JPH03201414A - Anisotropic configuration soft magnetic alloy powder - Google Patents

Anisotropic configuration soft magnetic alloy powder

Info

Publication number
JPH03201414A
JPH03201414A JP1338595A JP33859589A JPH03201414A JP H03201414 A JPH03201414 A JP H03201414A JP 1338595 A JP1338595 A JP 1338595A JP 33859589 A JP33859589 A JP 33859589A JP H03201414 A JPH03201414 A JP H03201414A
Authority
JP
Japan
Prior art keywords
powder
soft magnetic
alloy
anisotropic configuration
alloy powder
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP1338595A
Other languages
Japanese (ja)
Other versions
JP2850145B2 (en
Inventor
Hajime Daigaku
大学 元
Yoichi Mamiya
洋一 間宮
Tadakuni Sato
忠邦 佐藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Tokin Corp
Original Assignee
Tokin Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Tokin Corp filed Critical Tokin Corp
Priority to JP1338595A priority Critical patent/JP2850145B2/en
Publication of JPH03201414A publication Critical patent/JPH03201414A/en
Application granted granted Critical
Publication of JP2850145B2 publication Critical patent/JP2850145B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Powder Metallurgy (AREA)
  • Soft Magnetic Materials (AREA)

Abstract

PURPOSE:To manufacture anisotropic configuration soft magnetic alloy powder using the equipment generally used for pulverization by a method wherein an alloy mainly composed of Fe, containing Si and B in a specific ratio, is used. CONSTITUTION:Soft magnetic powder of anisotropic configuration can be stably manufactured at low cost by crushing an alloy, containing Xwt.% of Si and Ywt.% of B in Fe in the range of X=3.0 to 23.0, y=0.1 to 20.0 and X+Y=3.1 to 23.0 using the conventional crushing equipment. Also, the anisotropic configuration of powder is accomplished by conducting a process wherein relatively small mechanical stress is repeatedly added by a ball mill and the like to the coarsely crushed powder using a jaw crusher and the like. The anisotropic configuration powder obtained as above has tabular shape in general, and the direction of plate surface becomes the direction of easy magnetization due to the relation of a diamagnetic field.

Description

【発明の詳細な説明】 [産業上の利用分野] 本発明は、高い磁化を有するFeを主成分とする金属粉
末を通常の機械的粉砕法により粉砕し。
DETAILED DESCRIPTION OF THE INVENTION [Industrial Application Field] In the present invention, a metal powder mainly composed of Fe having high magnetization is pulverized by a conventional mechanical pulverization method.

しかも粉末に形状異方性を付与することにより。Moreover, by imparting shape anisotropy to the powder.

特定な方向にのみ軟磁気特性の向上した形状異方性軟磁
性合金粉末に関するものである。
The present invention relates to a shape-anisotropic soft magnetic alloy powder that has improved soft magnetic properties only in a specific direction.

[従来の技術] 従来、安価にて高い磁化を有する鉄(Fe)は。[Conventional technology] Conventionally, iron (Fe) is inexpensive and has high magnetization.

磁性材料においては、最も重要な物質となっている。一
般にFeを多量に含有する金属は磁化が容易である軟磁
性を示す。これらFeを主成分とする軟磁性合金は、塊
状や板状で使用されることが通例となっていた。
It is the most important substance in magnetic materials. Generally, metals containing a large amount of Fe exhibit soft magnetism that allows easy magnetization. These soft magnetic alloys containing Fe as a main component have generally been used in the form of blocks or plates.

しかしながら、近年、形状が容易に選択できる粉末を使
用した成形、塗布等の手法が活用されている。一般に、
粉末は、金属の占める割合が少なくなるために、単位体
積当り磁化量が小さくなくなる傾向となる。それに加え
て1粒状化にともない反磁界の影響も大きくなり、磁化
特性が低下する傾向となる。
However, in recent years, methods such as molding and coating using powder whose shape can be easily selected have been utilized. in general,
Since the proportion of metal in the powder decreases, the amount of magnetization per unit volume tends to decrease. In addition, as the grain size increases, the influence of the demagnetizing field increases, and the magnetization characteristics tend to deteriorate.

