JPH03294403A - Shape anisotropic soft magnetic alloy powder - Google Patents

Shape anisotropic soft magnetic alloy powder

Info

Publication number
JPH03294403A
JPH03294403A JP2095198A JP9519890A JPH03294403A JP H03294403 A JPH03294403 A JP H03294403A JP 2095198 A JP2095198 A JP 2095198A JP 9519890 A JP9519890 A JP 9519890A JP H03294403 A JPH03294403 A JP H03294403A
Authority
JP
Japan
Prior art keywords
soft magnetic
powder
alloy powder
magnetic alloy
ingot
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2095198A
Other languages
Japanese (ja)
Inventor
Yoichi Mamiya
洋一 間宮
Hajime Daigaku
大学 元
Tadakuni Sato
忠邦 佐藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Tokin Corp
Original Assignee
Tokin Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Tokin Corp filed Critical Tokin Corp
Priority to JP2095198A priority Critical patent/JPH03294403A/en
Publication of JPH03294403A publication Critical patent/JPH03294403A/en
Pending legal-status Critical Current

Links

Abstract

PURPOSE:To extremely easily manufacture shape anisotropic soft magnetic alloy powder without lower soft magnetic characteristic by pulverizing an ingot of Fe series alloy incorporating the specific contents of Si and Co. CONSTITUTION:Fe-Si-Co series alloy of composition of high purity Fe and Si, Co composed of X% (4 - 27%) Si, Y% (1 - 30%) Co and (7X - Y)/10<=16 and the balance of Fe, is melted with a high frequency electric furnace in inert gaseous atmosphere of Ar, etc., and this ingot is pulverized with a jaw crusher. The planar shape anisotropic particles having 30 - 50mum average diameter, 3 - 5mum average thickness and about 7 - 13 average ratio of diameter/thickness, is obtd. and the soft magnetic alloy powder having easily magnetized axis to unidirection in parallel to the plate surface can be stably manufactured.

Description

【発明の詳細な説明】 [産業上の利用分野] 本発明は高い磁化を有するFeを主成分とする金属粉末
を通常の機械的粉砕法により粉砕し、しかも粉末に形状
異方性を付与する事により、特定な方向に軟磁性特性の
向上した。形状異方性軟磁性合金粉末に関するものであ
る。
[Detailed Description of the Invention] [Industrial Application Field] The present invention grinds a highly magnetized metal powder mainly composed of Fe using a conventional mechanical grinding method, and also imparts shape anisotropy to the powder. As a result, the soft magnetic properties were improved in a specific direction. This invention relates to shape-anisotropic soft magnetic alloy powder.

[従来の技術] 従来、安価にして高い磁化を有する鉄(Fe)は、磁性
材料においては最も重要な物質となっている。一般に、
Feを多量に含有する金属は磁化が容易である軟磁性を
しめす。これら鉄を主成分とする軟磁性合金は、塊状や
板状で使用される事か通例となっていた。
[Prior Art] Conventionally, iron (Fe), which is inexpensive and has high magnetization, has been the most important substance in magnetic materials. in general,
Metals containing a large amount of Fe exhibit soft magnetism that can be easily magnetized. These soft magnetic alloys whose main component is iron were usually used in the form of blocks or plates.

しかしながら、近年形状が容易に選択できる粉末を使用
した成形、塗布等の手法が活用されている。一般に、粉
末は金属の占める割合か少なくなるために、単位体積当
りの磁化量か小さくなる傾面となる。それに加えて1粒
状化にともない反磁界の影響も大きくなり、磁化特性が
低下する傾向となる。
However, in recent years, methods such as molding and coating using powder whose shape can be easily selected have been utilized. Generally, since the proportion of metal in powder decreases, the amount of magnetization per unit volume tends to decrease. In addition, as the grain size increases, the influence of the demagnetizing field increases, and the magnetization characteristics tend to deteriorate.

