JPH03201447A - Manufacture of field-effect transistor - Google Patents

Manufacture of field-effect transistor

Info

Publication number
JPH03201447A
JPH03201447A JP1338617A JP33861789A JPH03201447A JP H03201447 A JPH03201447 A JP H03201447A JP 1338617 A JP1338617 A JP 1338617A JP 33861789 A JP33861789 A JP 33861789A JP H03201447 A JPH03201447 A JP H03201447A
Authority
JP
Japan
Prior art keywords
electrodes
divided
electrode
electrical characteristics
substrate
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP1338617A
Other languages
Japanese (ja)
Inventor
Kimihiko Imura
井村 公彦
Antoniooni Fuigereedo Domingo
ドミンゴ・アントニオーニ・フィゲレード
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Eneos Corp
Original Assignee
Nippon Mining Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Mining Co Ltd filed Critical Nippon Mining Co Ltd
Priority to JP1338617A priority Critical patent/JPH03201447A/en
Publication of JPH03201447A publication Critical patent/JPH03201447A/en
Pending legal-status Critical Current

Links

Abstract

PURPOSE:To suppress the deterioration or oscillation of an element and to perform precisely a measurement and evaluation of the electrical characteristics of the element by a method wherein a source electrode is divided into a plurality of pieces and the measurement of the electrical characteristics in a state that the thickness of a GaAs substrate is thick and the heat dissipation characteristics of the substrate is bad is performed using the divided individual source electrodes as a unit. CONSTITUTION:Gate electrodes 3 are formed of an Al film on the main surface on one side of a substrate into a comb type. A Schottky contact is formed between the electrodes 3 and an active layer 5. Source electrodes 2 and a drain electrode 1 are formed of an ohmic metal film to ohmic-contact to the layer 5 into a combe type in such a way as to hold the electrodes 3 between them. At this time, the electrodes 2 are formed in such a way that they are divided as many as 5 pieces into S1 to S5. At this state, a measurement of the electrical characteristics of an IDSS, a Vth and the like is performed using the divided individual source electrodes 2 as a unit. At this time, when the values of the IDSS and the like are all necessary, the values are found by taking the sum of the individual values of the electrical characteristics measured using the divided electrodes as a unit. According to this measured result, a judgement or the like on whether the following manufacturing process can be proceeded intact or not is formed.

Description

【発明の詳細な説明】 [産業上の利用分野] この発明は、電力用のGaAs電界効果トランジスタ(
以下、G a A s F E Tという)の製造方法
に関する。
[Detailed Description of the Invention] [Field of Industrial Application] This invention relates to a GaAs field effect transistor for power use (
The present invention relates to a method for producing G a As F ET (hereinafter referred to as G a As F ET).

[従来の技術] 電力用のGaAsFETは、一般にゲート長が1μm以
下でゲート幅が数mm〜10mm程度あり、通常の電力
レベルのもののゲート幅が1mm以下程度であるのと比
べると、ゲート幅が極めて大きい。このためその電極構
造は櫛型となっている。
[Prior Art] GaAsFETs for power use generally have a gate length of 1 μm or less and a gate width of several mm to 10 mm. Compared to the gate width of a normal power level device, which is about 1 mm or less, the gate width is smaller. Extremely large. Therefore, its electrode structure is comb-shaped.

このような電力用のGaAsFETの従来の製造方法は
、例えば次のようにして行われていた。
A conventional method for manufacturing such a GaAsFET for power use is, for example, as follows.

即ち、当初の厚さが400μm程度のGaAs基板を使
用し、活性層の形成されたその一方の主面上に、その活
性層とオーミック接触するソース電極、ドレイン電極及
びショットキ接触するゲート電極が形成される。これら
の各電極は、それぞれ櫛型に形成され、これらの櫛型電
極が所要の態様で噛合する構造とすることにより、前述
のような所要長さのゲート幅が得られるようになってい
る。
That is, a GaAs substrate with an initial thickness of about 400 μm is used, and on one main surface on which the active layer is formed, a source electrode, a drain electrode, and a gate electrode that make ohmic contact with the active layer are formed. be done. Each of these electrodes is formed in a comb shape, and by creating a structure in which these comb-shaped electrodes mesh in a desired manner, a gate width of the required length as described above can be obtained.