これら負の減少を軽減するためには、粉末に形状異方性
を付与し、特定の方向にのみ磁化を容易にする方法が有
用となる。
In order to alleviate these negative decreases, it is useful to impart shape anisotropy to the powder and facilitate magnetization only in a specific direction.

[発明が解決しようとする課題] 一般に、Feを主成分とする軟磁性合金は、粘く1通常
の機械的粉砕法では、粉末化ができないとされてきた。
[Problems to be Solved by the Invention] In general, it has been believed that soft magnetic alloys containing Fe as a main component cannot be pulverized by ordinary mechanical pulverization methods due to their viscosity.

そのため溶湯噴霧法により合金粒子を得る方法や、液体
急冷法により薄帯を製造した後、粉砕し合金粉末とする
方法が、Feを多量に含有する金属粉末の一般的な製法
とされている。
For this reason, common methods for producing metal powders containing a large amount of Fe include obtaining alloy particles by molten metal spraying, and producing ribbons by liquid quenching and then pulverizing them into alloy powder.

しかしながら、この製法は、高価な設備を導入する必要
があること、処理量が少ないこと、安定した製造条件が
狭いこと等の工業的な不利益も多い。
However, this production method has many industrial disadvantages, such as the need to introduce expensive equipment, a small amount of processing, and a narrow range of stable production conditions.

そこで2本発明の技術的課題は、これら製造上の欠点を
除去するために、旧来より実施され1機械的粉砕により
、Feを主成分とした合金粉末を得るもので、安価な設
備を使用し、安定した製造状態で、Feを主成分とする
形状λ方性軟磁性合金粉末を提供することにある。
Therefore, the technical problem of the present invention is to obtain an alloy powder containing Fe as the main component by mechanical pulverization, which has been conventionally carried out in order to eliminate these manufacturing defects, using inexpensive equipment. The object of the present invention is to provide a λ-oriented soft magnetic alloy powder containing Fe as a main component in a stable manufacturing state.

[課題を解決するための手段] 本発明は、旧来実施されている一般的な製造設備を使用
して、Feを主成分とする形状異方性を有する軟磁性合
金粉末を安価にして、安定的に製造できるように構成し
たもので1通常の溶解法で製造された合金インゴットを
、一般的に粉砕に使用されている設備を使用して製造で
きるように。
[Means for Solving the Problems] The present invention uses conventionally used general manufacturing equipment to produce a soft magnetic alloy powder containing Fe as a main component and having shape anisotropy at a low cost and stably. 1. Alloy ingots produced by normal melting methods can be produced using equipment commonly used for pulverization.

Fe系合金の組成を調整したものであり.SiがXwt
%、BがYwt%(但し、 X=3.0〜23.0. 
Y=0.1以上カッX 十Y =3.1〜23.0)残
部が実質的にFeからなる強磁性合金粉末であって、各
粉末粒子は板状の粒子で、その板面に平行な一方向に磁
化容易軸を有することを特徴とする。
The composition of the Fe-based alloy has been adjusted. Si is Xwt
%, B is Ywt% (however, X=3.0 to 23.0.
Y = 0.1 or higher It is characterized by having an axis of easy magnetization in one direction.

一般に、Fe系合金は、一部の合金(例えば。Generally, Fe-based alloys include some alloys (e.g.

Fe−Co系)を除きFeの含有量が多いほど。The higher the Fe content, except for Fe-Co type).

高い磁化を有する傾向にある。したがって、安価にして
、高い磁化特性を示す金属材料は、高Fe側で実現され
ることになり、工業上極めて有用な機能性材料となって
いる。そこで1本発明では。
They tend to have high magnetization. Therefore, a metal material that is inexpensive and exhibits high magnetization characteristics can be realized on the high Fe side, and has become an industrially extremely useful functional material. Therefore, in the present invention.

強磁性粉末を提供することが目的であるので。Since the purpose is to provide ferromagnetic powder.

4πl55KG以上の特性を有することを条件として設
定した。
The condition was set to have a characteristic of 4πl55KG or more.