これらの負の減少を軽減するためには、粉末に形状異方
性を付与し、特定の方向にのみ磁化を容易にする方法が
有用となる。
In order to alleviate these negative decreases, it is useful to impart shape anisotropy to the powder and facilitate magnetization only in a specific direction.

一般に、Feを主成分とする軟磁性合金は、粘く1通常
の機械的粉砕法では、粉末化ができないとされてきた。
In general, it has been believed that soft magnetic alloys containing Fe as a main component are sticky and cannot be pulverized by normal mechanical pulverization methods.

そのため、溶湯噴霧法により合金粒子を得る方法や、液
体急冷法により薄帯を製造した後粉砕し合金粉末とする
方法や、Fe以外に半金属元素を添加することにより1
合金の被粉砕性を向上させる方法が、Feを多量に含有
する金属粉末の一般的な製法とされている。
Therefore, there are methods to obtain alloy particles by molten metal spraying, methods to produce thin strips by liquid quenching method and then crush them to obtain alloy powder, and methods to obtain alloy particles by adding metalloid elements other than Fe.
A method of improving the crushability of an alloy is considered to be a general method for producing metal powder containing a large amount of Fe.

[発明が解決しようとする課題] しかしながら、上述した溶湯噴霧法や液体急冷法では、
高価な設備を導入する必要がある事、処理量が少ない事
、安定した製造条件が狭い事など。
[Problems to be solved by the invention] However, in the above-mentioned molten metal spraying method and liquid quenching method,
It is necessary to introduce expensive equipment, the amount of processing is small, and the stable manufacturing conditions are narrow.

又1合金に半金属元素を添加する方法では、一般的に添
加量の増大が4πIsの低下や’  IHCの増加をま
ねき、軟磁性材料として充分な特性を得られなくなるこ
とが多い。
In addition, in the method of adding a metalloid element to an alloy, an increase in the amount added generally leads to a decrease in 4πIs and an increase in 'IHC, and it often becomes impossible to obtain sufficient properties as a soft magnetic material.

そこで1本発明の技術的課題は、これら製造上の欠点を
除去し、旧来より実施され、技術的には殆ど確立したと
されるインゴットの製造と機械的粉砕により、Feを主
成分とした合金粉末を得るもので、安価な設備を使用し
、安定した製造状態で、Feを主成分とし、軟磁気特性
(主に4πIs)の低下無しに、被粉砕性に優れた。形
状異方性軟磁性合金粉末を提供する事にある。
Therefore, the technical problem of the present invention is to eliminate these production drawbacks and produce alloys containing Fe as the main component by manufacturing ingots and mechanical crushing, which has been practiced for a long time and is said to be technically almost established. The powder is obtained using inexpensive equipment, under stable production conditions, containing Fe as the main component, and having excellent pulverizability without deterioration of soft magnetic properties (mainly 4πIs). The purpose of the present invention is to provide shape-anisotropic soft magnetic alloy powder.

[課題を解決するための手段] 本発明は、旧来使用されている一般的な製造設備を使用
して、Feを主成分とする形状異方性を有する軟磁性合
金粉末を安価にして安定的に製造できるように構成した
もので1通常の溶解法で製造された合金インゴットを、
一般的に粉砕に使用されている設備を使用して製造でき
るようにFe系合金の組成を調整するものであり、この
合金粉末はSiをXwt%、CoをYwt%(x、yは
[Means for Solving the Problems] The present invention uses conventionally used general manufacturing equipment to produce a soft magnetic alloy powder containing Fe as a main component and having shape anisotropy at a low cost and in a stable manner. 1. An alloy ingot manufactured by a normal melting method,
The composition of the Fe-based alloy is adjusted so that it can be produced using equipment commonly used for pulverization, and this alloy powder contains Xwt% Si and Ywt% Co (x, y are.

