JPH07251378A - Porous ferrous metal bond diamond grinding wheel and its manufacture - Google Patents

Porous ferrous metal bond diamond grinding wheel and its manufacture

Info

Publication number
JPH07251378A
JPH07251378A JP5973894A JP5973894A JPH07251378A JP H07251378 A JPH07251378 A JP H07251378A JP 5973894 A JP5973894 A JP 5973894A JP 5973894 A JP5973894 A JP 5973894A JP H07251378 A JPH07251378 A JP H07251378A
Authority
JP
Japan
Prior art keywords
iron
based metal
abrasive grains
binder
grindstone
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP5973894A
Other languages
Japanese (ja)
Other versions
JP3101145B2 (en
Inventor
Kozo Ishizaki
幸三 石▲崎▼
Arata Yamamoto
新 山本
Atsushi Takada
篤 高田
Yoshihito Kondou
祥人 近藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Individual
Original Assignee
Individual
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Individual filed Critical Individual
Priority to JP06059738A priority Critical patent/JP3101145B2/en
Priority to US08/387,593 priority patent/US5637123A/en
Priority to EP95102067A priority patent/EP0668126B1/en
Priority to DE69502217T priority patent/DE69502217T2/en
Publication of JPH07251378A publication Critical patent/JPH07251378A/en
Application granted granted Critical
Publication of JP3101145B2 publication Critical patent/JP3101145B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Polishing Bodies And Polishing Tools (AREA)
  • Powder Metallurgy (AREA)

Abstract

PURPOSE:To provide a grinding wheel excellent in sharpness by way of promoting autogenous blade growing action of abrasive grains and making the most of an abrasive characteristic of a bond by forming the grinding wheel by respectively using diamond as the abrasive grains and ferrous metal powder as a binder and making a part of the binder as what contains a large number of pores. CONSTITUTION:A grinding stone of ferrous metal chemically and physically binding and holding abrasive grains is formed by respectively using diamond as the abrasive grains and ferrous metal powder as a binder and making a part of the binder as what contains a large number of pores. In this case, porosity of the whole grinding wheel is set in a range of 5-60%. Additionally, as the ferrous metal, it is selected from a group consisting of iron powder, carbon coated iron powder, nitrogen iron powder and a mixture of carbon and iron. The grinding wheel such as this is manufactured by heating and sintering at 900-1150 deg. after moulding the abrasive grains and the binder in a specified dimensional shape by way of mixing them, and a mechanical characteristic of the binder part and holding power of the abrasive grains are controlled by adjustment of the porosity.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、各種材料の研磨または
研削するためのメタルボンド砥石に属する多孔質鉄系メ
タルボンドダイヤモンド砥石およびその製造方法に関す
る。さらに詳しくは、本発明は砥石の気孔率を向上し、
砥粒の自生発刃作用を促進させ、またボンドの摩耗特性
を生かし、切れ味の優れた多孔質鉄系メタルボンドダイ
ヤモンド砥石およびその製造方法に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a porous iron-based metal bond diamond grindstone belonging to a metal bond grindstone for polishing or grinding various materials and a method for producing the same. More specifically, the present invention improves the porosity of the grindstone,
The present invention relates to a porous iron-based metal bond diamond grindstone that promotes the self-sharpening action of abrasive grains and utilizes the bond wear characteristics, and has excellent sharpness, and a method for manufacturing the same.

【0002】[0002]

【従来の技術】研削砥石は各種工作物の研削加工に用い
られる砥石である。研削砥石は砥粒、結合剤および気孔
からなっている。そして砥粒は切れ刃、結合剤はその支
持体、気孔は多数の連続した気孔からなっており、切屑
の排出を助けるチップポケットの働きをするものであ
る。最近、セラミックス、超硬合金、高速度鋼などの研
削が困難な難削材を使用する度合が多くなり、これを研
削する必要がますます重要となり、これに伴ってダイヤ
モンド砥粒や立方晶系窒化ホウ素砥粒等の超砥粒を使用
した研削ホイールがますます使用されるようになった。
2. Description of the Related Art A grinding wheel is a wheel used for grinding various workpieces. The grinding wheel consists of abrasive grains, binder and pores. The abrasive grain is a cutting edge, the binder is its support, and the pores are a large number of continuous pores, which function as chip pockets that help discharge chips. Recently, it has become increasingly important to use difficult-to-cut materials such as ceramics, cemented carbide, and high-speed steel that are difficult to grind, and it becomes more and more important to grind them. Grinding wheels using superabrasives such as boron nitride abrasives have become increasingly used.

【0003】かかる超砥粒使用の研削ホイールは、一般
の場合と同様結合剤の種類に応じてビトリファイドボン
ド系、レジノイドボンド系、メタルボンド系、シリケー
トボンド系、ラバーボンド系等のものがあるが、それぞ
れ一長一短があり、強度や保持力、寿命等から、脆性材
料(例えばセラミックス等)の研削には金属およびその
合金を結合剤として用いたメタルボンド系のものが主と
して用いられている。
Grinding wheels using such super-abrasive grains are classified into vitrified bond type, resinoid bond type, metal bond type, silicate bond type, rubber bond type and the like depending on the kind of the binder as in the general case. Each of them has advantages and disadvantages, and in view of strength, holding power, life, etc., a metal bond type one using a metal and its alloy as a binder is mainly used for grinding a brittle material (such as ceramics).

【0004】これらの砥石の中でメタルボンド砥石は、
金属粉末に砥粒を均一に分散して台金と共に型込めしプ
レス成形および焼結(またはホットプレス)を経て成形
される。メタルボンド砥石の金属結合剤としては、例え
ばCu−Sn系、Cu−Sn−Co系、Cu−Sn−F
e−Co系、Cu−Sn−Ni系、もしくはCu−Sn
−Fe−Ni系、またはこれらに燐を添加したもの等が
用いられている。
Among these whetstones, the metal bond whetstone is
Abrasive grains are uniformly dispersed in metal powder, and the powder is molded together with a base metal, followed by press molding and sintering (or hot pressing) for molding. As the metal binder of the metal bond grindstone, for example, Cu-Sn system, Cu-Sn-Co system, Cu-Sn-F
e-Co type, Cu-Sn-Ni type, or Cu-Sn
A -Fe-Ni-based material or a material obtained by adding phosphorus to these is used.

【0005】これらの従来のメタルボンド砥石は、レジ
ノイドボンド砥石やビトリファイドボンド砥石に比べ
て、結合強度が格段に高く、超砥粒を用いて強力な研削
を行う場合に必要な優れた砥粒保持力を有している利点
があるが、結合剤自身の強度が強く、研削過程で結合材
が摩滅することはなく、砥粒が摩滅しても脱落できない
ためにドレッシング間隔を短くせざるを得ず高能率研削
は不可能である。
These conventional metal bond grindstones have markedly higher bond strength than resinoid bond grindstones and vitrified bond grindstones, and have excellent grain retention required when performing strong grinding with superabrasive grains. Although it has the advantage of having force, the strength of the binder itself is strong, the binder does not wear out during the grinding process, and even if the abrasive grains wear out, they cannot fall off, so the dressing interval must be shortened. Therefore, high efficiency grinding is impossible.