その後、GaAs基板の他方の主面にパックサイトラッ
プが施されて100μm以下の所要の厚さとされてから
、各素子に分割することが行われていた。
Thereafter, the other main surface of the GaAs substrate is subjected to paccite wrapping to obtain a required thickness of 100 μm or less, and then the GaAs substrate is divided into each element.

バックサイドラップにより素子の最終厚さが100μm
以下程度に薄くされるのは、GaAsはSi等と比べる
と熱伝導率が低いので、大電力を効率よく放熱させるた
めに必要な措置として行われている。しかし、GaAs
基板の厚さを製造当初から薄くすると、GaAsはへき
開性があって割れ易いため、ソース電極、ドレイン電極
、ゲート電極の形成時等に取扱い上の問題が生じる。
The final thickness of the device is 100μm due to backside wrap.
GaAs has a lower thermal conductivity than Si or the like, so the reason why it is made as thin as below is a necessary measure to efficiently dissipate heat from a large amount of power. However, GaAs
If the thickness of the substrate is reduced from the beginning of manufacture, GaAs has cleavage properties and is easily broken, which causes handling problems when forming source electrodes, drain electrodes, gate electrodes, and the like.

このため、製造当初のGaAs基板は、前述のように、
400μm程度の厚さのものが用いられている。
Therefore, as mentioned above, the GaAs substrate at the time of manufacture is
A thickness of about 400 μm is used.

[発明が解決しようとする課題] ところて、GaAsFETは製造時における特性上のば
らつきが比較的大きい。このため、その後の製造工程を
そのまま進めるか否かの分別、又は特性上の分類等のた
めに、バックサイドラップ前の製造工程の途中で飽和ド
レイン電流ID5S、ゲート閾値電圧vth等の電気的
特性の測定(DCテスト)が必要となっている。
[Problems to be Solved by the Invention] By the way, GaAsFETs have relatively large variations in characteristics during manufacture. Therefore, in order to decide whether to proceed with the subsequent manufacturing process or not, or to classify based on characteristics, electrical characteristics such as saturated drain current ID5S and gate threshold voltage vth are checked during the manufacturing process before backside lapping. measurement (DC test) is required.

しかしながら、従来のGaAsFETの製造方法にあっ
ては、GaAs基板の厚さが放熱特性の悪いバックサイ
ドラップ前の厚い状態において各電極が櫛型構造に形成
され、その電極構造が、バックサイドラップが行われて
素子分割後の最終電極構造と同じに形成されるようにな
っていたため、1oss等の測定の際に基板温度が上昇
して素子が劣化又は破壊するおそれが生じ、またGaA
s特有の負性抵抗効果等により発振が生じ易くなり、電
気的特性を適確に評価することが難しいという問題があ
った。また、櫛型構造による全ゲート幅数mm〜10m
m程度のうち、例えば20μm程度の長さの部分が、は
がれ等により不良となっていても、この不良部分は全ゲ
ート長の1%以下に相当するため、このような不良部分
は検出することが難しいという問題があった。
However, in the conventional GaAsFET manufacturing method, each electrode is formed in a comb-shaped structure in a thick GaAs substrate before the backside wrap, which has poor heat dissipation characteristics. Since the electrode structure was formed to be the same as the final electrode structure after the device was divided, there was a risk that the substrate temperature would rise during measurements such as 1oss, leading to deterioration or destruction of the device.
There is a problem in that oscillation is likely to occur due to the negative resistance effect peculiar to s, and it is difficult to accurately evaluate the electrical characteristics. In addition, the total gate width due to the comb-shaped structure is several mm to 10 m.
Even if a part of about 20 μm in length is defective due to peeling, etc., this defective part corresponds to less than 1% of the total gate length, so such a defective part cannot be detected. The problem was that it was difficult.