4≦X≦27.1≦Y≦30で、(7X−Y)/10≦
16となる範囲)残部が実質的にFeからなる強磁性合
金粉末であって、各粉末粒子は板状の粒子で、その板面
に平行な一方向に磁化容易軸を持つことを特徴とする。
4≦X≦27.1≦Y≦30, (7X-Y)/10≦
16) A ferromagnetic alloy powder in which the balance is substantially composed of Fe, and each powder particle is a plate-shaped particle, and is characterized by having an axis of easy magnetization in one direction parallel to the plate surface. .

一般に、安価にして、高い磁化特性を示す金属材料は高
Fe側で実現される事になり、工業上極めて有用な機能
性材料となっている。そこで本発明では1強磁性粉末を
提供する事が目的であるのて、4π!  5kG以上の
特性を有し、Coを添加したときの原料費が、もとの原
料費の約2倍を超えないことを条件に設定した。
In general, metal materials that are inexpensive and exhibit high magnetization characteristics are realized on the high Fe side, and have become industrially extremely useful functional materials. Therefore, the purpose of the present invention is to provide a ferromagnetic powder of 4π! The conditions were set such that the material has a property of 5 kG or more, and the raw material cost when Co is added does not exceed about twice the original raw material cost.

本発明は、Fe中にSiをXwt%、CoをYwt%(
X、Yは、4≦X≦27.1≦Y≦30で。
In the present invention, Si is Xwt% and Co is Ywt% (
X and Y are 4≦X≦27.1≦Y≦30.

(7X−Y)/10≦16となる範囲)含有した合金を
旧来から使用されている粉砕設備で粉砕する事により、
4πI の低下を招くこと無く、形状異方性を有する軟
磁性合金粉末を安価にして。
(7X-Y)/10≦16) by pulverizing the containing alloy with conventionally used pulverizing equipment,
To make soft magnetic alloy powder having shape anisotropy at low cost without causing a decrease in 4πI.

安定的に製造できるものである。It can be manufactured stably.

本発明において、Fe中のSi含有量を4νt%以上と
したのは、これ以下では合金インゴットか粘<、Co添
加による被粉砕性の向上が小さく。
In the present invention, the Si content in Fe is set to 4 νt% or more because if it is less than this, the alloy ingot becomes viscous, and the improvement in pulverizability due to the addition of Co is small.

ショークラッシャー等による一般的な機械的粗粉砕機の
粉砕か不可能であったり困難となるからである。一方、
Si含有量を27vt%以下としたのは、これ以上の領
域では、Co添加11〜30νt%の範囲で1合金粉末
の磁化が5kG以下となり。
This is because it is impossible or difficult to crush using a general mechanical coarse crusher such as a show crusher. on the other hand,
The reason why the Si content is set to be 27 vt% or less is that in a region higher than this, the magnetization of 1 alloy powder is 5 kG or less in the range of Co addition of 11 to 30 vt%.

Fe系合金の特徴である高磁化特性が、著しく減少した
状態となるからである。一方1本発明において、Co量
を1wt%以上としたのは、5ijfE4〜27vt%
の範囲で、Co量が1νt%以上でCo添加による被粉
砕性の向上が期待できるからである。
This is because the high magnetization characteristic of Fe-based alloys is significantly reduced. On the other hand, in the present invention, the Co content is set to 1wt% or more when 5ijfE4 to 27vt%
This is because when the amount of Co is in the range of 1vt% or more, it is expected that the pulverizability will be improved by adding Co.

更に1本発明において、Co量を30wt%以下とした
のは、これ以上Coを添加すると、原料費が、Coを添
加しない時の原料費の約2倍を超え高コストとなるから
である。又1本発明において。
Furthermore, in the present invention, the reason why the amount of Co is set to 30 wt% or less is that if more Co is added, the raw material cost will be more than twice the raw material cost when no Co is added, resulting in high cost. Also, in one aspect of the present invention.