【0006】したがって、従来のメタルボンド砥石にお
いては、切り屑の排出が悪くて目づまりし易いために、
研削抵抗が大きく、いわゆる切れ味が悪くて発熱が大き
くなり、仕上げ面が不良となり易く、また切り込みを増
やしたり、砥石と工作物との接触面積を大きくして高能
率研削を行うことは極めて難しい等の欠点がある。その
うえ、これらのボンドは研削時に軟化して塑性流動を起
こし砥石表面に目づまりを生ずる欠点もある。
Therefore, in the conventional metal-bonded grindstone, the chips are not easily discharged and are easily clogged.
Grinding resistance is large, so-called sharpness is bad and heat generation is large, the finished surface is likely to be defective, and it is extremely difficult to increase the depth of cut and increase the contact area between the grindstone and the workpiece to perform high efficiency grinding etc. There is a drawback of. In addition, these bonds also have a drawback that they soften during grinding to cause plastic flow and cause clogging on the surface of the grindstone.

【0007】これらの欠点を改善するため、連続多孔質
メタルボンド砥石が提案されているが(特開昭59−1
82064号公報)、粉末焼結法を利用するものではな
い。溶剤可溶無機化合物を所定の形状に焼結して成形し
たのち、得られた焼結体の空隙部に砥粒を充てんして予
熱し、ついでこの砥粒充填てん焼結体の空隙部にさらに
溶融した金属または合金を圧入し、凝固させたのち、溶
剤で前記無機化合物を溶出させて製造するという、気孔
付与剤をフィラーとして添加し砥粒層に気孔を介在させ
る方法が記載されている。
In order to improve these drawbacks, a continuous porous metal bond grindstone has been proposed (JP-A-59-1).
No. 82064), the powder sintering method is not used. After sintering the solvent-soluble inorganic compound into a predetermined shape and molding, fill the voids of the obtained sintered body with abrasive grains to preheat it, and then in the voids of this abrasive-filled sintered body. Further, by pressing in a molten metal or alloy and solidifying it, and then producing by eluting the inorganic compound with a solvent, a method of adding a porosity-imparting agent as a filler and interposing pores in the abrasive grain layer is described. .

【0008】また、砥粒に何層もの金属コーティングを
施し、ホットプレスによってビトリファイドボンドのよ
うな構造に焼結させ気孔をもたせたもの(特公昭54−
31727号公報)等、切れ味の低下を防ぐ手段が提案
されている。
In addition, the abrasive grains are coated with a number of layers of metal and sintered by a hot press to have a structure like a vitrified bond to have pores (Japanese Patent Publication No. 54-54).
(Japanese Patent No. 31727) and the like have been proposed.

【0009】さらに、目づまりを克服するための鋳鉄を
用いた砥石(特開平3−264263号公報)が提案さ
れている。その鋳鉄ボンドの砥石は、高強度で剛性が高
く、高切り込み重研削が可能であり、塑性流動を起こさ
ない脆性破壊的な摩耗であり、目づまりは生じにくい等
の様々な利点をもっているが、強度が大きすぎるために
銅系のボンドに比べてドレッシング性が悪く、またその
剛性の高さが既存の研削盤、方式では実用が難しいのが
現状である。
Further, a grindstone using cast iron for overcoming clogging (Japanese Patent Laid-Open No. 3-264263) has been proposed. The cast iron bond grindstone has various advantages such as high strength and high rigidity, high cutting heavy grinding, brittle fracture wear that does not cause plastic flow, and less clogging. Since the strength is too high, the dressing property is worse than that of the copper-based bond, and the high rigidity is difficult to put into practical use by the existing grinders and methods.

【0010】砥粒層の内部に多数の気孔を形成させるこ
とは、その気孔に研削液を含浸させて砥石の冷却性を高
めたり、この気孔で研削抵抗を小さくさせ良好な切れ味
を有することができ、言いかえると、発熱が少なく、高
品質の仕上げ面を得られることが予想できる。しかし、
従来の銅系のメタルボンド砥石においては、気孔を有す
ることは、当然強度の低下、ひいては砥粒保持力の低下
を招き、十分な研削性能を得るには至っていない。
To form a large number of pores inside the abrasive grain layer, the pores may be impregnated with a grinding liquid to enhance the cooling performance of the grindstone, or the pores may reduce the grinding resistance and have good sharpness. In other words, it can be expected that a high quality finished surface will be obtained with less heat generation. But,
In the conventional copper-based metal-bonded grindstone, having pores naturally lowers the strength and eventually the holding force of the abrasive grains, so that sufficient grinding performance is not obtained.

【0011】また無気孔型鋳鉄ボンド砥石においては、
鋳鉄粉の焼結性の悪さから鋳鉄粉に鉄粉を加え、なおか
つ8,000kgf/cmから10,000kgf/
cmの荷重で成形している。鉄粉を加えることで鋳鉄
本来の脆性破壊挙動を消失させ、銅系ボンドと同様な塑
性変形を起こす原因にもなり、鋳鉄の特徴が引き出され
るには至っていない。
Further, in the non-porous cast iron bond grindstone,
Due to the poor sinterability of cast iron powder, iron powder was added to cast iron powder, and 8,000 kgf / cm 2 to 10,000 kgf /
Molded with a load of cm 2 . The addition of iron powder causes the original brittle fracture behavior of cast iron to disappear, causing the same plastic deformation as copper-based bonds, and the characteristics of cast iron have not yet been extracted.

【0012】[0012]

【発明が解決しようとする課題】本発明は、多孔質鋳鉄
ボンドダイヤモンド砥石などの多孔質鉄系メタルボンド
ダイヤモンド砥石およびその製造方法の提供を目的とす
る。さらに詳しくは本発明は砥石全体の気孔率を調節
し、かつ、砥粒であるダイヤモンドの炭素分が鉄系金属
に反応している状態にすることにより、いわゆる鋳鉄ボ
ンドダイヤモンド砥石の性能を改善することを目的とす
る。
SUMMARY OF THE INVENTION An object of the present invention is to provide a porous iron-based metal bond diamond grindstone such as a porous cast iron bond diamond grindstone and a method for producing the same. More specifically, the present invention adjusts the porosity of the entire grindstone, and improves the performance of so-called cast iron bonded diamond grindstone by making the carbon content of the abrasive grains diamond react with the iron-based metal. The purpose is to

【0013】[0013]

【課題を解決するための手段】本発明は、上記課題を解
決するためになされたもので、以下その構成を具体的に
説明する。
The present invention has been made to solve the above problems, and the structure thereof will be specifically described below.

【0014】一般に、砥石において、気孔は、結合剤の
結合強度を制御し研削過程で結合剤が抵抗なく適度に摩
滅していくため、目詰りを抑制し砥石の切れ味を向上す
る効果がある。また、研削時に発生する多量の研削熱を
放散させる作用もあり、研削焼けの防止が問題となる場
合は高気孔率の砥石が求められ、中には通常の気孔のほ
かに意図的に大孔径の気孔をつくったものもしばしば用
いられる。
Generally, in the grindstone, the pores control the bond strength of the binder, and the binder is appropriately worn away without resistance during the grinding process, so that clogging is suppressed and the sharpness of the grindstone is improved. In addition, it also has the effect of dissipating a large amount of grinding heat generated during grinding, and when prevention of grinding burn is a problem, a grindstone with high porosity is required. Those with the pores of are often used.

【0015】そこで、本発明は砥粒を取り囲む鉄系メタ
ルボンドに上記の気孔を無数に介在させ、かつ、砥粒を
鉄系金属に化学的および物理的結合して保持させたこと
を特徴とする多孔質鉄系メタルボンドダイヤモンド砥石
を提供する。
Therefore, the present invention is characterized in that the above-mentioned pores are intervened in the iron-based metal bond surrounding the abrasive grains, and the abrasive grains are chemically and physically bonded to the iron-based metal and held. To provide a porous iron-based metal bond diamond grindstone.

