnetostrictive rod with a diameter of 20 mm and a height of 25 mm. Compared to the conventional zone melting method, which takes one hour to obtain a rare earth iron alloy magnetostrictive rod of the same composition and shape, this example can be manufactured in a shorter time of approximately 0.1 hour. It was confirmed that the method of the present invention has extremely high productivity.

また、本実施例で得られた磁歪ロッドに歪ゲージを張り
付は直流磁界中で磁歪測定を行った結果、飽和磁歪定数
λSが1400xlO−’であって、磁歪材料として優
れた磁気特性を有することが判明した。
In addition, as a result of magnetostriction measurement in a DC magnetic field with a strain gauge attached to the magnetostrictive rod obtained in this example, the saturation magnetostriction constant λS was 1400xlO-', and it has excellent magnetic properties as a magnetostrictive material. It has been found.

[発明の効果] 本発明の希土類鉄合金からなる磁歪ロッドの製造方法は
、以上説明したように、真空室内の水冷金属モールド上
に設置した筒形耐火物に装入した希土類鉄合金母材をア
ーク溶解した後、水冷金属モールドからの抜熱により凝
固することを特徴とするものであって、溶融された希土
類鉄合金は筒形耐火物の低端部に接して設けられた水冷
金属モールドにより強制的に抜熱されるために凝固速度
が極めて大きく、磁歪ロッドの生産効率が大変良い、ま
た、水冷金属モールドの冷却により、固体−液体界面が
筒形耐火物の低部に形成され、その界面は次第に上方へ
移動するので、この熱の流れの制御により、所望の軸方
向の結晶配向を得ることが可能となり、磁歪特性に優れ
た磁歪ロッドを製造することができる。
[Effects of the Invention] As explained above, the method for manufacturing a magnetostrictive rod made of a rare earth iron alloy according to the present invention includes a rare earth iron alloy base material charged into a cylindrical refractory placed on a water-cooled metal mold in a vacuum chamber. After arc melting, it solidifies by removing heat from a water-cooled metal mold, and the molten rare earth iron alloy is melted by a water-cooled metal mold installed in contact with the lower end of the cylindrical refractory. Because the heat is forcibly removed, the solidification rate is extremely high, and the production efficiency of magnetostrictive rods is very high.Also, by cooling the water-cooled metal mold, a solid-liquid interface is formed at the bottom of the cylindrical refractory, and the interface Since the heat flow gradually moves upward, controlling this heat flow makes it possible to obtain a desired axial crystal orientation, making it possible to manufacture a magnetostrictive rod with excellent magnetostrictive properties.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は本発明方法に使用される溶解装置の断面図であ
る。
FIG. 1 is a sectional view of a melting apparatus used in the method of the present invention.

Claims (3)

【特許請求の範囲】[Claims] (1)不活性ガスを封入した真空室内で下端部を水冷金
属モールドに接した筒形耐火物中に希土類鉄合金(Re
Fex;ただし式中Reは1種または2種以上の希土類
金属であり、Feは鉄であり、かつxは1.5〜2.0
である。)を装入し、前記希土類鉄合金を前記筒形耐火
物の上部よりアーク溶解し、その後前記水冷金属モール
ドからの抜熱により溶融した前記希土類鉄合金を下端部
より凝固せしめることを特徴とする希土類鉄合金からな
る磁歪ロッドの製造方法。
(1) In a vacuum chamber filled with inert gas, a rare earth iron alloy (Re
Fex; However, in the formula, Re is one or more rare earth metals, Fe is iron, and x is 1.5 to 2.0
It is. ), arc melting the rare earth iron alloy from the upper part of the cylindrical refractory, and then solidifying the molten rare earth iron alloy from the lower end by removing heat from the water-cooled metal mold. A method for manufacturing a magnetostrictive rod made of rare earth iron alloy.
(2)前記筒形耐火物にBN、Y_2O_3、CaO、
MgO、Al_2O_3、SiO_2を含むセラミック
スを使用する特許請求の範囲第1項に記載の希土類鉄合
金からなる磁歪ロッドの製造方法。
(2) BN, Y_2O_3, CaO,
A method for manufacturing a magnetostrictive rod made of a rare earth iron alloy according to claim 1, which uses ceramics containing MgO, Al_2O_3, and SiO_2.
(3)前記筒形耐火物のまわりに設置した発熱体により
前記筒形耐火物を加熱する特許請求の範囲第1項に記載
の希土類鉄合金からなる磁歪ロッドの製造方法。
(3) The method for manufacturing a magnetostrictive rod made of a rare earth iron alloy according to claim 1, wherein the cylindrical refractory is heated by a heating element installed around the cylindrical refractory.
JP34257189A 1989-12-28 1989-12-28 Manufacture of magnetostrictive rod constituted of rare earth-iron alloy Pending JPH03202439A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP34257189A JPH03202439A (en) 1989-12-28 1989-12-28 Manufacture of magnetostrictive rod constituted of rare earth-iron alloy

