JPH03202277A - Cutter, grinder and polisher using composite diamond abrasive - Google Patents
Cutter, grinder and polisher using composite diamond abrasiveInfo
- Publication number
- JPH03202277A JPH03202277A JP33863189A JP33863189A JPH03202277A JP H03202277 A JPH03202277 A JP H03202277A JP 33863189 A JP33863189 A JP 33863189A JP 33863189 A JP33863189 A JP 33863189A JP H03202277 A JPH03202277 A JP H03202277A
- Authority
- JP
- Japan
- Prior art keywords
- cutting
- grinding
- diamond
- composite
- composite diamond
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
- 239000010432 diamond Substances 0.000 title claims abstract description 68
- 229910003460 diamond Inorganic materials 0.000 title claims abstract description 65
- 239000002131 composite material Substances 0.000 title claims abstract description 43
- 238000005520 cutting process Methods 0.000 claims abstract description 40
- 238000000227 grinding Methods 0.000 claims abstract description 27
- 238000005498 polishing Methods 0.000 claims abstract description 25
- 239000011230 binding agent Substances 0.000 claims abstract description 8
- 239000008187 granular material Substances 0.000 claims description 13
- 239000011347 resin Substances 0.000 claims description 4
- 229920005989 resin Polymers 0.000 claims description 4
- 239000002245 particle Substances 0.000 abstract description 15
- PNEYBMLMFCGWSK-UHFFFAOYSA-N aluminium oxide Inorganic materials [O-2].[O-2].[O-2].[Al+3].[Al+3] PNEYBMLMFCGWSK-UHFFFAOYSA-N 0.000 abstract description 5
- 239000004744 fabric Substances 0.000 abstract description 2
- 230000004323 axial length Effects 0.000 abstract 1
- 150000001875 compounds Chemical class 0.000 abstract 1
- 239000011236 particulate material Substances 0.000 abstract 1
- 239000002184 metal Substances 0.000 description 15
- 229910052751 metal Inorganic materials 0.000 description 15
- 239000000843 powder Substances 0.000 description 13
- 230000000052 comparative effect Effects 0.000 description 7
- 239000000463 material Substances 0.000 description 7
- 238000000034 method Methods 0.000 description 7
- LFQSCWFLJHTTHZ-UHFFFAOYSA-N Ethanol Chemical compound CCO LFQSCWFLJHTTHZ-UHFFFAOYSA-N 0.000 description 6
- 230000015572 biosynthetic process Effects 0.000 description 5
- 238000003786 synthesis reaction Methods 0.000 description 5
- RYGMFSIKBFXOCR-UHFFFAOYSA-N Copper Chemical compound [Cu] RYGMFSIKBFXOCR-UHFFFAOYSA-N 0.000 description 4
- 239000006061 abrasive grain Substances 0.000 description 4
- 238000006243 chemical reaction Methods 0.000 description 4
- 239000007789 gas Substances 0.000 description 4
- 238000012360 testing method Methods 0.000 description 4
- 239000012808 vapor phase Substances 0.000 description 4
- UHOVQNZJYSORNB-UHFFFAOYSA-N Benzene Chemical compound C1=CC=CC=C1 UHOVQNZJYSORNB-UHFFFAOYSA-N 0.000 description 3
- OKKJLVBELUTLKV-UHFFFAOYSA-N Methanol Chemical compound OC OKKJLVBELUTLKV-UHFFFAOYSA-N 0.000 description 3
- YXFVVABEGXRONW-UHFFFAOYSA-N Toluene Chemical compound CC1=CC=CC=C1 YXFVVABEGXRONW-UHFFFAOYSA-N 0.000 description 3
- 239000010953 base metal Substances 0.000 description 3
- 239000011248 coating agent Substances 0.000 description 3
- 238000000576 coating method Methods 0.000 description 3
- 230000000694 effects Effects 0.000 description 3
- 230000003287 optical effect Effects 0.000 description 3
- 239000002994 raw material Substances 0.000 description 3
- CSCPPACGZOOCGX-UHFFFAOYSA-N Acetone Chemical compound CC(C)=O CSCPPACGZOOCGX-UHFFFAOYSA-N 0.000 description 2
- XKRFYHLGVUSROY-UHFFFAOYSA-N Argon Chemical compound [Ar] XKRFYHLGVUSROY-UHFFFAOYSA-N 0.000 description 2
- XEEYBQQBJWHFJM-UHFFFAOYSA-N Iron Chemical compound [Fe] XEEYBQQBJWHFJM-UHFFFAOYSA-N 0.000 description 2
- ATUOYWHBWRKTHZ-UHFFFAOYSA-N Propane Chemical compound CCC ATUOYWHBWRKTHZ-UHFFFAOYSA-N 0.000 description 2
- 238000001069 Raman spectroscopy Methods 0.000 description 2
- QVGXLLKOCUKJST-UHFFFAOYSA-N atomic oxygen Chemical compound [O] QVGXLLKOCUKJST-UHFFFAOYSA-N 0.000 description 2
- 239000000919 ceramic Substances 0.000 description 2
- 239000001257 hydrogen Substances 0.000 description 2
- 229910052739 hydrogen Inorganic materials 0.000 description 2