【0016】メタルボンドの特徴は結合強度が格段に高
いため砥粒保持力が格段に高いことであり、その特徴と
する砥粒保持力の低下をもたらす気孔をメタルボンドに
積極的に含有させることはこれまで行われていない。本
発明は、気孔により、研削過程でメタルボンドが抵抗な
く適度に摩滅するように、メタルボンドの結合強度を制
御する。気孔率を下げすぎると、砥粒を保持する保持力
が強くなりすぎるため、切削部が摩耗した砥粒がバイン
ダーメタルが脱落せずに残り、この結果、砥石の切削能
力が低下し、また、気孔率を上げすぎると、砥粒を保持
する保持力が弱くなりすぎるため、バインダーメタルか
ら脱落する砥粒が多くなり、この結果、砥石の摩耗が増
大し、砥石の寿命が短くなる。
The feature of the metal bond is that the bond strength is remarkably high and therefore the abrasive grain holding power is remarkably high. It is a characteristic that the metal bond positively contains pores which bring about a decrease in the abrasive grain holding power. Has not been done so far. The present invention controls the bonding strength of the metal bond so that the metal bond is appropriately abraded by the pores without resistance during the grinding process. If the porosity is lowered too much, the holding force for holding the abrasive grains becomes too strong, so the abrasive grains worn in the cutting portion remain without the binder metal falling off, and as a result, the cutting ability of the grindstone decreases, and also If the porosity is too high, the holding force for holding the abrasive grains becomes too weak, so that many abrasive grains fall off from the binder metal, and as a result, the abrasion of the grindstone increases and the life of the grindstone shortens.

【0017】また、本発明は、砥粒を鉄系金属に化学的
および物理的結合させて、砥粒が摩滅するまでは脱落し
ないように、砥粒保持力を制御する。上記化学的結合
は、砥粒であるダイヤモンドの炭素分が鉄系金属と反応
しているものである。
Further, according to the present invention, the abrasive grains are chemically and physically bonded to the iron-based metal, and the abrasive grain holding force is controlled so as not to fall off until the abrasive grains are worn out. The chemical bond is that the carbon content of diamond as the abrasive grains reacts with the iron-based metal.

【0018】砥石として使用されているものの最大の気
孔率は特殊な場合を除いて、ビトリファイドボンド砥石
が最も大きく、最大で50%程度である。実際に使用し
ている範囲は35%〜45%ぐらいが多く、50%の気
孔率までいくと砥石の強度はかなり低下し、砥石が破壊
する恐れも生じてくる。
The maximum porosity of those used as a grindstone is the largest in the vitrified bond grindstone, and about 50% at the maximum except for special cases. The range actually used is often about 35% to 45%, and when the porosity reaches 50%, the strength of the grindstone is considerably lowered, and the grindstone may be broken.

【0019】しかし、強力な研削が可能な超砥粒の性能
を十分に発揮させ、しかも高価な砥粒を有効に利用する
ためには、基本的には砥粒率は低めにし、結合剤は砥粒
保持力の強いメタルボンドとし、それを必要最小限に用
い、そして気孔率は大きくすることが望ましいと考え
る。
However, in order to sufficiently exert the performance of superabrasive grains capable of strong grinding and to effectively use expensive abrasive grains, basically, the abrasive grain ratio is set low and the binder is We believe that it is desirable to use a metal bond with strong abrasive grain retention, use it in the minimum necessary amount, and increase the porosity.

【0020】鋳鉄ボンドの砥石における鋳鉄の特徴は、
強度だけではなくその脆性的な破壊にある。銅系のメタ
ルボンドでは塑性変形によってボンド成分が砥石表面を
覆ってしまい目づまりを起こし切れ味を低下させるが、
鋳鉄ボンドは脆性的な破壊によって目づまりを防止する
ことができる。こうした目づまりが生じにくいという利
点をいかすためには、強度が大きすぎるという欠点を強
度調整によって克服することが必要である。
The characteristics of cast iron in the cast iron bond grindstone are:
Not only strength but also its brittle fracture. In copper-based metal bonds, the bond component covers the surface of the grindstone due to plastic deformation, causing clogging and reducing the sharpness.
Cast iron bonds can prevent clogging due to brittle fracture. In order to take advantage of the fact that such clogging is unlikely to occur, it is necessary to overcome the drawback that the strength is too large by adjusting the strength.

【0021】上述のとおり本発明は、メタルボンド砥石
において、メタルボンドに多数の気孔を含ませることに
よりメタルボンドの強度を調整するものせある。すなわ
ち本発明は、砥粒としてダイヤモンドおよび結合剤とし
て鉄系金属粉末からなり、結合剤部分が粉末焼結によっ
て形成された多数の気孔を含んでおり、かつ、砥粒が結
合剤である鉄系金属に化学的および物理的結合して保持
されていることを特徴とする多孔質鉄系メタルボンドダ
イヤモンド砥石を提供する。
As described above, the present invention is to adjust the strength of the metal bond by including a large number of pores in the metal bond in the metal bond grindstone. That is, the present invention is composed of diamond as an abrasive grain and an iron-based metal powder as a binder, the binder portion contains a large number of pores formed by powder sintering, and the abrasive grain is an iron-based powder as a binder. Provided is a porous iron-based metal-bonded diamond grindstone which is held by being chemically and physically bound to a metal.

【0022】本発明の多孔質鉄系メタルボンドダイヤモ
ンド砥石では、砥石全体の気孔率は5〜60%、好まし
くは5〜45%に調節する。本発明においては、砥石全
体の気孔率は結合剤の気孔率に相当する。その気孔率
は、鉄系金属の粒径、砥石の成形条件および砥石の焼成
条件によって調節する。これは、メタルボンドの機械的
強度および砥粒保持力を制御するためである。
In the porous iron-based metal bond diamond grindstone of the present invention, the porosity of the whole grindstone is adjusted to 5 to 60%, preferably 5 to 45%. In the present invention, the porosity of the whole grindstone corresponds to the porosity of the binder. The porosity is adjusted by the particle size of the iron-based metal, the grinding stone forming conditions, and the grinding stone firing conditions. This is to control the mechanical strength and abrasive grain holding force of the metal bond.

【0023】通常の鋳鉄ボンドダイヤモンド砥石の場
合、ボンド自身の気孔率はほとんどなく、砥粒を介在し
てその隙間を得るか、または気孔付与剤を添加するかで
あるのに対して、本発明は鉄系メタルボンド自身が多数
の気孔を含んでいることを特徴としている。
In the case of an ordinary cast iron bonded diamond grindstone, the bond itself has almost no porosity, and the gap is obtained by interposing abrasive grains, or a porosity-imparting agent is added. Is characterized in that the iron-based metal bond itself contains a large number of pores.

【0024】そして、本発明の砥石全体の気孔率は、5
%より少ないとボンド強度がかなり高くなり鉄系金属の
摩耗特性を十分に発揮できないので、下限は5%とす
る。また気孔率が高すぎると砥石の強度が低下し破壊す
るおそれのあるので60%以下、好ましくは45%以下
とする。
The porosity of the whole grindstone of the present invention is 5
If it is less than 0.1%, the bond strength becomes considerably high and the wear characteristics of the iron-based metal cannot be sufficiently exhibited, so the lower limit is made 5%. On the other hand, if the porosity is too high, the strength of the grindstone may be lowered and the stone may be broken.