本発明では、Fe中にStをXwt%、BをYwt%と
し、  X=3.0〜23.0.  Y=0.1〜20
.0.  ただし、 X+Y=3.1〜23.0の範囲
で含有した合金を旧来から使用されている粉砕設備で粉
砕することにより、形状異方性を有する軟磁性合金粉末
を。
In the present invention, St is set to Xwt% and B is set to Ywt% in Fe, and X=3.0 to 23.0. Y=0.1~20
.. 0. However, by pulverizing an alloy containing X+Y in the range of 3.1 to 23.0 using conventionally used pulverizing equipment, a soft magnetic alloy powder having shape anisotropy can be obtained.

安価にして、安定的に製造できるものである。It can be manufactured stably at low cost.

本発明において、Fe中のSi含有量をXwt%。In the present invention, the Si content in Fe is Xwt%.

B含有量をTvt%とし、  X + Y =3.1v
t%以上としたのは、x十yの値が3.1wt%以下で
は合金インゴットが粘く、ショークラッシャー等による
一般的な機械的粉砕機での粉砕が不可能であったり。
B content is Tvt%, X + Y = 3.1v
The reason for setting the alloy ingot to be t% or more is because if the value of x and y is less than 3.1wt%, the alloy ingot becomes sticky and cannot be crushed with a general mechanical crusher such as a show crusher.

困難となるからである。また1本発明において。This is because it becomes difficult. Also, in one aspect of the present invention.

Xを3.OwL%以上とし、Yを0.lvt%以上とし
たのは、これ以下の領域ではX 十Y =3.1wt%
以上においての粉砕が不可能になるからである。
X to 3. OwL% or more, and Y is 0. The reason for setting it above lvt% is that in the area below this, X + Y = 3.1wt%
This is because pulverization in the above manner becomes impossible.

一方1本発明において、Xを23.Ovt%以下、Yを
20.0wt%以下とし、 X + Y −23,Ov
t%以下としたのは、これ以上の領域では1合金粉末の
磁化が5KG以下となり、Fe系合金の特徴である高磁
化特性が著しく減少した状態となるからである。
On the other hand, in the present invention, X is 23. Ovt% or less, Y is 20.0wt% or less, X + Y -23,Ov
The reason why it is set to t% or less is because in a region higher than this, the magnetization of one alloy powder becomes 5KG or less, and the high magnetization characteristic characteristic of Fe-based alloys is significantly reduced.

また1本発明において、粉末の形状異方性化は主に、シ
ョークラッシャー等による粗粉砕した粉末をボールミル
等で比較的小さい機械的応力を。
In addition, in the present invention, the shape anisotropy of the powder is mainly achieved by applying a relatively small mechanical stress to the coarsely crushed powder using a show crusher or the like using a ball mill or the like.

絞り返し加えていく工程で実現される。This is achieved through the process of refining and adding more.

ここで得られた形状異方性粉末は、一般的に板状となっ
ており1反磁界の関係で板面方向が磁化容易方向となる
。この形状異方性化は1粒子の長径/短径が1(球根)
でなければ発生するものであり1本発明においては、板
状粒子の厚さが約0.1〜1000μm 、直径が約1
〜5000 、CZ II+の範囲での調整が容易にで
きる。一般的な傾向として、偏平度の向上した粒子は、
板状粒子の直径が数十μmで、厚さが1μm前後で実現
されることが多い。
The shape-anisotropic powder obtained here is generally plate-shaped, and the direction of the plate surface is the direction of easy magnetization due to the relationship of one demagnetizing field. This shape anisotropy means that the major axis/minor axis of one particle is 1 (bulb).
In the present invention, the plate-like particles have a thickness of about 0.1 to 1000 μm and a diameter of about 1 μm.
-5000, CZ II+ can be easily adjusted. As a general trend, particles with improved oblateness are
This is often achieved when the plate-like particles have a diameter of several tens of μm and a thickness of around 1 μm.

尚、後述する本発明の実施例では、ショークラッシャー
と回転ボールミルによる粉砕、偏平化についてのみ述べ
ているが、旧来からの粉砕機として知られているハンマ
ーミル、スタンプミル、ロールミル等による粉砕や、振
動ミル、遠心ミル。
In the embodiments of the present invention to be described later, only pulverization and flattening using a show crusher and a rotary ball mill are described, but pulverization using conventional pulverizers such as a hammer mill, stamp mill, roll mill, etc. Vibratory mill, centrifugal mill.