5jvt%とCo v t 5’oとを(7XSivt
%−Cowt%)/10≦16としたのは、Si及びC
o含有量か、この範囲を超えると合金粉末の磁化が5k
G以下となり、Fe系合金の特徴である高磁化特性か、
著しく減少する状態となるからである。
5jvt% and Co vt 5'o (7XSivt
%-Cowt%)/10≦16 is set for Si and C.
If the o content exceeds this range, the magnetization of the alloy powder will decrease to 5k.
G or less, perhaps due to the high magnetization characteristic of Fe-based alloys.
This is because the amount decreases significantly.

又1本発明において粉末の形状異方性化は主に。In addition, in the present invention, the shape anisotropy of the powder is mainly achieved.

ショークラッシャー等による粗粉砕した粉末を。Coarsely crushed powder using a show crusher, etc.

ボールミル等で、比較的小さい機械的応力を繰返し加え
ていく工程で実現される。ここで得られた形状異方性粉
末は、一般には板状となっており。
This is achieved through a process of repeatedly applying relatively small mechanical stress using a ball mill or the like. The shape-anisotropic powder obtained here is generally plate-shaped.

反磁界の関係で板面方向が磁化容易方向となる。Due to the demagnetizing field, the direction of the plate surface is the direction of easy magnetization.

この形状異方性化は粒子の長径/短径の比の値が1(球
状)でなければ発生するものであり1本発明においては
、板状粒子の厚さが約0.01〜1000μ層、直径が
約1〜5000μ−の範囲での調整が容易に実施できる
。−船釣な傾向として。
This shape anisotropy occurs unless the ratio of the long axis/breadth axis of the particle is 1 (spherical). , the diameter can be easily adjusted within the range of about 1 to 5000 microns. - I tend to fish by boat.

偏平度の向上した粒子は、板状粒子の直径が数10μ−
で、厚さが1μm前後で実現される事が多い。
Particles with improved flatness have a plate-like particle diameter of several tens of μ-
This is often achieved with a thickness of around 1 μm.

以下に述べる本発明の実施例では、ショークラッシャー
と回転ボールミルによる粉砕、偏平化についてのみ述べ
ているが、旧来からの粉砕機として知られている。ハン
マーミル・スタンプミル・ロールミル等による粉砕や、
振動ミル・遠心ミル・遊星ミル等のボールによるエネル
ギー伝達で粉砕する機種での工程を付加したり1代替と
しても本発明の合金組成の効果が現れる事は自明の理で
ある。
In the embodiments of the present invention described below, only pulverization and flattening using a show crusher and a rotary ball mill are described, but these are conventionally known pulverizers. Grinding using hammer mills, stamp mills, roll mills, etc.
It is self-evident that the effects of the alloy composition of the present invention can be seen even if a process is added or substituted for a machine that performs pulverization by energy transmission using balls, such as a vibrating mill, centrifugal mill, or planetary mill.

[実施例] 本発明の実施例について図面を参照して説明する。[Example] Embodiments of the present invention will be described with reference to the drawings.

実施例1 純度が99.8%以上の鉄(Fe)及びケイ素(Si)
及びコバルト(CO)を使用し、アルゴン雰囲気中で、
高周波加熱により、Siが3,4゜5.6,8.10,
15.20,25.27vt%。
Example 1 Iron (Fe) and silicon (Si) with a purity of 99.8% or more
and cobalt (CO) in an argon atmosphere,
By high frequency heating, Si was heated to 3.4°, 5.6°, 8.10°,
15.20, 25.27vt%.

Coが1.3.5.7.10.15.20.25゜30
wt%で、残部Feの厚さ約2C)emのインゴット9
0種類を作製した。
Co is 1.3.5.7.10.15.20.25°30
Ingot 9 with a thickness of about 2C) em with the balance Fe in wt%
0 types were produced.

次に、これらインゴットをハンマーを用いて。Next, use a hammer to hammer these ingots.