- 239000004579 marble Substances 0.000 description 2
- VNWKTOKETHGBQD-UHFFFAOYSA-N methane Chemical compound C VNWKTOKETHGBQD-UHFFFAOYSA-N 0.000 description 2
- 239000001301 oxygen Substances 0.000 description 2
- 229910052760 oxygen Inorganic materials 0.000 description 2
- 239000013618 particulate matter Substances 0.000 description 2
- 238000001556 precipitation Methods 0.000 description 2
- -1 propatool Chemical compound 0.000 description 2
- 238000001308 synthesis method Methods 0.000 description 2
- 229910052715 tantalum Inorganic materials 0.000 description 2
- OKTJSMMVPCPJKN-UHFFFAOYSA-N Carbon Chemical compound [C] OKTJSMMVPCPJKN-UHFFFAOYSA-N 0.000 description 1
- XDTMQSROBMDMFD-UHFFFAOYSA-N Cyclohexane Chemical compound C1CCCCC1 XDTMQSROBMDMFD-UHFFFAOYSA-N 0.000 description 1
- OTMSDBZUPAUEDD-UHFFFAOYSA-N Ethane Chemical compound CC OTMSDBZUPAUEDD-UHFFFAOYSA-N 0.000 description 1
- UFHFLCQGNIYNRP-UHFFFAOYSA-N Hydrogen Chemical compound [H][H] UFHFLCQGNIYNRP-UHFFFAOYSA-N 0.000 description 1
- 238000001530 Raman microscopy Methods 0.000 description 1
- 229910052581 Si3N4 Inorganic materials 0.000 description 1
- DKGAVHZHDRPRBM-UHFFFAOYSA-N Tert-Butanol Chemical compound CC(C)(C)O DKGAVHZHDRPRBM-UHFFFAOYSA-N 0.000 description 1
- 239000000853 adhesive Substances 0.000 description 1
- 230000001070 adhesive effect Effects 0.000 description 1
- 229910045601 alloy Inorganic materials 0.000 description 1
- 239000000956 alloy Substances 0.000 description 1
- 238000004873 anchoring Methods 0.000 description 1
- 229910052786 argon Inorganic materials 0.000 description 1
- 229910052799 carbon Inorganic materials 0.000 description 1
- 239000012159 carrier gas Substances 0.000 description 1
- 239000003795 chemical substances by application Substances 0.000 description 1
- 239000011247 coating layer Substances 0.000 description 1
- 230000006835 compression Effects 0.000 description 1
- 238000007906 compression Methods 0.000 description 1
- 230000008021 deposition Effects 0.000 description 1
- 238000011161 development Methods 0.000 description 1
- 230000005684 electric field Effects 0.000 description 1
- 230000005284 excitation Effects 0.000 description 1
- 239000010419 fine particle Substances 0.000 description 1
- 238000010304 firing Methods 0.000 description 1
- 238000007731 hot pressing Methods 0.000 description 1
- 229930195733 hydrocarbon Natural products 0.000 description 1
- 150000002430 hydrocarbons Chemical class 0.000 description 1
- 150000002431 hydrogen Chemical class 0.000 description 1
- 229910052742 iron Inorganic materials 0.000 description 1
- 230000001788 irregular Effects 0.000 description 1
- 238000004519 manufacturing process Methods 0.000 description 1
- 150000002739 metals Chemical class 0.000 description 1
- 238000002156 mixing Methods 0.000 description 1
- 229910052750 molybdenum Inorganic materials 0.000 description 1
- 150000002894 organic compounds Chemical class 0.000 description 1
- 239000012071 phase Substances 0.000 description 1
- 230000001376 precipitating effect Effects 0.000 description 1
- 238000003825 pressing Methods 0.000 description 1
- 238000012545 processing Methods 0.000 description 1
- 239000001294 propane Substances 0.000 description 1
- 238000010298 pulverizing process Methods 0.000 description 1
- 238000011160 research Methods 0.000 description 1
- 238000005245 sintering Methods 0.000 description 1
- 239000000126 substance Substances 0.000 description 1
- 238000004381 surface treatment Methods 0.000 description 1
- GUVRBAGPIYLISA-UHFFFAOYSA-N tantalum atom Chemical compound [Ta] GUVRBAGPIYLISA-UHFFFAOYSA-N 0.000 description 1
- 229910052721 tungsten Inorganic materials 0.000 description 1
Landscapes
- Polishing Bodies And Polishing Tools (AREA)
Abstract
Description
【発明の詳細な説明】
〈産業上の利用分野〉
本発明は、耐熱性粒体の表面に気相法によりダイヤモン
ドを析出させた複合ダイヤモンド粒を切削、研削、研摩
体とする切削、研削、研摩具に関する。[Detailed Description of the Invention] <Industrial Application Field> The present invention is directed to cutting, grinding, cutting, grinding, and polishing using composite diamond grains, in which diamonds are precipitated on the surface of heat-resistant grains by a vapor phase method, as an abrasive body. Regarding polishing tools.