そこで、この発明は、バックサイドラップ前に電気的特
性を適確に評価することができ、またその電気的特性の
基板内の均一性についても適確に測定、評価することの
できる電界効果トランジスタの製造方法を提供すること
を目的とする。
Therefore, the present invention provides a field effect transistor whose electrical characteristics can be accurately evaluated before backside lapping, and whose uniformity within the substrate can also be accurately measured and evaluated. The purpose is to provide a manufacturing method for.

[課題を解決するための手段] この発明は上記課題を解決するために、(a)GaAs
基板の一方の主面上にゲート電極、ドレイン電極及び分
割されたソース電極を形成する工程、(b)該ゲート電
極、ドレイン電極及び分割されたソース電極の間に電圧
を印加し、当該分割された各ソース電極を単位として所
要の電気的特性を測定する工程、(c)上記GaAs基
板の他方の主面を削り、該GaAs基板を所要の厚さに
する工程、(d)上記分割されたソース電極の間を電気
的に接続する工程を順次行うことを要旨とする。
[Means for Solving the Problems] In order to solve the above problems, the present invention provides (a) GaAs
forming a gate electrode, a drain electrode, and a divided source electrode on one main surface of the substrate; (b) applying a voltage between the gate electrode, the drain electrode, and the divided source electrode; (c) cutting off the other main surface of the GaAs substrate to make the GaAs substrate a required thickness; (d) measuring the required electrical characteristics for each source electrode that has been divided into The gist is to sequentially perform the steps of electrically connecting between the source electrodes.

上記の分割されたソース電極間の電気的な接続は、Ga
As基板に形成されたバイアホールを通して裏面からの
接続を用いることが好ましい。また、素子分割後にワイ
ヤボンディング等の手段により、基板表面側での接続を
用いることもできる。
The electrical connection between the above divided source electrodes is made of Ga
Preferably, connections from the back side are used through via holes formed in the As substrate. Furthermore, connection on the surface side of the substrate by means such as wire bonding after element division can also be used.

[作用コ 各電極の形成工程において、ゲート電極、ドレイン電極
及びソース電極のうち、低電位電極であるソース電極が
適宜の複数個に分割して形成される。
[Operation] In the step of forming each electrode, among the gate electrode, drain electrode, and source electrode, the source electrode, which is a low potential electrode, is divided into a plurality of appropriate parts and formed.

そして、バックサイドラップ前のGaAs基板の厚さが
厚く放熱特性の悪い状態でのID5S等の電気的特性の
測定は、その分割された各ソース電極を単位として行わ
れる。したがって測定時の印加電力が少なくなって基板
の温度上昇が低く抑えられ、素子の劣化等のおそれがな
くなり、また発振の生じるおそれもなくなって、その電
気的特性の測定、評価を適確に行うことが可能となる。
In a state where the GaAs substrate before backside lapping is thick and has poor heat dissipation characteristics, electrical characteristics such as ID5S are measured using each divided source electrode as a unit. Therefore, the power applied during measurement is reduced, the temperature rise of the substrate is kept low, there is no risk of deterioration of the device, and there is no risk of oscillation, allowing accurate measurement and evaluation of its electrical characteristics. becomes possible.

また、分割された各ソース電極を単位として試験が行わ
れるため、電気的特性の基板内の均一性についても適確
な測定、評価が可能となる。
Furthermore, since the test is performed on each divided source electrode as a unit, it is possible to accurately measure and evaluate the uniformity of electrical characteristics within the substrate.

電気的特性の測定後、GaAs基板の他方の主面が削ら
れ、所要の基板厚さとされてから、分割されたソース電
極の電気的な接続が行われ、素子状態において、ゲート
電極、ドレイン電極及びソース電極は、電気的に正規の
電極状態となるように整えられる。
After measuring the electrical characteristics, the other main surface of the GaAs substrate is shaved to the required substrate thickness, and the divided source electrodes are electrically connected, and in the device state, the gate electrode, drain electrode The source electrode and the source electrode are arranged to be in an electrically normal electrode state.