【0025】本発明の砥粒は、結合剤である鉄系金属と
の化学的物理的な結合によって保持されている。すなわ
ち、砥粒であるダイヤモンドの表面の炭素分が鉄系金属
に固溶している。メタルボンドの機械的強度すなわち気
孔率、および砥粒保持力の制御が鉄系金属粉末の粒度お
よび炭素量を調節することにより行われる。鉄系金属
が、鉄粉、炭素被覆鉄粉、窒化鉄粉、炭素および鉄の混
合物からなる群から選ばれる一種または二種以上からな
る。
The abrasive grains of the present invention are held by chemical-physical bonding with a ferrous metal as a binder. That is, the carbon content on the surface of diamond, which is an abrasive grain, is solid-dissolved in the iron-based metal. The mechanical strength of the metal bond, that is, the porosity and the abrasive grain holding force are controlled by adjusting the particle size and the carbon content of the iron-based metal powder. The iron-based metal comprises one or more selected from the group consisting of iron powder, carbon-coated iron powder, iron nitride powder, carbon and a mixture of iron.

【0026】一般に、鉄には炭素を全く含まない(純
鉄)から、少量の炭素を含んでいる炭素鋼、または1.
7%以上の炭素を含んだ鋳鉄まで多種多様の材質が存在
する。本発明では、ダイヤモンドの炭素成分と反応させ
て接合強度を向上させるわけであるから、鉄系金属粉末
は鋳鉄で代表されるがそれのみに限られない。
Generally, iron contains no carbon (pure iron) to carbon steel containing a small amount of carbon, or 1.
There are a wide variety of materials, including cast iron containing more than 7% carbon. In the present invention, since the bonding strength is improved by reacting with the carbon component of diamond, the iron-based metal powder is represented by cast iron, but is not limited thereto.

【0027】炭素を全く含まない(純鉄)から、少量の
炭素を含んでいる炭素鋼、または1.7%以上の炭素を
含んだ鋳鉄まで多種多様の材質が使用できる。鉄と炭素
の混合粉も、本発明の砥石焼成において、鉄とダイヤモ
ンドとの反応または鉄と炭素との反応を一緒に行うこと
が可能で、炭素と鉄の反応量によって、鋳鉄のように脆
性破壊挙動を示す鉄ボンドになりうる。
A wide variety of materials can be used, from carbon that does not contain any carbon (pure iron) to carbon steel that contains a small amount of carbon, or cast iron that contains 1.7% or more of carbon. Mixed powder of iron and carbon, in the grinding stone firing of the present invention, it is possible to carry out the reaction of iron and diamond or the reaction of iron and carbon together, depending on the reaction amount of carbon and iron, brittle like cast iron It can be an iron bond that exhibits fracture behavior.

【0028】鉄系金属の炭素濃度とダイヤモンドの濃度
勾配について、鉄は大体6〜7%の炭素を含有すること
ができる。つまり、例えば、炭素量が3%の場合には、
さらに3〜4%の炭素と反応することが可能である。ダ
イヤモンドと鉄粉末を混合して、焼結させた場合に焼結
温度に達した時に、鉄粉の表面が部分溶融しはじめ焼結
が始まる。この時、鉄の炭素量が許容範囲に満たない場
合は、近接する炭素と反応(拡散接合)することができ
る。
Regarding the carbon concentration of the iron-based metal and the concentration gradient of diamond, iron can contain approximately 6 to 7% of carbon. That is, for example, when the carbon content is 3%,
It is also possible to react with 3-4% carbon. When diamond and iron powder are mixed and sintered, when the sintering temperature is reached, the surface of the iron powder begins to partially melt and sintering begins. At this time, when the carbon content of iron is less than the allowable range, it is possible to react (diffusion bonding) with adjacent carbon.

【0029】焼結温度に達しない時、ダイヤモンドと鉄
粉末の炭素濃度勾配は無限大である。焼結の際に拡散に
よる物質の移動によってダイヤモンドと鉄に濃度勾配が
生じる。鉄の炭素含有量が少ない時に特に、濃度勾配が
大きくより多くの炭素が鉄と反応することがでる。反応
が進みすぎると砥粒が劣化するので、表面で反応するよ
うな焼結条件を選ぶことが必要である。
When the sintering temperature is not reached, the carbon concentration gradient between diamond and iron powder is infinite. During sintering, a concentration gradient occurs in diamond and iron due to the movement of substances by diffusion. A large concentration gradient allows more carbon to react with iron, especially when the carbon content of iron is low. If the reaction proceeds too much, the abrasive grains will deteriorate, so it is necessary to select sintering conditions that cause the reaction on the surface.

【0030】以下、本発明の砥石について、多孔質鋳鉄
ボンドダイヤモンド砥石を例に挙げて説明する。
The grindstone of the present invention will be described below by taking a porous cast iron bond diamond grindstone as an example.

【0031】本発明においては、多孔質鋳鉄ボンドダイ
ヤモンド砥石について、銅系のメタルボンド砥石と同等
の強度および砥粒保持力とするために、鋳鉄粉の炭素量
および粒径を調節する。鋳鉄粉の炭素量および粒径によ
って、鋳鉄ボンド自身の強度を制御することができる。
また、鋳鉄粉とダイヤモンドとの接合は、図1に示すよ
うに、ダイヤモンドと鋳鉄粉を反応させて結合させる。
この接合強度についても、鋳鉄粉の炭素量および粒径に
よって制御することができる。
In the present invention, the amount of carbon and the particle size of the cast iron powder are adjusted so that the porous cast iron bonded diamond grindstone has strength and abrasive grain holding power equivalent to those of the copper-based metal bonded grindstone. The strength of the cast iron bond itself can be controlled by the carbon content and particle size of the cast iron powder.
Moreover, as shown in FIG. 1, the joining of the cast iron powder and the diamond is performed by reacting the diamond and the cast iron powder to bond them.
This bonding strength can also be controlled by the carbon content and particle size of the cast iron powder.

【0032】次に、本発明の多孔質鉄系ボンドダイヤモ
ンド砥石の製造方法について説明する。
Next, a method for manufacturing the porous iron-based bonded diamond grindstone of the present invention will be described.

【0033】砥粒としてダイヤモンドおよび結合剤とし
て鉄系金属粉末を使用して多孔質鉄系メタルボンドダイ
ヤモンド砥石を製造するに際し、結合剤部分の機械的特
性および砥粒の保持力を制御することを特徴とする。砥
粒および結合剤を混合し所定の寸法形状に成形した後、
900〜1150℃で加熱焼結することを特徴とする。
ダイヤモンド砥粒は、真空中でも不溶性雰囲気中でも1
100〜1200℃ぐらいで炭化するため、上記加熱温
度が採用される。
In producing a porous iron-based metal-bonded diamond grindstone using diamond as the abrasive grains and iron-based metal powder as the binder, it is necessary to control the mechanical properties of the binder portion and the holding force of the abrasive grains. Characterize. After mixing the abrasive grains and the binder and molding into a predetermined size and shape,
It is characterized in that it is heated and sintered at 900 to 1150 ° C.
Diamond abrasive grains are 1 in vacuum and in insoluble atmosphere.
The above heating temperature is adopted because carbonization occurs at about 100 to 1200 ° C.