〈従来の技術〉
従来用いられているダイヤモンド粒を用いた切削、研削
、研摩具としてはメタルボンドホイール、レジンボンド
ホイール、ビトリファイドボンドホイール及び研摩布紙
がある。しかし用いられるダイヤモンド粒は、天然又は
人造(超高圧)の長短径比が1.2未満のものが主であ
る。これらは高価で、利用分野も限定されている。本件
出願人は先に特願昭63−219889号として耐熱性
粒体の表面に気相法ダイヤモンドを被覆したものを発明
し出願した。しかしこれらのものは長短径比が球状又は
それに近いものであった。<Prior Art> Conventionally used cutting, grinding, and polishing tools using diamond particles include metal bond wheels, resin bond wheels, vitrified bond wheels, and coated abrasive paper. However, the diamond grains used are mainly natural or artificial (ultra-high pressure) grains with a long-width ratio of less than 1.2. These are expensive and have limited fields of application. The applicant of the present application previously invented and filed a patent application No. 219889/1989 for a heat-resistant granule whose surface is coated with vapor-grown diamond. However, these particles had a spherical shape or a spherical shape in terms of the length/breadth axis ratio.
〈発明が解決しようとする課題〉
前記従来用いられていたダイヤモンド粒を用いた工具は
次に示すように切削、研削、研摩能率が低かった。<Problems to be Solved by the Invention> The conventionally used tools using diamond grains had low cutting, grinding, and polishing efficiency as shown below.
即ち、長短径比が低く、結合性が低く、例えばレジンボ
ンド系では表面処理により突起を形成して結合性を補っ
ていた。一方研摩布紙分野では、ダイヤモンド粒を用い
たものはコスト面及び低結合性から非常に限られていた
。That is, the length ratio is low and the bondability is low. For example, in resin bond systems, protrusions are formed by surface treatment to compensate for the bondability. On the other hand, in the field of coated abrasive papers, those using diamond grains have been extremely limited due to cost and low bonding properties.
従来一般にAbOs 、 Sic等の砥粒が用いられて
いる。しかしながらこれらのものは切削性能、コストパ
フォーマンス共に高いものではなかった。Conventionally, abrasive grains such as AbOs and Sic have been generally used. However, these materials did not have high cutting performance and cost performance.
従って実用的には切削性能、コストパフォーマンスのい
ずれもが高い切削、研削、研摩具の開発が要求されてい
た。Therefore, from a practical standpoint, there has been a demand for the development of cutting, grinding, and polishing tools that have both high cutting performance and cost performance.
本発明の目的は前述せる要求に応する切削、研削、研摩
を成し得る工具を提供することにある。An object of the present invention is to provide a tool capable of cutting, grinding, and polishing that meets the above-mentioned requirements.
〈課題を解決するための手段〉
本件発明者は上記の目的を達成する為に、鋭意研究した
結果、最長軸長と最短軸長との比が少なくとも1.2で
ある耐熱性粒状物の全表面に、気相法により微細結晶ダ
イヤモンド粒子が析出させて得られた複合ダイヤモンド
粒が被削面が縦方向に接触するような向きに特定配向さ
せた工具は高能率切削、研削、研摩が可能となることを
見出し、本発明を完成させた。<Means for Solving the Problem> In order to achieve the above object, the inventor of the present invention, as a result of intensive research, has found that all heat-resistant granules having a ratio of the longest axis length to the shortest axis length are at least 1.2. The composite diamond grains obtained by precipitating microcrystalline diamond grains on the surface using a vapor phase method are oriented in a specific direction so that the cut surface is in vertical contact with the tool.High efficiency cutting, grinding, and polishing are possible. They have discovered that this is the case and have completed the present invention.
即ち、本発明は耐熱性粒状物の全表面を気相法ダイヤモ
ンド膜で被覆した、最長軸長と最短軸長との比が少なく
とも1.2である複合ダイヤモンド粒と、結合剤とより
なる切削、研削、研摩体と支持体とよりなり、複合ダイ
ヤモンド粒は被削面に対して縦方向に配列されているこ
とを特徴とする複合ダイヤモンド粒を用いた切削、研削
、研摩具に関する。That is, the present invention provides a cutting method comprising composite diamond grains whose entire surface is coated with a vapor-grown diamond film and whose ratio of longest axis length to shortest axis length is at least 1.2, and a binder. The present invention relates to a cutting, grinding, and polishing tool using composite diamond grains, which comprises a grinding, polishing body and a support body, and the composite diamond grains are arranged vertically with respect to the surface to be cut.
以下本発明の詳細な説明する。The present invention will be explained in detail below.