[実施例] 以下、この発明の実施例を第1図及び第2図を参照して
説明する。この実施例は、電力用のショットキゲート型
GaAsFETの製造方法に適用されている。
[Example] Hereinafter, an example of the present invention will be described with reference to FIGS. 1 and 2. This embodiment is applied to a method of manufacturing a Schottky gate type GaAsFET for power use.

まず、第1図を用いて、各電極の形成工程後、即ち電気
的特性測定時の1個の素子内の各電極のパターンを説明
する。なお、同図(b)は、同図(a)の矢印部分のA
−A線拡大断面図である。
First, with reference to FIG. 1, the pattern of each electrode within one element after the step of forming each electrode, that is, when measuring electrical characteristics, will be explained. In addition, in the same figure (b), the arrow part A in the same figure (a)
- It is an A line enlarged sectional view.

同図中、1はドレイン電極、2はソース電極、3はゲー
ト電極であり、これらの電極は、それぞれ櫛型に形成さ
れ、これらの櫛型電極1.2.3が所要の態様で噛合す
るようにパターニングされている。そして、これらの電
極のうち、ソース電極2がs、   s2  s3、s
4、s5で示すように、例えば5個に分割されている。
In the figure, 1 is a drain electrode, 2 is a source electrode, and 3 is a gate electrode. These electrodes are each formed in a comb shape, and these comb-shaped electrodes 1, 2, and 3 mesh in a required manner. It is patterned like this. Of these electrodes, source electrode 2 is s, s2 s3, s
As shown in 4 and s5, it is divided into, for example, five pieces.

また、櫛歯部分のドレイン電極1とソース電極2との間
には、40本のゲート電極3が組合されている。ゲート
給電線と交叉するソース電極2の部分は、同図(b)に
示すように、エアブリッジにより接続されている。
Further, 40 gate electrodes 3 are combined between the drain electrode 1 and the source electrode 2 in the comb-teeth portion. The portion of the source electrode 2 that intersects with the gate power supply line is connected by an air bridge, as shown in FIG. 2(b).

なお、電気的特性の測定時における印加電力を少なくす
る目的からは、ソース電極を分割することに代えて、ド
レイン電極を複数個に分割してもよいが、ドレイン電極
は負荷へ接続される電極であるため、分割された電極を
その後、共通接続するための引き回し部が存在すると素
子性能が劣化するおそれがある。これに対し、ソース電
極は接地(低電位)される電極であるため、これに共通
接続用の引き回し部が存在しても素子性能を劣化させる
おそれはない。このため、この実施例では、上述のよう
に、ソース電極側が複数個に分割されている。
Note that for the purpose of reducing the applied power when measuring electrical characteristics, the drain electrode may be divided into multiple parts instead of dividing the source electrode, but the drain electrode is the electrode connected to the load. Therefore, if there is a routing portion for commonly connecting the divided electrodes after that, there is a risk that the device performance will deteriorate. On the other hand, since the source electrode is an electrode that is grounded (at a low potential), there is no risk of deteriorating element performance even if there is a common connection routing portion therein. Therefore, in this embodiment, the source electrode side is divided into a plurality of parts as described above.

次に、第2図を用いてGaAsFETの製造方法を説明
する。なお、第2図の(a)〜(d)は、前記第1図(
a)中のB−B線に相当する部分の拡大断面図、第2図
(e)は、第1図(a)中のC−C線に相当する部分の
断面図をそれぞれ示している。
Next, a method for manufacturing a GaAsFET will be explained using FIG. Note that (a) to (d) in Figure 2 are similar to those in Figure 1 (
FIG. 2(e) is an enlarged sectional view of a portion corresponding to line BB in FIG. 1(a), and FIG. 2(e) is a sectional view of a portion corresponding to line C--C in FIG. 1(a).

■450μm程度の厚さの半絶縁性GaAs基板4の一
方の主面に、イオン注入によりチャネル層となるn型の
活性層5を形成する(第2図(a))。
(2) An n-type active layer 5, which will become a channel layer, is formed by ion implantation on one main surface of a semi-insulating GaAs substrate 4 having a thickness of about 450 μm (FIG. 2(a)).