最大長辺が約10■以下になるように破砕した。It was crushed so that the largest long side was about 10 cm or less.

次に、これらインゴットの破砕片を用いて、市販されて
いるショークラッシャー(1w)による粉砕を実施した
。尚インゴット破砕片は1個ずつ投入した。
Next, the crushed pieces of these ingots were used to crush them using a commercially available show crusher (1w). The crushed ingot pieces were added one by one.

その結果を第1表に示す。第1表中、X印はインゴット
の粉砕が不可能であり、Δ印は粉砕が不可能ではないが
困難な状況と判断され、O印は粉砕が充分に可能な状況
と判断でき、◎印は容易に粉砕でき、O印は著しく容易
に粉砕できる状況を示している。
The results are shown in Table 1. In Table 1, an X mark means that it is impossible to crush the ingot, a Δ mark means that crushing is difficult but not impossible, an O mark means that crushing is fully possible, and a ◎ mark means that it is difficult to crush the ingot. can be easily crushed, and the O mark indicates a situation where it can be crushed extremely easily.

第1表に示すようにFe−5L−Co合金で。With Fe-5L-Co alloy as shown in Table 1.

低Si領域でも、Coを1νt%以上含有させる事によ
り 市販されている通常の粉砕機によっても。
Even in the low Si region, by containing Co at least 1vt%, it can be processed using a commercially available regular grinder.

粉砕が容易、或いは著しく容易となる。Grinding becomes easy or extremely easy.

以下余白 第1表:Fe−5i−Co合金インゴットの破砕試験(
ショークラッシャーによる) ×:粉砕が不可能 △:l′  困難(不可能ではない) ○: ・I 可能 ◎: 〃 容易 ・: 〃 著しく容易 実施例2 実施例1で得られたStが4.10.!5゜20、25
.27vt%・coが1.5.10゜15.20,25
,30vt%残部Feの42種類の粗粉砕粉末をそれぞ
れ1龍以下に分級した。
Table 1 with blank space below: Crushing test of Fe-5i-Co alloy ingot (
(by show crusher) ×: Impossible to crush △: l′ Difficult (not impossible) ○: ・I Possible ◎: Easy: Extremely easy Example 2 St obtained in Example 1 was 4.10 .. ! 5゜20, 25
.. 27vt%・co is 1.5.10°15.20,25
, 30vt% balance of Fe, 42 types of coarsely ground powders were classified into 1 dragon or less, respectively.

次にこれら粉末をステンレスポール及びエタノールを用
いて湿式でボールミル粉砕した。ここで。
Next, these powders were wet-ground in a ball mill using a stainless steel pole and ethanol. here.

ステンレスポール径及び回転数、運転時間を変化させる
事により、平均直径が約30〜50μm。
By changing the stainless steel pole diameter, rotation speed, and operating time, the average diameter is approximately 30 to 50 μm.

平均の厚さが3〜5μ層で、直径/厚さの平均が約7〜
13の板状粒子からなる合金粉末を各々得た。
The average thickness is 3~5μ layer, and the average diameter/thickness is about 7~
Each alloy powder consisting of 13 plate-shaped particles was obtained.

次に、これら粉末に対し、液状のエポキシ樹脂を2wt
%混合した後、金型を使用して、約500kg/龍2の
圧力で一方向に加圧圧縮して約13龍の立方体の圧粉体
を得た。
Next, add 2wt of liquid epoxy resin to these powders.
After mixing, the mixture was compressed in one direction using a mold at a pressure of about 500 kg/2 to obtain a compact of about 13 cubes.

この圧粉体について、粉末の圧縮方向と平行な方向及び
それと直交する方向の磁気特性を測定した。
The magnetic properties of this powder compact were measured in a direction parallel to the compression direction of the powder and in a direction perpendicular thereto.