本発明で用いられる耐熱性粒状物としては、ダイヤモン
ド、W、 Mo、 Ta、 WC,SiC、TiC1T
aC、AjzOs 、Zr0z、CrzOs 、 Ta
N 、 ZrN 。The heat-resistant granules used in the present invention include diamond, W, Mo, Ta, WC, SiC, and TiC1T.
aC, AjzOs, Zr0z, CrzOs, Ta
N, ZrN.
Si3N4等の耐熱性の金属、セラミックスが適する。Heat-resistant metals and ceramics such as Si3N4 are suitable.
粒の形状は前述のように最長軸長と、最短軸長の比が少
なくても1.2であることが必要であるが、実用的には
1.5〜10であることが望ましく、特に5又はその前
後が好ましい。その理由は、配向性を持たせることによ
り高結合力及び工具の長寿命化が可能となるからである
。又、最短軸長は10〜700μmであることが必要で
あり、特に30〜400μmの範囲にあることが好まし
い。As mentioned above, it is necessary for the grain shape to have a ratio of the longest axis length to the shortest axis length of at least 1.2, but practically it is desirable that the ratio is 1.5 to 10, especially 5 or around it is preferable. The reason for this is that by providing orientation, high bonding strength and long tool life are possible. Further, the shortest axis length needs to be 10 to 700 μm, and particularly preferably in the range of 30 to 400 μm.
基体粒の作り方は、
(1)セラミックスや耐熱性金属塊は粉砕した粒をふる
い分けて選別する。即ち長径よりも目の細かいふるいで
分級し、ふるい上に残ったものを短径よりも粗いふるい
で分級しふるい下のものを用いれば良い。How to make the base grains: (1) For ceramics and heat-resistant metal ingots, pulverized grains are sieved and sorted. That is, it is sufficient to classify the material using a sieve whose mesh is finer than its major diameter, and to classify what remains on the sieve through a sieve whose diameter is coarser than its minor diameter, and to use the material under the sieve.
(2)粉末焼結により長短径比の大きなものを得る。例
えば未焼成体を薄い板状とし、解砕して扁平粒を調整し
、ロータリーキルン等で焼成する方法を取っても良い。(2) A product with a large length/breadth axis ratio is obtained by powder sintering. For example, a method may be used in which the unfired body is made into a thin plate shape, crushed to prepare flat grains, and then fired in a rotary kiln or the like.
本発明の切削、研削、研摩具申のダイヤモンド複合粒は
耐熱性粒状物表面が気相法による多結晶ダイヤモンドで
被覆されている。被覆の望ましい厚みは耐熱性粒状物の
大きさによっても異なり、用途、被覆に要する時間等を
考慮して決められている。The surface of the heat-resistant granules of the diamond composite grains used in the cutting, grinding, and polishing tools of the present invention is coated with polycrystalline diamond by a vapor phase method. The desired thickness of the coating varies depending on the size of the heat-resistant granules, and is determined in consideration of the application, the time required for coating, etc.
ダイヤモンド被覆層を構成する粒子サイズは、サブミク
ロンオーダーの微細なものから20μm程度まで、析出
合成条件により選択することができる。The particle size constituting the diamond coating layer can be selected from fine particles on the order of submicrons to about 20 μm depending on the precipitation synthesis conditions.
耐熱性粒状物の表面にダイヤモンド粒子を析出させるに
は公知の気相法ダイヤモンド合成法を応用して行なうこ
とができる。即ち原料ガスとしてはメタン、エタン、プ
ロパン、ベンゼン、トルエン、シクロヘキサン等の炭化
水素、メタノール、エタノール、プロパツール、ターシ
ャリ−ブタノール、アセトン等の含酸素有機化合物、更
にはこれらにH2O、CO□、 CO等の酸素含有物質
を添加したものを用いることもできる。これらのガスは
単独或いは水素、アルゴン等のキャリアガスと混合して
用いられる。ガスの圧力は10−2丁orr程度から、
合成法によっては加圧状態まで可能である。Diamond particles can be deposited on the surface of the heat-resistant granules by applying a known vapor phase diamond synthesis method. That is, raw material gases include hydrocarbons such as methane, ethane, propane, benzene, toluene, and cyclohexane, oxygen-containing organic compounds such as methanol, ethanol, propatool, tertiary-butanol, and acetone, and furthermore, H2O, CO□, and CO. It is also possible to use a material to which an oxygen-containing substance such as the like is added. These gases may be used alone or in combination with a carrier gas such as hydrogen or argon. The gas pressure is about 10-2 orr,
Depending on the synthesis method, it is possible to create a pressurized state.
これらの方法で耐熱性粒状物の全面にダイヤモンド粒子
を析出させるにはダイヤモンド合成用原料が存在し、且
つダイヤモンド生成可能状態に励起された雰囲気中で耐
熱容器内に粒状物を入れ、粒状物が反応空間領域となる
位置に置き、耐熱容器に接続されている振動器等により
間欠的に粒状物を反転させる等の方法を取れば良い。In order to precipitate diamond particles on the entire surface of heat-resistant granules using these methods, raw materials for diamond synthesis are present, and the granules are placed in a heat-resistant container in an atmosphere excited to a state capable of producing diamonds. A method such as placing the particulate matter in a position that will become a reaction space region and intermittently inverting the particulate matter using a vibrator or the like connected to a heat-resistant container may be used.