遊星ミル等のボールによるエネルギー伝達で粉砕する機
種での工程を付加したり2代替しても1本発明の合金組
成の効果が現われることは、明白である。
It is clear that the effects of the alloy composition of the present invention can be obtained even if a step in a model of a planetary mill or the like in which grinding is carried out by energy transmission by balls is added or if two steps are substituted.

〔実施例〕〔Example〕

以下;本発明の実施例について説明する。 Below: Examples of the present invention will be described.

実施例1 純度が99,8%以上の鉄(Fe)及びケイ素(Si)
、ホウ素(B)を使用してアルゴン雰囲気中で、高周波
加熱により、Siが2.0 、3.0 、4.0 。
Example 1 Iron (Fe) and silicon (Si) with a purity of 99.8% or more
, Si by radiofrequency heating in an argon atmosphere using boron (B) at 2.0, 3.0, and 4.0.

5.0 、10.0.20.0.23.0. Bが0.
0.1 、1.0 。
5.0, 10.0.20.0.23.0. B is 0.
0.1, 1.0.

3.0 、10.0. L5.0.20.0残部Feの
厚さ約20 mmのインゴット49種類を作製した。
3.0, 10.0. Forty-nine types of ingots having a thickness of about 20 mm and having L5.0.20.0 and the balance being Fe were prepared.

次に、これらインゴットをノ\ンマーを用いて。Next, use these ingots using a thermometer.

最大長辺か約10cm以下になるように破砕した。It was crushed so that the longest side was about 10 cm or less.

次に、これらインゴットの破砕片を用いて、市販されて
いるショークラッシャーによる粉砕を実施した。尚、イ
ンゴット破砕片は1ケずつ投入した。
Next, the crushed pieces of these ingots were crushed using a commercially available show crusher. Incidentally, one piece of crushed ingot was added at a time.

その結果を第1表に示す。表中、×印はインゴットの粉
砕が不可能であり、Δ印は粉砕が不可能ではないが困難
な状況と判断され、○印は粉砕が十分可能であり、◎印
は容易に粉砕できる状況であり、0印は著しく容易に粉
砕できる状況を示している。
The results are shown in Table 1. In the table, an x mark indicates that it is impossible to crush the ingot, a Δ mark indicates that the ingot is difficult to crush, although it is not impossible, a ○ mark indicates that it is possible to crush the ingot, and a ◎ mark indicates a situation where the ingot can be easily crushed. The 0 mark indicates a situation in which the material can be crushed extremely easily.

Fe−3i−B合金で.SiをXwt%、及びBをYw
t%とし、X=3.Ovt%以上、Y=0.lvt%以
上含有することによりX + Y =3.1wt%以上
にて、市販されている通常の粉砕によっても粉砕が可能
となっている。
Fe-3i-B alloy. Si is Xwt% and B is Yw
t%, X=3. Ovt% or more, Y=0. By containing lvt% or more, pulverization is possible even by commercially available normal pulverization at X + Y = 3.1wt% or more.

実施例2 実施例1で得られたSiがXνt%(X=3.0゜10
.0.20.0.23.0) BがYwt%(Y=0.
5,0。
Example 2 The Si obtained in Example 1 was Xνt% (X=3.0°10
.. 0.20.0.23.0) B is Ywt% (Y=0.
5,0.

10.0.15.0.20.0)で残部Feの20種類
の粗粉砕粉末をそれぞれ1 mm以下に分級した。
10.0.15.0.20.0), 20 kinds of coarsely pulverized powders with the balance being Fe were classified to 1 mm or less.

次に、これら粉末を、ステンレスポール及びエタノール
を用いて、湿式でボールミル粉砕した。
Next, these powders were wet ball milled using a stainless steel pole and ethanol.

ここで、ステンレスポール径及び回転数、運転時間を変
化させることにより、平均直径が約30〜50μm、平
均厚さが3〜5μmで、直径/厚さの平均が約7〜13
の板状粒子からなる合金粉末を各々得た。
Here, by changing the stainless steel pole diameter, rotation speed, and operating time, the average diameter is about 30 to 50 μm, the average thickness is 3 to 5 μm, and the average diameter/thickness is about 7 to 13 μm.
Alloy powders consisting of plate-shaped particles were obtained.