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP34257189A JPH03202439A (en) 1989-12-28 1989-12-28 Manufacture of magnetostrictive rod constituted of rare earth-iron alloy

Publications (1)

Publication Number Publication Date
JPH03202439A true JPH03202439A (en) 1991-09-04

Family

ID=18354799

Family Applications (1)

Application Number Title Priority Date Filing Date
JP34257189A Pending JPH03202439A (en) 1989-12-28 1989-12-28 Manufacture of magnetostrictive rod constituted of rare earth-iron alloy

Country Status (1)

Country Link
JP (1) JPH03202439A (en)

Similar Documents

Publication Publication Date Title
JPH0753628B2 (en) Continuous manufacturing method of directional magnetostrictive body
JPS62109946A (en) Production of magnetostriction rod from rare earth element/iron alloy
CN101608281B (en) Giant magnetostrictive large volume Fe81Ga19 alloy material and preparation method thereof
US5336337A (en) Magnetrostrictive materials and methods of making such materials
CN107236913A (en) A kind of zirconium-base amorphous alloy and preparation method thereof
CN106957986B (en) A kind of high-ductility magnetostriction materials and preparation method thereof
CN106591743A (en) High-plasticity zirconium base amorphous alloy and preparation method thereof
JPH0337182A (en) Production of big magnetostrictive alloy rod
JPH03202439A (en) Manufacture of magnetostrictive rod constituted of rare earth-iron alloy
CN108504966A (en) A kind of cobalt-base body amorphous alloy and preparation method thereof
JP2003239051A (en) HIGH-STRENGTH Zr-BASE METALLIC GLASS
JP4320278B2 (en) Ti-based metallic glass
CN110153384B (en) Preparation method of all-metal iron-based amorphous strip
CN111254338A (en) Magnetostrictive material and preparation method thereof
JP3367069B2 (en) Manufacturing method of giant magnetostrictive alloy rod
CN1041848C (en) Rare-earth-iron super magnetostriction material
JP2021066627A (en) Magnetostrictive material and magnetostrictive element
JPH01246342A (en) Supermagnetostrictive material and its manufacture
CN109457166A (en) A kind of preparation of iron-base block amorphous alloy and thermoplastic forming processes
US5114467A (en) Method for manufacturing magnetostrictive materials
CN109576608B (en) In-situ generated cladding structure iron-based block amorphous alloy composition and preparation method thereof
CN109022854B (en) Method for smelting mother alloy of amorphous soft magnetic material
CN117721397A (en) Fe-Sc-M bulk amorphous alloy with high glass forming capability and preparation method and application thereof
RU2662004C1 (en) METHOD FOR MELTING WITH DIRECTIONAL CRYSTALIZATION OF MAGNETIC ALLOY OF THE Fe-Al-Ni-Co SYSTEM
JPH03122229A (en) Manufacture of supermagnetostriction alloy