粒状物は隣の粒状物と一部重なったりするが、短径面よ
り長径面のダイヤモンド析出厚みが大で膜状であり、析
出面全体は不規則な凹凸状となっている。Although the granules partially overlap with neighboring granules, the thickness of the diamond precipitation on the major diameter surface is larger than that on the minor diameter surface and is film-like, and the entire deposition surface is irregularly uneven.
耐熱粒状物は粉砕等により作られているので、多くの活
性点を有する。この活性点がダイヤモンド生成の核とし
て働き、ダイヤモンド粒子が析出するのである。Since heat-resistant granules are made by pulverization or the like, they have many active sites. These active sites act as nuclei for diamond formation, and diamond particles are precipitated.
本発明の切削、研削、研摩具はこの複合ダイヤモンド粒
を結合剤と混合し固化した切削、研削、研摩体とこの切
削、研削、研摩体を支持する支持体とにより構成される
。The cutting, grinding, and polishing tool of the present invention is composed of a cutting, grinding, and polishing body made by mixing and solidifying the composite diamond grains with a binder, and a support that supports the cutting, grinding, and polishing body.
次に本発明の切削、研削、研摩具の具体例を図面に基づ
いて説明する。Next, specific examples of the cutting, grinding, and polishing tool of the present invention will be explained based on the drawings.
第1図は台布紙上に対して複合ダイヤモンド粒がはf直
立して配列された研摩布紙を示す。図において1は複合
ダイヤモンド粒、2は結合剤、3は台布紙である。第工
図に示す切削、研削、研摩具は複合ダイヤモンド粒を例
えば布テープへ均一に撒布して置き、帯電状態にすると
、ダイヤモンドの高絶縁性により複合ダイヤモンド粒は
図に示すよう、台布紙に対し縦方向、図においてははf
垂直に配列される。これを台布紙に固定するには例えば
結合剤を薄く塗布した台布紙を下に向け、下方に複合粒
を置き、台布紙と複合粒間に電場を印加すると複合粒が
立った状態で固着剤に付着する。その後、固着剤を固化
させ粒を固定する。FIG. 1 shows a coated abrasive paper with composite diamond grains arranged vertically on the backing paper. In the figure, 1 is a composite diamond grain, 2 is a binder, and 3 is a backing paper. The cutting, grinding, and polishing tools shown in the drawing are made by uniformly distributing composite diamond grains onto a cloth tape, for example, and placing it in a charged state. Due to the high insulating properties of diamond, the composite diamond grains are placed on a backing paper as shown in the figure. On the other hand, in the vertical direction, in the figure, f
arranged vertically. To fix this to a backing paper, for example, place a backing paper thinly coated with a binder facing down, place the composite grains below, and apply an electric field between the backing paper and the composite grains. Attach to. Thereafter, the fixing agent is solidified to fix the grains.
第2図は本発明の切削、研削、研摩具の他の実用的な例
であるメタルボンドホイールに関する。FIG. 2 relates to a metal bond wheel which is another practical example of the cutting, grinding, and polishing tool of the present invention.
図において、11はダイヤモンド複合粉、12はメタル
ボンド、13は合金である。In the figure, 11 is a diamond composite powder, 12 is a metal bond, and 13 is an alloy.
このメタルボンドホイールは複合ダイヤモンド粒と、メ
タルボンド(例えば、銅粉とブロンズ粉)とを混合し、
環状の台金ヘコールドプレスすると、複合ダイヤモンド
粒は圧縮方向にはf垂直に配向する。このものを更に焼
成、ホットプレス、ツルーイング、ドレッシングの各処
理工程を経て、メタルボンドホイールが形成される。尚
、支持体としては円筒状、或いはカップ状等の形状のも
のも使用可能である。This metal bond wheel mixes composite diamond particles and metal bond (e.g. copper powder and bronze powder),
When cold pressed onto an annular base metal, the composite diamond grains are oriented perpendicular to the compression direction. This material is further subjected to the processing steps of firing, hot pressing, truing, and dressing to form a metal bond wheel. Incidentally, as the support, a support having a cylindrical shape or a cup shape can also be used.
次に実施例、比較例により本発明を説明する。Next, the present invention will be explained with reference to Examples and Comparative Examples.