■基板の一方の主面上に、通常のフォトリソグラフィ工
程により、ゲート長が0.5μm程度のゲート電極3を
A斐膜により櫛型に形成する(第2図〈b〉)。ゲート
電極3は、活性層5との間でショットキ接触が形成され
る。
(2) A comb-shaped gate electrode 3 with a gate length of about 0.5 μm is formed on one main surface of the substrate using an A film by a normal photolithography process (FIG. 2 (b)). A Schottky contact is formed between the gate electrode 3 and the active layer 5 .

■ソース電極2及びドレイン電極1を活性層5とオーミ
ック接触するオーミック金属により、ゲート電極3を間
に挟むようにして櫛型に形成する。
(2) The source electrode 2 and the drain electrode 1 are formed in a comb shape using an ohmic metal that makes ohmic contact with the active layer 5, with the gate electrode 3 sandwiched therebetween.

このとき、ソース電極2は、前述のように5個S、−s
5に分割されるように形成する(第1図(a)、第2図
(c))。
At this time, the number of source electrodes 2 is five, S, -s, as described above.
It is formed so that it is divided into 5 parts (Fig. 1(a), Fig. 2(c)).

■この段階で、ID5S、Vth等の電気的特性の測定
を、分割された各ソース電極2を単位として行う。この
とき、全ID5S等の値が必要なときは、分割測定した
各位の和をとることにより求める。この測定結果により
、その後の製造工程をそのまま進めるか否かの分別等を
行う。
(2) At this stage, electrical characteristics such as ID5S and Vth are measured for each divided source electrode 2 as a unit. At this time, if the value of all ID5S etc. is required, it is obtained by calculating the sum of each divided measurement. Based on this measurement result, it is determined whether to proceed with the subsequent manufacturing process or not.

■半絶縁性GaAs基板4の他方の主面をバックサイド
ラップして、450μm程度の厚さの基板を、50μm
程度の厚さまで薄くする(第2図(d))。
■ Back side lap the other main surface of the semi-insulating GaAs substrate 4 to form a substrate with a thickness of about 450 μm and a thickness of 50 μm.
(Fig. 2(d)).

■裏面からの反応性イオンエツチングにより、ソース電
極2下に穴を穿設し、その裏面全体に金属層6を形成す
ることにより、各バイアホール7を介して、分割された
ソース電極2の間を電気的に接続する(第2図(e))
■ By making a hole under the source electrode 2 by reactive ion etching from the back surface, and forming a metal layer 6 on the entire back surface, a hole is formed between the divided source electrodes 2 via each via hole 7. electrically connect (Fig. 2(e))
.

■各素子毎に分割して、電力用のGaAsFETを完成
する。
■ Divide into each element to complete a power GaAsFET.

上述したように、この実施例のGaAsFETの製造方
法では、バックサイドラップ前の半絶縁性GaAs基板
4の厚さが450μm程度と厚く、放熱特性の悪い状態
でのID5S等の電気的特性の測定が、分割されたソー
ス電極s、−s5を単位として行われる。したがって測
定時の印加電力が少なくなって半絶縁性GaAs基板4
の温度上昇が低く抑えられ、その一方の主面に形成され
た素子の劣化等のおそれがなくなり、また発振の生じる
おそれもなくなって、その電気的特性の測定、評価を適
確に行うことが可能となる、また、分割された各ソース
電極81〜S5を単位として試験が行われるため、電気
的特性の基板4内の均一性についても適確な測定、評価
が可能となる。
As mentioned above, in the GaAsFET manufacturing method of this embodiment, the thickness of the semi-insulating GaAs substrate 4 before backside wrapping is as thick as about 450 μm, and the electrical characteristics such as ID5S cannot be measured in a state where the heat dissipation characteristics are poor. This is performed using the divided source electrodes s and -s5 as units. Therefore, the applied power during measurement is reduced and the semi-insulating GaAs substrate 4
temperature rise is suppressed to a low level, there is no risk of deterioration of the element formed on one main surface, and there is no risk of oscillation, making it possible to accurately measure and evaluate its electrical characteristics. Furthermore, since the test is performed for each divided source electrode 81 to S5 as a unit, it is possible to accurately measure and evaluate the uniformity of electrical characteristics within the substrate 4.