【0034】結合剤部分の機械的特性の制御は気孔率の
制御により行われる。結合剤部分の機械的特性および砥
粒の保持力の制御は、鉄系金属粉の平均粒度を0.01
μm〜500μmの範囲で調節することによりなされ
る。結合剤部分の機械的特性および砥粒の保持力の制御
は、鉄系ボンドの炭素量とダイヤモンドの濃度勾配によ
って調節することによりなされる。
The mechanical properties of the binder part are controlled by controlling the porosity. The average particle size of the iron-based metal powder is set to 0.01 to control the mechanical properties of the binder part and the holding power of the abrasive grains.
It is made by adjusting in the range of μm to 500 μm. The mechanical properties of the binder portion and the retention of the abrasive grains are controlled by adjusting the carbon content of the iron-based bond and the diamond concentration gradient.

【0035】以下に、本発明の砥石の製造方法につい
て、多孔質鋳鉄ボンドダイヤモンド砥石の製造方法を例
に挙げて説明する。
The method for producing the grindstone of the present invention will be described below by taking the method for producing the porous cast iron bonded diamond grindstone as an example.

【0036】多孔質鋳鉄ボンドダイヤモンド砥石は、砥
粒としてダイヤモンドおよび結合剤として鋳鉄粉を混合
し所定の寸法形状に成形した後、900〜1150℃で
加熱焼結することにより製造される。
The porous cast iron bonded diamond grindstone is produced by mixing diamond as abrasive grains and cast iron powder as a binder, shaping the mixture into a predetermined size and shape, and then heating and sintering at 900 to 1150 ° C.

【0037】上記焼結工程によって砥石形状に成形され
た成形体を焼結する。この焼結は常圧において行うもの
とし、焼結温度は少なくとも900℃以上の温度とす
る。焼結温度は砥粒としてダイヤモンドを用いた場合の
熱劣化、および焼結温度が高くなると焼結が進行し、目
的とする砥石全体の気孔率5〜60%が得られなくなる
こと等を考慮して決める。好ましい焼結温度は900〜
1150℃の範囲といえる。なお、焼結温度は鉄系金属
の種類、その粉末の粒度などによって変化する。このよ
うに結合剤部分の機械的特性の制御は気孔率の制御によ
り行われる。
The shaped body shaped into a grindstone is sintered by the above-mentioned sintering process. This sintering is performed under normal pressure, and the sintering temperature is at least 900 ° C. or higher. Considering the fact that the sintering temperature is deteriorated by heat when diamond is used as abrasive grains, and that the sintering proceeds when the sintering temperature becomes high and the target porosity of the entire grindstone cannot be 5 to 60%. Decide. Preferred sintering temperature is 900-
It can be said to be in the range of 1150 ° C. The sintering temperature changes depending on the type of iron-based metal and the particle size of the powder. In this way, the mechanical properties of the binder portion are controlled by controlling the porosity.

【0038】結合剤部分の機械的特性および砥粒の保持
力の制御は、鋳鉄粉の平均粒度を0.01μm〜500
μmの範囲で調節することによりおよび/または炭素量
を1%〜4.2%の範囲で調節することにより、なされ
る。
The mechanical properties of the binder portion and the holding power of the abrasive grains are controlled by controlling the average grain size of the cast iron powder from 0.01 μm to 500 μm.
It is made by adjusting in the range of μm and / or by adjusting the carbon content in the range of 1% to 4.2%.

【0039】気孔率を下げすぎると、砥粒を保持する保
持力が強くなりすぎるため、切削部が摩耗した砥粒がバ
インダーメタルが脱落せずに残り、この結果、砥石の切
削能力が低下し、また、気孔率を上げすぎると、砥粒を
保持する保持力が弱くなりすぎるため、バインダーメタ
ルから脱落する砥粒が多くなり、この結果、砥石の摩耗
が増大し、砥石の寿命が短くなる。
If the porosity is lowered too much, the holding force for holding the abrasive grains becomes too strong, so that the abrasive grains worn in the cutting portion remain without the binder metal falling off, resulting in a reduction in the cutting ability of the grindstone. Also, if the porosity is raised too much, the holding force for holding the abrasive grains becomes too weak, so more abrasive grains fall off from the binder metal, and as a result, the abrasion of the grindstone increases and the life of the grindstone shortens. .

【0040】鋳鉄粉の平均粒度および炭素量を上記の範
囲で調節することで、砥粒としてダイヤモンドと鋳鉄を
固相拡散させ、砥粒の保持力を向上させることが可能と
なる。鋳鉄は、砥粒を保持する役目を担うため、砥粒と
の接触面積を増すようにその粒径の小さいものが存在す
るこたが望ましい。
By adjusting the average particle size and the amount of carbon of the cast iron powder within the above ranges, it becomes possible to solid-phase diffuse diamond and cast iron as abrasive grains and improve the retention of the abrasive grains. Since cast iron plays a role of holding the abrasive grains, it is desirable that there be one having a small grain size so as to increase the contact area with the abrasive grains.

【0041】本発明の多孔質鋳鉄ボンドダイヤモンド砥
石は、通常の砥石の作製法と同様に、鋳鉄粉とダイヤモ
ンド砥粒を均一に混合し、従来通りプレス装置に台金と
ともに型込めして圧粉成形して製造する。このようにし
て焼成したものを、砥石径100mmの6A2タイプの
カップ型砥石に接着し、定圧研削試験によって評価す
る。通常の無気孔型鋳鉄ボンド砥石、ビトリファイド砥
石およびレジノイド砥石と比較して、本発明の多孔質鋳
鉄ボンド砥石の優位性を確認する。
The porous cast iron-bonded diamond grindstone of the present invention is obtained by uniformly mixing cast iron powder and diamond abrasive grains in the same manner as in the ordinary method of manufacturing a grindstone, and molding the powder together with a base metal into a press machine as is conventionally done. It is molded and manufactured. The thus baked product is adhered to a 6A2 type cup-shaped grindstone having a grindstone diameter of 100 mm, and evaluated by a constant pressure grinding test. The superiority of the porous cast iron bond grindstone of the present invention is confirmed in comparison with ordinary non-porous cast iron bond grindstones, vitrified grindstones and resinoid grindstones.

【0042】砥石の作製に当たっては市販の鋳鉄粉を用
いた。その鋳鉄粉の平均粒径は100μm以上であり、
しかも粒度分布が広範囲であるため、鋳鉄の融点まで温
度を上げても焼結しにくい。そのため鋳鉄粉の炭素量な
らびに粒径を制御することにより、鋳鉄粉の焼結性、機
械的強度ならびに気孔率を調整する。
Commercially available cast iron powder was used in the production of the grindstone. The average particle size of the cast iron powder is 100 μm or more,
Moreover, since the particle size distribution is wide, it is difficult to sinter even if the temperature is raised to the melting point of cast iron. Therefore, the sinterability, mechanical strength and porosity of the cast iron powder are adjusted by controlling the carbon content and particle size of the cast iron powder.

【0043】炭素量の影響を調べるため、炭素含有量が
3.0%,3.5%,4.0%である3種類の市販の鋳
鉄粉を38μm以下のふるいによって整粒したものを用
いた。粒径の影響を調べるため、炭素量3.5%の鋳鉄
粉をふるいによって20μm以下、20μmから32μ
m、32μmから38μm、38μmから45μmにそ
れぞれ整粒した。
In order to investigate the influence of the carbon content, three kinds of commercially available cast iron powders having a carbon content of 3.0%, 3.5% and 4.0% were sized by a sieve of 38 μm or less. I was there. To examine the effect of particle size, cast iron powder with a carbon content of 3.5% is sieved to 20 μm or less, 20 μm to 32 μm.
m, 32 μm to 38 μm, 38 μm to 45 μm.