実施例
平均最長軸長650μm、平均最短軸長80μmのアル
ミナ粒を熱フィラメント法ダイヤモンド合成装置内の反
応パケット内に500mgセットした。励起熱フィラメ
ントとして、0.3mmφタンクルワイヤーをコイル状
に加工したものを用い、反応パケット内底面より7mm
の高さに設定した。合成中、パケットは10分毎に10
秒の割合で、電磁振動器による間歇振動を行なった。Example 500 mg of alumina grains having an average longest axis length of 650 μm and an average shortest axis length of 80 μm were set in a reaction packet in a hot filament diamond synthesis apparatus. As the excitation hot filament, a 0.3 mmφ tank wire processed into a coil shape was used, and it was placed 7 mm from the inner bottom of the reaction packet.
It was set to a height of . During synthesis, 10 packets are generated every 10 minutes.
Intermittent vibration was performed using an electromagnetic vibrator at a rate of seconds.
合成反応は圧力100Torr、タンタルフィラメント
温度2450℃、原料ガスとしてエタノール、水素系で
、エタノール3容積%の濃度とし、トータル流量150
cc/minで10時間行なった。The synthesis reaction was carried out at a pressure of 100 Torr, a tantalum filament temperature of 2450°C, a raw material gas of ethanol and hydrogen, an ethanol concentration of 3% by volume, and a total flow rate of 150.
The test was carried out at cc/min for 10 hours.
反応完了後パケットより粒子を取出し、その表面状態を
光学顕微鏡で観察した。表面は数μmのダイヤモンド粒
子よりなる緻密な構造の膜により覆われていた。そして
特に最長径面の膜は10μm前後の段差の不規則な凹凸
が観察された。又、粒子表面を顕微ラマン分光によりラ
マンシフトを測定した所、1334cm” ’に鋭いダ
イヤモンド結合によるピークと、1500cm−’付近
に非常にブロードで低いピークを認めたことにより、ダ
イヤモンド相に微量のiカーボン成分が混在するダイヤ
モンドコーテイング膜であると確認した。尚、得られた
ダイヤモンド複合粉の重量は890mgであった。After the reaction was completed, the particles were removed from the packet and their surface condition was observed using an optical microscope. The surface was covered with a densely structured film consisting of diamond particles of several μm in size. Particularly on the longest diameter surface of the film, irregular unevenness with steps of about 10 μm was observed. In addition, when we measured the Raman shift of the particle surface by micro-Raman spectroscopy, we found a sharp peak due to diamond bonding at 1334 cm'' and a very broad and low peak around 1500 cm'', indicating that a trace amount of i in the diamond phase. It was confirmed that it was a diamond coating film containing a carbon component.The weight of the obtained diamond composite powder was 890 mg.
次にこの複合粒を用い、次に示すように180mmφの
メタルボンドダイヤモンドホイールを作成した。直径1
74mmφの鉄製台金に前記複合粒600B、メタルボ
ンドとして銅粉、20g、ブロンズ粉等14gを用い、
コールドプレス、焼成、ホットプレスツルーイング、ド
レッシングにより第1図に示すように複合粉が配向され
たメタルボンドホイールを作成した。Next, using this composite grain, a metal bond diamond wheel of 180 mmφ was made as shown below. Diameter 1
Using the composite grain 600B, 20g of copper powder as metal bond, 14g of bronze powder etc. on a 74mmφ iron base metal,
A metal bond wheel with composite powder oriented as shown in FIG. 1 was prepared by cold pressing, baking, hot press truing, and dressing.
次にこのダイヤモンドホイールを用いてd式切削試験を
行なった。被削材は大理石ブロック(100x 20X
35mm)で、20X 35mm面を280Or、
p、 mの切削機で10回切削した。そのときの初動電
力は270W、平均電力は310W、−回当たりの平均
切削時間は140秒であった。10回切削後、光学顕微
鏡で複合粉とメタルボンドとよりなる面、即ち砥粒面を
観察した。その結果は70%の複合粉は残り、20%が
破砕、10%が脱落していた。Next, a d-type cutting test was conducted using this diamond wheel. The work material is marble block (100x 20x
35mm), 20X 35mm surface 280Or,
Cutting was performed 10 times using P and M cutting machines. At that time, the initial power was 270 W, the average power was 310 W, and the average cutting time per cut was 140 seconds. After cutting 10 times, the surface composed of the composite powder and metal bond, that is, the abrasive grain surface, was observed using an optical microscope. The results showed that 70% of the composite powder remained, 20% was crushed, and 10% fell off.
比較例
長短比が1.1以下の溶融アルミナの平均径300μm
のちのを用い、実施例と同じ条件で複合ダイヤモンド粒
を製造した。製造量は910mgであった。顕微鏡によ
る観察結果では、複合ダイヤモンド粒は実施例と同様に
数μmの緻密なダイヤモンド膜で表面が覆われていた。Comparative example Average diameter of fused alumina with a length ratio of 1.1 or less 300 μm
Composite diamond grains were produced using the same conditions as in the examples. The production amount was 910 mg. As a result of microscopic observation, the surface of the composite diamond grains was covered with a dense diamond film of several micrometers, similar to the example.