そして、この適確な測定、評価に基づいて、その後の工
程をそのまま進行させるか否かの分別や、プロセス条件
の変更等を適確に行うことが可能となる。また、上述の
電気的特性の測定により、素子内特性の均一な製品のみ
を出荷することも可能になり、さらにその出荷高にID
5S等の正確な特性値を添付することも可能となる。
Then, based on this accurate measurement and evaluation, it becomes possible to appropriately determine whether or not to proceed with subsequent steps as they are, change process conditions, etc. In addition, by measuring the electrical characteristics described above, it becomes possible to ship only products with uniform internal characteristics, and furthermore, it becomes possible to
It is also possible to attach accurate characteristic values such as 5S.

なお、上述の実施例ではショットキゲート型GaAsF
ETの製造方法について述べたが、接合型GaAsFE
T等のそのGaAsFETの製造方法にも適用すること
ができる。
Note that in the above embodiment, Schottky gate type GaAsF
Although we have described the manufacturing method of ET, junction type GaAsFE
It can also be applied to the manufacturing method of GaAsFET such as T.

[発明の効果] 以上説明したように、この発明によれば、各電極の形成
工程においてゲート電極、ドレイン電極及びソース電極
のうち、ソース電極を複数個に分割し、GaAs基板の
厚さが厚く放熱特性の悪い状態での電気的特性の測定を
、その分割された各ソース電極を単位として行うように
したため、測定時の印加電力が少なくなって基板の温度
上昇が低く抑えられ、素子の劣化又は発振等の生じるお
それがなくなってその電気的特性の測定、評価を適確に
行うことができる。また、分割された各ソース電極を単
位として試験を行うので、電気的特性の基板内の均一性
についても適確な測定、評価を行うことができる。した
がって、電力用のGaAsFET等の製造方法として極
めて好適な万古を提供することができる。
[Effects of the Invention] As explained above, according to the present invention, the source electrode among the gate electrode, drain electrode, and source electrode is divided into a plurality of parts in the process of forming each electrode, and the thickness of the GaAs substrate is increased. Since electrical characteristics are measured in conditions with poor heat dissipation characteristics using each divided source electrode as a unit, less power is applied during measurement, suppressing the temperature rise of the substrate and preventing device deterioration. Alternatively, the electrical characteristics can be measured and evaluated accurately without the possibility of oscillation or the like occurring. Furthermore, since the test is performed using each divided source electrode as a unit, it is possible to accurately measure and evaluate the uniformity of electrical characteristics within the substrate. Therefore, it is possible to provide an extremely suitable method for manufacturing GaAsFETs for power use.

【図面の簡単な説明】[Brief explanation of drawings]

第1図はこの発明に係る電界効果トランジスタの製造方
法の実施例における電気的特性測定時の各電極のパター
ンを示す図、第2図は上記実施例の製造工程を示す工程
図である。 1ニドレイン電極、   2:ソース電極、3:ゲート
電極、 4:半絶縁性GaAs基板、 5:半絶縁性GaAs基板の一方の主面に形成される活
性層、 6:分割されたソース電極を電気的に接続する金属層、 7:バイアホール。
FIG. 1 is a diagram showing the pattern of each electrode during electrical characteristic measurement in an embodiment of the method for manufacturing a field effect transistor according to the present invention, and FIG. 2 is a process diagram showing the manufacturing process of the above embodiment. 1 double drain electrode, 2: source electrode, 3: gate electrode, 4: semi-insulating GaAs substrate, 5: active layer formed on one main surface of semi-insulating GaAs substrate, 6: electrically connecting the divided source electrode. 7: Via hole.