【0044】各鋳鉄粉とメッシュサイズ100/120
のダイヤモンド砥粒を集中度125になるように混合
し、1120℃の温度でアルゴン雰囲気中において焼成
した。
Each cast iron powder and mesh size 100/120
The diamond abrasive grains of No. 1 were mixed so as to have a concentration of 125 and were fired at a temperature of 1120 ° C. in an argon atmosphere.

【0045】また上記で作製した砥石についで、被削材
にアルミナセラミックスを用い、1100m/minの
砥石周速で定圧研削試験を行った。表1(試作した砥石
の物性と研削性能)は焼成後の多孔質鋳鉄ボンドダイヤ
モンド砥石の物性値と研削結果を示している。
Further, after the grindstone produced as described above, a constant pressure grinding test was conducted at a grinding wheel peripheral speed of 1100 m / min using alumina ceramics as a work material. Table 1 (Physical Properties and Grinding Performance of Prototype Grinding Wheel) shows physical property values and grinding results of the porous cast iron bonded diamond grinding wheel after firing.

【0046】[0046]

【表1】 [Table 1]

【0047】表1から明らかなとおり、鋳鉄粉の粒径が
小さくなるにつれて曲げ強さ、ヤング率は上昇し強度が
増加している。鋳鉄粉の炭素量が3.5%の時に曲げ強
度、ヤング率が最高の値を示した。また研削性能は鋳鉄
粉粒径が小さくなるにつれて研削エネルギー(被削材を
除去するのに必要なエネルギー)は減少し、約半分のエ
ネルギーで被削材を除去することができた。研削比も研
削エネルギーと同様な結果を示した。
As is clear from Table 1, the bending strength and Young's modulus increase and the strength increases as the grain size of the cast iron powder decreases. When the carbon content of the cast iron powder was 3.5%, the bending strength and Young's modulus showed the highest values. As for the grinding performance, the grinding energy (energy required to remove the work material) decreased as the cast iron powder particle size decreased, and the work material could be removed with about half the energy. The grinding ratio also showed the same result as the grinding energy.

【0048】図2に炭素量3.5%、鋳鉄粒径が20μ
mの時の顕微鏡写真を示すが、ダイヤモンドと鋳鉄ボン
ドの接合が化学反応によって行われていることが確認で
きる。ダイヤモンド表面の炭素分が鋳鉄と反応し、接合
強度を高めている。その傾向は、粒径が小さくなるにつ
れて多くなりまた接触点も増加するために曲げ強度、ヤ
ング率が増加し、研削する際にはダイヤモンド砥粒の保
持力が高くなるために砥粒の脱落がなく被削材を除去す
るために研削エネルギーが低くなり、研削比が増加した
と思われる。このように多孔質鋳鉄ダイヤモンド砥石の
物性または研削性能は、鋳鉄粉の粒径と炭素量で制御す
ることができる。
FIG. 2 shows that the carbon content is 3.5% and the cast iron grain size is 20 μm.
Although a micrograph at m is shown, it can be confirmed that the diamond and the cast iron bond are bonded by a chemical reaction. The carbon content on the diamond surface reacts with cast iron, increasing the bonding strength. This tendency increases as the grain size decreases, and the number of contact points also increases, so bending strength and Young's modulus increase, and the holding force of the diamond abrasive grains increases during grinding, causing the abrasive grains to fall off. It seems that the grinding energy was lowered and the grinding ratio was increased due to the removal of the work material. Thus, the physical properties or grinding performance of the porous cast iron diamond grindstone can be controlled by the particle size of the cast iron powder and the amount of carbon.

【0049】[0049]

【実施例】本願発明の詳細を実施例で説明する。本願発
明はこれら実施例によって何ら限定されるものではな
い。
The details of the present invention will be described with reference to Examples. The present invention is not limited to these examples.

【0050】実施例1 120メッシュのダイヤモンド砥粒と炭素量3.5%,
平均粒径20μm以下の鋳鉄粉を使用して、1120℃
の温度でアルゴンガス雰囲気中で焼成し、多孔質鋳鉄ボ
ンドダイヤモンド砥石を得た。この多孔質鋳鉄ボンドダ
イヤモンド砥石を、市販のビトリファイド砥石、市販の
レジノイド砥石および市販の無気孔鋳鉄ボンド砥石と比
較した。それぞれの砥石の形状は直径100mmの6A
2のカップ型砥石であり、集中度は125に統一した。
研削試験は、アルミナを被削材として、砥石周速110
0m/minで定圧研削試験を行った。
Example 1 120-mesh diamond abrasive grains and carbon content 3.5%,
Using cast iron powder with an average particle size of 20 μm or less, 1120 ° C
Was fired in an argon gas atmosphere to obtain a porous cast iron bonded diamond grindstone. This porous cast iron bonded diamond wheel was compared with a commercially available vitrified wheel, a commercially available resinoid wheel, and a commercially available non-porous cast iron bonded wheel. The shape of each grindstone is 6A with a diameter of 100 mm
It is a cup-shaped grindstone of No. 2, and the concentration is unified to 125.
The grinding test was carried out using alumina as a work material and a grinding wheel peripheral speed of 110.
A constant pressure grinding test was performed at 0 m / min.

【0051】その結果を図3(研削圧力と除去速度の関
係を表した説明図)に示す。
The results are shown in FIG. 3 (explanatory diagram showing the relationship between grinding pressure and removal rate).

【0052】いずれの砥石も研削圧力が増加するにつれ
て除去速度は増加しているが、多孔質鋳鉄ボンドは、切
れ味が優れていると言われている市販のビトリファイド
砥石に比べて、約2倍の研削能力を示した。また、研削
比は、他のボンドに比べて2倍の性能を示した。
The removal rate of each of the whetstones increased as the grinding pressure increased, but the porous cast iron bond was about twice as fast as the commercially available vitrified whetstone which is said to have excellent sharpness. It showed grinding ability. In addition, the grinding ratio showed twice the performance of other bonds.

【0053】実施例2 窒化ケイ素の研削試験を、実施例1で作製した砥石を使
用して、実施例1と同様な条件のもとで行った。
Example 2 A grinding test of silicon nitride was carried out using the grindstone produced in Example 1 under the same conditions as in Example 1.

【0054】その結果を図4(研削時間と研削除去量の
関係を表した説明図)に示す。
The results are shown in FIG. 4 (explanatory diagram showing the relationship between the grinding time and the grinding removal amount).

【0055】市販のビトリファイドボンド砥石および市
販のレジノイドボンド砥石は、研削開始後30秒間まで
は、時間に比例して研削除去量が増加したが、その後は
砥石が目づまりし研削除去量が増加しなかった。本発明
の多孔質鋳鉄ボンド砥石は、研削開始直後から試験終了
まで、時間に比例して研削除去量が増加した。多孔質鋳
鉄ボンドは、ボンドの破砕性に優れているために、ダイ
ヤモンドの切れ刃が持続し、研削力が持続したと考えら
れる。
With the commercially available vitrified bond grindstone and the commercially available resinoid bond grindstone, the grinding removal amount increased in proportion to the time until 30 seconds after the start of grinding, but thereafter, the grinding stone clogged and the grinding removal amount increased. There wasn't. In the porous cast iron bond grindstone of the present invention, the grinding removal amount increased in proportion to the time immediately after the start of grinding to the end of the test. It is considered that the porous cast iron bond was excellent in crushability of the bond, and thus the cutting edge of the diamond was maintained and the grinding force was maintained.