顕微ラマン分光分析結果も実施例における複合ダイヤモ
ンド粒と殆ど同じ結果であった。この複合粉600mg
から180mmφダイヤモンダイヤモンドホイールで作
成し、実施例と同様に湿式の切削試験を行なった。その
ときの初動電力は300W、平均電力は350W、−回
当たりの切削時間は150秒であった。10回切削後の
光学顕微鏡による観察結果は55%の複合粉は残り、2
5%は破砕、20%が脱落していた。The results of microscopic Raman spectroscopy were also almost the same as those of the composite diamond grains in Examples. 600mg of this composite powder
A diamond wheel with a diameter of 180 mm was used to conduct a wet cutting test in the same manner as in the examples. The initial power at that time was 300 W, the average power was 350 W, and the cutting time per cut was 150 seconds. Observation results using an optical microscope after cutting 10 times showed that 55% of the composite powder remained and 2% of the composite powder remained.
5% were crushed and 20% had fallen off.
尚比較例に用いられた長短径比が1.1以下の溶融アル
ミナの平均粒径300μmのものは、実施例に用いられ
たアルミナ粒とはf同体積であるが、表面積は約56%
となっている。The molten alumina used in the comparative example with an average grain size of 300 μm and having a length ratio of 1.1 or less had the same volume as the alumina grains used in the example, but had a surface area of about 56%.
It becomes.
実施例と比較例とにおけるメタルボンドダイヤモンドホ
イールに於ける大理石ブロックの切削試験特性値を比べ
ると、いずれも実施例が優れいている。Comparing the marble block cutting test characteristic values of metal bonded diamond wheels in Examples and Comparative Examples, both Examples are superior.
即ち、初動電力、平均電力は少なく、−回当たりの平均
切削時間は短かった。更に10回切削後の砥粒面も実施
例の場合は、比較例に比して、破砕、脱落量は少なかっ
た。That is, the initial power and average power were low, and the average cutting time per cycle was short. Furthermore, in the case of the abrasive grain surface after cutting 10 times, the amount of crushing and falling off was smaller in the case of the example than in the comparative example.
尚、実施例、比較例はメタルボンドダイヤモンドホイー
ルの例であるが、例えば台布紙上にレジンボンドにより
最長軸長と最短軸長との比が少なくとも1.2である耐
熱性粒状物にダイヤモンドを析出させた複合ダイヤモン
ド粒を、台布紙に対してはf垂直方向に配向固定した第
1図に示す切削、研削、研摩具においても、複合ダイヤ
モンド粒が配向されない場合に比し、その研摩効率は優
れいている。The Examples and Comparative Examples are examples of metal-bonded diamond wheels. For example, diamonds are deposited on heat-resistant granules having a ratio of the longest axis length to the shortest axis length of at least 1.2 by resin bonding on a backing paper. Even in the cutting, grinding, and polishing tool shown in Fig. 1 in which the composite diamond grains are oriented and fixed in the direction f perpendicular to the backing paper, the polishing efficiency is superior to that in the case where the composite diamond grains are not oriented. I'm there.
その理由は砥粒面に用いられる複合ダイヤモンド粒が、
本発明に用いられているものは形状が細長く、比較例の
長短径比の低いものに比して研削した場合、被削物間の
接触抵抗が小で、複合粉の自生発刃効果から目詰まりし
にくく、アンカー効果が犬であるための結合力が高く長
持するからである。The reason is that the composite diamond grains used on the abrasive grain surface are
The material used in the present invention has a long and slender shape, and the contact resistance between the workpieces is small when ground compared to the comparative example with a low long-to-short diameter ratio, which is noticeable due to the self-synthesizing effect of the composite powder. This is because it is hard to get clogged, has a strong bonding force due to its anchoring effect, and lasts for a long time.
〈発明の効果〉
従来のメタルボンドダイヤモンドホイールやダイヤモン
ド粒を塗布した研摩布紙に比し、本発明の切削、研削、
研摩具は優れた切削、研削、研摩能力を有しており、実
用上価値はきわめて大である。<Effects of the Invention> Compared to conventional metal-bonded diamond wheels and coated abrasive paper coated with diamond grains, the cutting, grinding, and
Abrasive tools have excellent cutting, grinding, and polishing abilities, and are of great practical value.
第1図は台布紙に細長い粒径のダイヤモンド複合粉を固
着剤を用いて固定した本発明の切削、研削、研摩具。
第2図は細長い粒径のダイヤモンド複合粉を用いて作成
した本発明のメタルボンドホイール。
図中、1,11・・・ダイヤモンド複合粉、2・・・結
合剤、3・・・台布紙、12・・・メタルボンド、13
・・・台金を示す。FIG. 1 shows a cutting, grinding, and polishing tool of the present invention in which diamond composite powder with an elongated particle size is fixed to a backing paper using an adhesive. Figure 2 shows a metal bond wheel of the present invention made using diamond composite powder with an elongated particle size. In the figure, 1, 11... Diamond composite powder, 2... Binder, 3... Backing paper, 12... Metal bond, 13
...Indicates the base metal.