次に、これら粉末に対し、液状のエポキシ樹脂を2vt
%混合した後、金型を使用して、約500kg / c
dの圧力で一方向に加圧圧縮して約13關の立方体の圧
粉体を得た。
Next, add 2vt of liquid epoxy resin to these powders.
% After mixing, using mold, about 500kg/c
The powder was compressed in one direction at a pressure of d to obtain a green compact of about 13 cubes.

この圧粉体について、粉末の圧縮方向と平行な方向及び
、それと直交する方向の磁気特性を測定した。
The magnetic properties of this powder compact were measured in a direction parallel to the compression direction of the powder and in a direction perpendicular thereto.

その結果を第1図に示す。図中4πIsは、粉末の占積
率を100%に換算した値である。
The results are shown in FIG. In the figure, 4πIs is a value obtained by converting the space factor of the powder to 100%.

4π1s5KG以上は、Si組成値Xwt%、B組成値
Yvt%とし、X+Y−23wt%以下の領域で達成さ
れる。
4π1s5KG or more is achieved in the region of X+Y-23wt% or less with a Si composition value of Xwt% and a B composition value of Yvt%.

また、粉末の圧縮方向による磁化特性は、粉末圧縮方向
と平行な方向に比べ、それと直交する方向は、磁化曲線
の立ち上がりが急峻であり。
Furthermore, regarding the magnetization characteristics depending on the powder compression direction, the rise of the magnetization curve is steeper in a direction perpendicular to the powder compression direction than in a direction parallel to the powder compression direction.

+Hcも低い値を示していた。これは、粉末圧縮方向と
直交する方向が磁気容易となっていることを示している
+Hc also showed a low value. This indicates that the direction perpendicular to the powder compression direction is magnetically easy.

この圧粉体の断面を顕微鏡にて、観察したところ、粉末
圧縮方向と直交する方向に、板状合金粒子の長袖が揃っ
た積層状態となっていた。
When the cross section of this powder compact was observed under a microscope, it was found that the long sleeves of the plate-shaped alloy particles were stacked in a direction perpendicular to the direction of powder compression.

したがって、圧粉体の磁化異方性特性は、粉末の形状に
よる磁化容易性に起因していることがわかる。
Therefore, it can be seen that the magnetization anisotropy characteristic of the powder compact is caused by the ease of magnetization due to the shape of the powder.

以  下  余  白 第1表 ×:粉砕が不可能 △: ノl 困難 ○:ll  可能 ◎:l/  容易 @) 、  //  著しく容易 [発明の効果] 以上説明したように1本発明の形状異方性軟磁性合金粉
末の製造方法によれば、安価な設備を使用し、安定した
製造状態でFeを主成分とする形状異方性軟磁性合金粉
末を提供することができる。
Margin Table 1 ×: Impossible to crush △: Nol Difficult ○: ll Possible ◎: 1/ Easy @) , // Remarkably easy [Effects of the invention] As explained above, one shape difference of the present invention is According to the method for producing an orthotropic soft magnetic alloy powder, it is possible to provide a shape anisotropic soft magnetic alloy powder containing Fe as a main component in a stable production state using inexpensive equipment.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は、実施例2におけるFe−3i−8合金粉末の
St、B含有量と磁気特性(4πIs。 He)の関係を示す図である。 図中、O印はSt組成値3.Ovt%、Δ印は10.0
wt%、×印は20.Ovt%1口印は23,0νt%
を示している。また、実線は粉末圧縮方向と直交した測
定方向での特性値を示し、破線は、粉末圧縮方向と平行
した測定方向での特性値を示している。
FIG. 1 is a diagram showing the relationship between the St and B contents and magnetic properties (4πIs. He) of the Fe-3i-8 alloy powder in Example 2. In the figure, O mark indicates St composition value 3. Ovt%, Δ mark is 10.0
wt%, × mark is 20. Ovt%1 mouth seal is 23,0νt%
It shows. Further, the solid line indicates the characteristic value in the measurement direction perpendicular to the powder compression direction, and the broken line indicates the characteristic value in the measurement direction parallel to the powder compression direction.