【0056】[0056]

【発明の効果】目的の強度、気孔率をもった多孔質鉄系
メタルボンドダイヤモンド砥石を提供することができ
る。目づまりすることなく、長時間の連続研削が可能で
ある多孔質鉄系メタルボンドダイヤモンド砥石を提供す
ることができる。ビトリファイドボンド砥石より切れ味
がよく、レジノイドボンド砥石より砥石摩耗が少ない砥
石を提供することができる。汎用の研削盤で充分に使用
でき、かつドレッシング性に優れているために、ビトリ
ファイドボンド、レジノイドボンドと同様に研削盤上で
のドレッシングが可能であり、また研削比も高いために
研削コストを大幅に改善できる。
Industrial Applicability It is possible to provide a porous iron-based metal bond diamond grindstone having desired strength and porosity. It is possible to provide a porous iron-based metal-bonded diamond grindstone capable of continuous grinding for a long time without clogging. It is possible to provide a grindstone that is sharper than a vitrified bond grindstone and has less grindstone wear than a resinoid bond grindstone. Since it can be used well with a general-purpose grinder and has excellent dressing properties, it can be dressed on the grinder like Vitrified Bond and Resinoid Bond. Can be improved.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明の多孔質鋳鉄ボンドダイヤモンド砥石に
おけるダイヤモンド砥粒と鋳鉄粉が反応して接合されて
いる状態を示した説明図である。
FIG. 1 is an explanatory view showing a state in which diamond abrasive grains and cast iron powder are reacted and bonded in a porous cast iron bonded diamond grindstone of the present invention.

【図2】鋳鉄粉の炭素量3.5%および粒径20μmの
時のダイヤモンド砥粒と鋳鉄ボンドの接合の状態を示し
た顕微鏡写真である。
FIG. 2 is a micrograph showing the state of bonding of diamond abrasive grains and cast iron bond when the carbon content of cast iron powder is 3.5% and the particle size is 20 μm.

【図3】本発明の実施例の砥石における研削圧力と除去
速度の関係を示した説明図である。
FIG. 3 is an explanatory diagram showing a relationship between a grinding pressure and a removal rate in the grindstone of the embodiment of the present invention.

【図4】本発明の実施例の砥石における研削時間と研削
除去量の関係を示した説明図である。
FIG. 4 is an explanatory diagram showing a relationship between a grinding time and a grinding removal amount in the grindstone of the embodiment of the present invention.

───────────────────────────────────────────────────── フロントページの続き (51)Int.Cl.6 識別記号 庁内整理番号 FI 技術表示箇所 C22C 1/05 P ─────────────────────────────────────────────────── ─── Continuation of the front page (51) Int.Cl. 6 Identification code Internal reference number FI technical display location C22C 1/05 P

Claims (12)

【特許請求の範囲】[Claims] 【請求項1】 砥粒としてダイヤモンドおよび結合剤と
して鉄系金属粉末からなり、結合剤部分が多数の気孔を
含んでおり、かつ、砥粒が前記鉄系金属に化学的および
物理的結合して保持されていることを特徴とする多孔質
鉄系メタルボンドダイヤモンド砥石。
1. A diamond abrasive grain and an iron-based metal powder as a binder, wherein the binder portion contains a large number of pores, and the abrasive grain is chemically and physically bonded to the iron-based metal. A porous iron-based metal bond diamond grindstone characterized by being retained.
【請求項2】 砥石全体の気孔率が5〜60%である請
求項1記載の多孔質鉄系メタルボンドダイヤモンド砥
石。
2. The porous iron-based metal bond diamond grindstone according to claim 1, wherein the porosity of the whole grindstone is 5 to 60%.
【請求項3】 砥石全体の気孔率が5〜45%である請
求項1記載の多孔質鉄系メタルボンドダイヤモンド砥
石。
3. The porous iron-based metal bond diamond grindstone according to claim 1, wherein the porosity of the whole grindstone is 5 to 45%.
【請求項4】 鉄系金属が、鉄粉、炭素被覆鉄粉、窒化
鉄粉、炭素および鉄の混合物からなる群から選ばれる一
種または二種以上からなる請求項1、請求項2または請
求項3記載の多孔質鉄系メタルボンドダイヤモンド砥
石。
4. The iron-based metal comprises one or more selected from the group consisting of iron powder, carbon-coated iron powder, iron nitride powder, and a mixture of carbon and iron. 3. The porous iron-based metal bond diamond grindstone according to 3.
【請求項5】 上記化学的結合は、砥粒であるダイヤモ
ンドの炭素分が鉄系金属と表面で反応しているものであ
る請求項1、請求項2、請求項3または請求項4記載の
多孔質鉄系メタルボンドダイヤモンド砥石。
5. The chemical bond according to claim 1, claim 2, claim 3 or claim 4, wherein the carbon content of diamond as abrasive grains reacts with the iron-based metal on the surface. Porous iron-based metal bond diamond grindstone.
【請求項6】 砥粒としてダイヤモンドおよび結合剤と
して鉄系金属粉末を使用して多孔質鉄系メタルボンドダ
イヤモンド砥石を製造するに際し、結合剤部分の機械的
特性および砥粒の保持力を制御することを特徴とする多
孔質鉄系メタルボンドダイヤモンド砥石の製造方法。
6. When manufacturing a porous iron-based metal-bonded diamond grindstone using diamond as abrasive grains and iron-based metal powder as a binder, the mechanical properties of the binder portion and the retention of the abrasive grains are controlled. A method for producing a porous iron-based metal bond diamond grindstone, which is characterized by the above.
【請求項7】 砥粒および結合剤を混合し所定の寸法形
状に成形した後、900〜1150℃で加熱焼結せしめ
ることを特徴とする請求項6記載の多孔質鉄系メタルボ
ンドダイヤモンド砥石の製造方法。
7. The porous iron-based metal-bonded diamond grindstone according to claim 6, wherein the abrasive grains and the binder are mixed and formed into a predetermined size and shape, and then heat-sintered at 900 to 1150 ° C. Production method.
【請求項8】 結合剤部分の機械的特性および砥粒の保
持力の制御が、気孔率の調節により行われる請求項6ま
たは請求項7記載の多孔質鉄系メタルボンドダイヤモン
ド砥石の製造方法。
8. The method for producing a porous iron-based metal-bonded diamond grindstone according to claim 6 or 7, wherein the mechanical properties of the binder portion and the holding power of the abrasive grains are controlled by adjusting the porosity.
【請求項9】 気孔率の調節に加えて、鉄系金属の炭素
濃度とダイヤモンドの濃度勾配の調整により行われる請
求項8記載の多孔質鉄系メタルボンドダイヤモンド砥石
の製造方法。
9. The method for producing a porous iron-based metal-bonded diamond grindstone according to claim 8, which is performed by adjusting the carbon concentration of the iron-based metal and the concentration gradient of diamond in addition to adjusting the porosity.
【請求項10】 鉄系金属の粒径、成形条件および焼成
条件によって調節する請求項8または請求項9記載の多
孔質鉄系メタルボンドダイヤモンド砥石の製造方法。
10. The method for producing a porous iron-based metal-bonded diamond grindstone according to claim 8 or 9, which is adjusted depending on the particle diameter of the iron-based metal, the molding conditions and the firing conditions.
【請求項11】 鉄系金属の粒径は、平均粒度を0.0
1μm〜500μmの範囲で調節する請求項10記載の
多孔質鉄系メタルボンドダイヤモンド砥石の製造方法。
11. The average particle size of the iron-based metal is 0.0
The method for producing a porous iron-based metal-bonded diamond grindstone according to claim 10, which is adjusted in the range of 1 μm to 500 μm.
【請求項12】 鉄系金属が、鉄粉、炭素被覆鉄粉、窒
化鉄粉、炭素および鉄の混合物からなる群から選ばれる
一種または二種以上からなる請求項6、請求項7、請求
項8、請求項9、請求項10または請求項11記載の多
孔質鉄系メタルボンドダイヤモンド砥石の製造方法。
12. The method according to claim 6, wherein the iron-based metal is one or more selected from the group consisting of iron powder, carbon-coated iron powder, iron nitride powder, and a mixture of carbon and iron. 8. The method for producing a porous iron-based metal bond diamond grindstone according to claim 8, claim 9, claim 10, or claim 11.
JP06059738A 1994-02-19 1994-02-19 Method for producing porous iron-based metal bond diamond wheel Expired - Fee Related JP3101145B2 (en)