Claims (3)
ド膜で被覆した、最長軸長と最短軸長との比が少なくと
も1.2である複合ダイヤモンド粒と、結合剤とよりな
る 切削、研削、研摩体と、 (ロ)支持体とよりなり、 複合ダイヤモンド粒は被削面に対して縦方向に配向され
ていることを特徴とする複合ダイヤモンド粒を用いた切
削、研削、研摩具。(1) (A) Heat-resistant granules consisting of composite diamond grains whose entire surface is coated with a vapor-grown diamond film and whose ratio of longest axis length to shortest axis length is at least 1.2, and a binder. A cutting, grinding, and abrasive tool using composite diamond grains, comprising a cutting, grinding, and abrasive body; and (b) a support body, the composite diamond grains being oriented vertically with respect to the surface to be cut. .
れ、ホィールを形成している請求項(1)の複合ダイヤ
モンド粒を用いた切削、研削、研摩具。(2) The cutting, grinding, and polishing tool using composite diamond grains according to claim (1), wherein the cutting, grinding, and polishing body is fixed to a circular support to form a wheel.
る請求項(1)の複合ダイヤモンド粒を用いた切削、研
削、研摩具。(3) The cutting, grinding, and polishing tool using composite diamond grains according to claim (1), wherein the support is a paper mount and the binder is a resin bond.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP1338631A JP3038439B2 (en) | 1989-12-28 | 1989-12-28 | Cutting, grinding and polishing tools using composite diamond grains |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP1338631A JP3038439B2 (en) | 1989-12-28 | 1989-12-28 | Cutting, grinding and polishing tools using composite diamond grains |
Publications (2)
Publication Number | Publication Date |
---|---|
JPH03202277A true JPH03202277A (en) | 1991-09-04 |
JP3038439B2 JP3038439B2 (en) | 2000-05-08 |
Family
ID=18319996
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP1338631A Expired - Lifetime JP3038439B2 (en) | 1989-12-28 | 1989-12-28 | Cutting, grinding and polishing tools using composite diamond grains |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP3038439B2 (en) |
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2011067934A (en) * | 2009-08-24 | 2011-04-07 | Noritake Super Abrasive Co Ltd | Fixed abrasive grain wire and method of manufacturing the same |
JP2012152830A (en) * | 2011-01-21 | 2012-08-16 | Noritake Co Ltd | Fixed abrasive grain wire and method for manufacturing the same |
-
1989
- 1989-12-28 JP JP1338631A patent/JP3038439B2/en not_active Expired - Lifetime
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2011067934A (en) * | 2009-08-24 | 2011-04-07 | Noritake Super Abrasive Co Ltd | Fixed abrasive grain wire and method of manufacturing the same |
JP2012152830A (en) * | 2011-01-21 | 2012-08-16 | Noritake Co Ltd | Fixed abrasive grain wire and method for manufacturing the same |
Also Published As
Publication number | Publication date |
---|---|
JP3038439B2 (en) | 2000-05-08 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP3238007B2 (en) | Manufacturing method of abrasive compact | |
JP3472622B2 (en) | Method for producing abrasive molded body | |
TW539750B (en) | Process for coating superabrasive with metal | |
CA1134623A (en) | Method of making aggregated diamond abrasive particles | |
CN101980836B (en) | Method and device for forming aggregate abrasive grains for abrading or cutting tools production | |
CN104066549B (en) | The super abrasive particle grinding stone of vitrified bond | |
JPH02180561A (en) | Composite grindstone and manufacture thereof | |
JPH02167668A (en) | Making of abrasive products | |
KR20050072753A (en) | Method for producing a sintered, supported polycrystalline diamond compact | |
RU2009120569A (en) | ABRASIVE PRESSING FROM POLYCRYSTALLINE DIAMOND | |
KR100413371B1 (en) | A diamond grid cmp pad dresser | |
JPH09103965A (en) | Porous superbrasive grinding wheel and its manufacture | |
JP3779329B2 (en) | Vitreous grinding tool containing metal coated abrasive | |
JP3542520B2 (en) | Vitrified whetstone | |
WO1988007599A1 (en) | Composite diamond particles | |
JP2003181765A (en) | Porous supergrain grinding stone and method for manufacturing the same | |
JP3787602B2 (en) | Sintered diamond particles, coated particles, compacts and methods for producing them | |
JPH03202277A (en) | Cutter, grinder and polisher using composite diamond abrasive | |
US4246005A (en) | Diamond aggregate abrasive materials for resin-bonded applications | |
JP2679178B2 (en) | Electroplated whetstone | |
JPH07251378A (en) | Porous ferrous metal bond diamond grinding wheel and its manufacture | |
JP2975033B2 (en) | Vitrified super abrasive whetstone | |
JP2000246647A (en) | Vitrified extra-abrasive grain grinding wheel and manufacture thereof | |
JPH0673807B2 (en) | Polishing surface plate | |
JP2767897B2 (en) | Method for producing composite diamond abrasive grains for precision polishing |