Claims (1)

【特許請求の範囲】 (a)GaAs基板の一方の主面上にゲート電極、ドレ
イン電極及び分割されたソース電極を形成する工程、 (b)該ゲート電極、ドレイン電極及び分割されたソー
ス電極の間に電圧を印加し、当該分割された各ソース電
極を単位として所要の電気的特性を測定する工程、 (c)上記GaAs基板の他方の主面を削り、該GaA
s基板を所要の厚さにする工程、 (d)上記分割されたソース電極の間を電気的に接続す
る工程 を順次行うことを特徴とする電界効果トランジスタの製
造方法。
[Claims] (a) A step of forming a gate electrode, a drain electrode, and a divided source electrode on one main surface of a GaAs substrate; (b) A step of forming a gate electrode, a drain electrode, and a divided source electrode on one main surface of a GaAs substrate; (c) cutting the other main surface of the GaAs substrate to measure the required electrical characteristics for each of the divided source electrodes;
A method for manufacturing a field effect transistor, comprising sequentially performing the steps of: (d) making the substrate a required thickness; and (d) electrically connecting the divided source electrodes.
JP1338617A 1989-12-28 1989-12-28 Manufacture of field-effect transistor Pending JPH03201447A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP1338617A JPH03201447A (en) 1989-12-28 1989-12-28 Manufacture of field-effect transistor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP1338617A JPH03201447A (en) 1989-12-28 1989-12-28 Manufacture of field-effect transistor

Publications (1)

Publication Number Publication Date
JPH03201447A true JPH03201447A (en) 1991-09-03

Family

ID=18319864

Family Applications (1)

Application Number Title Priority Date Filing Date
JP1338617A Pending JPH03201447A (en) 1989-12-28 1989-12-28 Manufacture of field-effect transistor

Country Status (1)

Country Link
JP (1) JPH03201447A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5670804A (en) * 1994-07-13 1997-09-23 Hitachi, Ltd. PN-junction gate FET
EP0818828A1 (en) * 1996-07-08 1998-01-14 Oki Electric Industry Co., Ltd. Power field effect transistor

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5670804A (en) * 1994-07-13 1997-09-23 Hitachi, Ltd. PN-junction gate FET
EP0818828A1 (en) * 1996-07-08 1998-01-14 Oki Electric Industry Co., Ltd. Power field effect transistor
US5949106A (en) * 1996-07-08 1999-09-07 Oki Electric Industry Co., Ltd. FET input/output pad layout

Similar Documents

Publication Publication Date Title
JPS647633A (en) Method of screening gate oxide film on semiconductor
JPH022641A (en) Electric element used in electric circuit
JPH03201447A (en) Manufacture of field-effect transistor
US5945832A (en) Structure and method of measuring electrical characteristics of a molecule
US20080100311A1 (en) Electrical Measurement Of The Thickness Of A Semiconductor Layer
TWI288452B (en) Semiconductor test circuit structure and method of testing semiconductor circuit
JPH0892785A (en) Production of semiconductor device
CN112802768B (en) Semiconductor structure and testing method thereof
JPS58144A (en) Semiconductor device
JPH10239194A (en) Semiconductor pressure sensor
JP3641042B2 (en) Reliability test method and test circuit for metal wiring
JP3712496B2 (en) Resistance value monitor pattern of connection hole of semiconductor device
JPH098063A (en) Manufacture of semiconductor integrated device
US20050250239A1 (en) Method of manufacturing thermal type flow sensing elements
JP2548160B2 (en) Semiconductor device
JPH05152347A (en) Compound semiconductor device
JPS618939A (en) Semiconductor device
JPS6188539A (en) Mos field effect transistor
JP3534034B2 (en) Semiconductor device
JPH04361546A (en) Process evaluation method of semiconductor device
JPS63173342A (en) Semiconductor device
KR100265841B1 (en) Semiconductor element manufacturing process monitoring method
JP3876846B2 (en) Insulating film evaluation method
JPH08330375A (en) Pattern and method for measuring effective gate length of schottky gate field effect transistor
JPH0429349A (en) Manufacture of semiconductor device