Priority Applications (4)

Application Number Priority Date Filing Date Title
JP06059738A JP3101145B2 (en) 1994-02-19 1994-02-19 Method for producing porous iron-based metal bond diamond wheel
US08/387,593 US5637123A (en) 1994-02-19 1995-02-13 Porous metal bond grinder and method of manufacturing the same
EP95102067A EP0668126B1 (en) 1994-02-19 1995-02-15 Porous metal bond grinder and method of manufacturing the same
DE69502217T DE69502217T2 (en) 1994-02-19 1995-02-15 Porous metal bond grinder and process for its manufacture

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP06059738A JP3101145B2 (en) 1994-02-19 1994-02-19 Method for producing porous iron-based metal bond diamond wheel

Related Child Applications (1)

Application Number Title Priority Date Filing Date
JP2000129964A Division JP2000317843A (en) 2000-01-01 2000-04-28 Porous iron system metal bond diamond grinding wheel

Publications (2)

Publication Number Publication Date
JPH07251378A true JPH07251378A (en) 1995-10-03
JP3101145B2 JP3101145B2 (en) 2000-10-23

Family

ID=13121867

Family Applications (1)

Application Number Title Priority Date Filing Date
JP06059738A Expired - Fee Related JP3101145B2 (en) 1994-02-19 1994-02-19 Method for producing porous iron-based metal bond diamond wheel

Country Status (1)

Country Link
JP (1) JP3101145B2 (en)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH09103965A (en) * 1995-10-09 1997-04-22 Alps Electric Co Ltd Porous superbrasive grinding wheel and its manufacture
JPH11156724A (en) * 1997-11-28 1999-06-15 Kozo Ishizaki Preliminary molded material and girding wheel made of said preliminary molded material having controlled abrasive grain intervals
EP1112815A2 (en) * 1999-12-28 2001-07-04 Fujimi Incorporated Grinding stone, process for its production and grinding method employing it
JP2003181765A (en) * 2002-12-24 2003-07-02 Alps Electric Co Ltd Porous supergrain grinding stone and method for manufacturing the same
JP2012069805A (en) * 2010-09-24 2012-04-05 Hitachi Chem Co Ltd Composition for forming n-type diffusion layer, production method of composition for forming n-type diffusion layer, production method of n-type diffusion layer, and manufacturing method of solar cell
JP2023505968A (en) * 2019-12-13 2023-02-14 エレメント シックス (ユーケイ) リミテッド Polycrystalline diamond with iron-bearing binder

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
AU2007218487B2 (en) 2006-02-24 2011-10-06 Ehwa Diamond Industrial Co., Ltd. Cutting tip, method for making the cutting tip and cutting tool

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH09103965A (en) * 1995-10-09 1997-04-22 Alps Electric Co Ltd Porous superbrasive grinding wheel and its manufacture
JPH11156724A (en) * 1997-11-28 1999-06-15 Kozo Ishizaki Preliminary molded material and girding wheel made of said preliminary molded material having controlled abrasive grain intervals
EP1112815A2 (en) * 1999-12-28 2001-07-04 Fujimi Incorporated Grinding stone, process for its production and grinding method employing it
EP1112815A3 (en) * 1999-12-28 2003-10-15 Fujimi Incorporated Grinding stone, process for its production and grinding method employing it
JP2003181765A (en) * 2002-12-24 2003-07-02 Alps Electric Co Ltd Porous supergrain grinding stone and method for manufacturing the same
JP2012069805A (en) * 2010-09-24 2012-04-05 Hitachi Chem Co Ltd Composition for forming n-type diffusion layer, production method of composition for forming n-type diffusion layer, production method of n-type diffusion layer, and manufacturing method of solar cell
JP2023505968A (en) * 2019-12-13 2023-02-14 エレメント シックス (ユーケイ) リミテッド Polycrystalline diamond with iron-bearing binder

Also Published As

Publication number Publication date
JP3101145B2 (en) 2000-10-23

Similar Documents

Publication Publication Date Title
JP4173573B2 (en) Method for producing porous abrasive wheel
JP2001246566A (en) Cutting grinding wheel, its manufacturing method and grinding method using it
JPH09103965A (en) Porous superbrasive grinding wheel and its manufacture
JP3017471B2 (en) Abrasive tools suitable for mounting on grinding equipment
JP3542520B2 (en) Vitrified whetstone
KR100407227B1 (en) Composite bond wheel and wheel having resin bonding phase
JP3101145B2 (en) Method for producing porous iron-based metal bond diamond wheel
EP0668126B1 (en) Porous metal bond grinder and method of manufacturing the same
JP2003181765A (en) Porous supergrain grinding stone and method for manufacturing the same
JP3086667B2 (en) Super abrasive whetstone
JP2762661B2 (en) Porous metal bond whetstone and method of manufacturing the same
JP2000317843A (en) Porous iron system metal bond diamond grinding wheel
JP2000198075A (en) Composite bond grinding wheel and grind wheel having resin binder phase
JP3055084B2 (en) Porous metal bond whetstone and method of manufacturing the same
JP3380125B2 (en) Porous superabrasive stone and its manufacturing method
JP2987485B2 (en) Superabrasive grindstone and method of manufacturing the same
JP2678288B2 (en) Superabrasive vitrified bond grindstone and manufacturing method
KR100522779B1 (en) Porous grinding stone and method of production thereof
JP3209437B2 (en) Manufacturing method of resin bonded super abrasive wheel
JPH0624700B2 (en) Vitrified grindstone
JP2000158347A (en) Super-abrasive grain grinding wheel using heat-treated abrasive grains and manufacture thereof
JP2001088035A (en) Porous or air hole incorporating type grinding wheel/ stone
JP2975033B2 (en) Vitrified super abrasive whetstone
JPS62246474A (en) Manufacture of super abrasive grain grindstone for mirror-like surface finishing
CN113329846A (en) Metal bond grindstone for high-hardness brittle material

Legal Events

Date Code Title Description
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20000711

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313113

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20070818

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080818

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080818

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090818

Year of fee payment: 9

LAPS Cancellation because of no payment of annual fees