Claims (1)

【特許請求の範囲】[Claims] 1.SiがXwt%,BがYwt%(但し,X=3.0
〜23.0,Y=0.1〜20.0,X+Y=3.1〜
23.0)残部が実質的にFeからなる強磁性合金粉末
であって, 各粉末粒子は板状の粒子で,その板面に平行な一方向に
磁化容易軸を有することを特徴とする形状異方性軟磁性
合金粉末。
1. Si is Xwt%, B is Ywt% (however, X = 3.0
~23.0, Y=0.1~20.0, X+Y=3.1~
23.0) A ferromagnetic alloy powder in which the remainder is substantially composed of Fe, each powder particle having a plate-like shape and having an axis of easy magnetization in one direction parallel to the plate surface. Anisotropic soft magnetic alloy powder.
JP1338595A 1989-12-28 1989-12-28 Shape anisotropic soft magnetic alloy powder Expired - Fee Related JP2850145B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP1338595A JP2850145B2 (en) 1989-12-28 1989-12-28 Shape anisotropic soft magnetic alloy powder

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP1338595A JP2850145B2 (en) 1989-12-28 1989-12-28 Shape anisotropic soft magnetic alloy powder

Publications (2)

Publication Number Publication Date
JPH03201414A true JPH03201414A (en) 1991-09-03
JP2850145B2 JP2850145B2 (en) 1999-01-27

Family

ID=18319651

Family Applications (1)

Application Number Title Priority Date Filing Date
JP1338595A Expired - Fee Related JP2850145B2 (en) 1989-12-28 1989-12-28 Shape anisotropic soft magnetic alloy powder

Country Status (1)

Country Link
JP (1) JP2850145B2 (en)

Also Published As

Publication number Publication date
JP2850145B2 (en) 1999-01-27

Similar Documents

Publication Publication Date Title
US7931756B2 (en) Method and machine of making rare-earth alloy granulated powder and method of making rare-earth alloy sintered body
JPH06346101A (en) Magnetically anisotropic powder and its production
CN107170543A (en) The preparation method of Sm Co based alloy block shaped magnets
JP2799893B2 (en) Shape anisotropic soft magnetic alloy powder
Jurczyk et al. Application of high energy ball milling to the production of magnetic powders from NdFeB-type alloys
JPH03201414A (en) Anisotropic configuration soft magnetic alloy powder
JP4089212B2 (en) Method for producing granulated powder of rare earth alloy and method for producing sintered rare earth alloy
JPS60228652A (en) Magnet containing rare earth element and its manufacture
JP2995663B2 (en) Shape anisotropic soft magnetic alloy powder
JPH03294403A (en) Shape anisotropic soft magnetic alloy powder
JP4240988B2 (en) Rare earth alloy granulated powder manufacturing method, rare earth alloy granulated powder manufacturing apparatus, and rare earth alloy sintered body manufacturing method
JPH01294802A (en) Production of flat fine fe-ni-al alloy powder
JPH04147903A (en) Soft magnetic alloy powder having shape anisotropy and production thereof
JPH02208902A (en) Hot-worked magnet and manufacture thereof
JPH03153005A (en) Shape-anisotropy soft magnetic alloy powder
JP2893281B2 (en) Method for producing shape-anisotropic soft magnetic alloy powder
JPS63211705A (en) Anisotropic permanent magnet and manufacture thereof
JP2006058207A (en) Evaluation method of molded product, rare-earth element sintered magnet, and its manufacturing method
JPH01297805A (en) Magnetic anisotropic powder and anisotropic plastic magnet
JPH03291305A (en) Manufacture of shape anisotropic and soft magnetic alloy powder
JPH02121376A (en) Manufacture of magnetostrictive material
JPH0696919A (en) Material for permanent magnet and permanent magnet
JPS58210604A (en) Rare-earth-cobalt magnet of resin bonding type
JPH03198303A (en) Manufacture of powder for nd-fe-b anisotropic bond magnet
JPH03291302A (en) Manufacture of shape anisotropic and soft magnetic alloy powder

Legal Events

Date Code Title Description
LAPS Cancellation because of no payment of annual fees