その結果を第1図に示す。図中4πIgは、粉末の占績
率を100%に換算した値である。図より、4zls≧
5kG以上が、Si≦27vt%。
The results are shown in FIG. In the figure, 4πIg is a value obtained by converting the powder occupancy rate to 100%. From the figure, 4zls≧
5kG or more, Si≦27vt%.

(7XSiwt%−Covt%)/10≦16の範囲で
達成されることがわかる。又、粉末の圧縮方向による磁
化特性は、粉末圧縮方向と平行な方向に比べ、それと直
交する方向は、磁化曲線の立上がりが急峻であり、  
Hも低い値を示している。
It can be seen that this is achieved within the range of (7XSiwt%-Covt%)/10≦16. In addition, regarding the magnetization characteristics depending on the direction of powder compression, the rise of the magnetization curve is steeper in the direction perpendicular to the direction of powder compression than in the direction parallel to the direction of powder compression.
H also shows a low value.

Iに れは、粉末圧縮方向と直交する方向が磁化容易となって
いる事を示している。
The I curve indicates that magnetization is easy in the direction perpendicular to the direction of powder compression.

この圧粉体の断面を顕微鏡にて観察したところ。A cross section of this compact was observed using a microscope.

粉末圧縮方向と直交する方向に、板状合金粒子の長軸が
そろった積層状態となっていた。
The long axes of the plate-shaped alloy particles were aligned in a direction perpendicular to the direction of powder compression, forming a stacked state.

したがって、圧粉体の磁化異方性特性は、粉末の形状に
よる磁化容易特性に起因している事がわかる。
Therefore, it can be seen that the magnetization anisotropy characteristic of the powder compact is caused by the easy magnetization characteristic due to the shape of the powder.

[発明の効果] 以上説明したように1本発明によれば、旧来より実施さ
れ、技術的には殆ど確立したとされるインゴットの製造
と機械的粉砕により、Feを主成分とした強磁性合金粉
末を得ることができ、このような、安価な設備を使用し
、安定した製造状態てFeを主成分とし軟磁気特性の低
下無しに、被粉砕性の優れた形状異方性軟磁性合金粉末
を提供することができる。
[Effects of the Invention] As explained above, according to the present invention, a ferromagnetic alloy containing Fe as a main component can be produced by manufacturing an ingot and mechanically crushing it, which has been practiced for a long time and is said to be technically almost established. A shape-anisotropic soft magnetic alloy powder with Fe as the main component and excellent pulverizability without deterioration of soft magnetic properties can be obtained by using such inexpensive equipment and under stable manufacturing conditions. can be provided.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は、実施例1における。Fe−5i−Co合金粉
末のCo含有量と磁気特性(4πl5IHC)の関係を
示す図である。図中の実線は。 加圧方向と垂直な方向での測定値を示し、破線は加圧方
向と水平な方向での測定値を示している。 図中の各町はそれぞれ 0:5wt%Si、1〜30wt%Co、残部Fe()
:10vt%St、1〜30vt%Co。 残部Fe △:15vt%Si、1〜30vt%Co。 残部Fe :20vt%Sj、1〜30vt%Co。 残部Fe 残部Fe G:27vt%Si、1〜30vt%C。 残部Fe を示している。 又IHCについては1代表値として5νt%si。 1〜30wt%Co、残部Fe及び25wt%Si。 1〜30vt%Co、残部Feの測定値だけを示した。 ◇:25vt%Si、1〜30vt%Co。
FIG. 1 is in Example 1. FIG. 3 is a diagram showing the relationship between Co content and magnetic properties (4πl5IHC) of Fe-5i-Co alloy powder. The solid line in the figure is. The values measured in the direction perpendicular to the pressing direction are shown, and the broken lines represent the measured values in the direction horizontal to the pressing direction. Each town in the figure is 0:5wt%Si, 1~30wt%Co, balance Fe ()
: 10vt%St, 1-30vt%Co. Remaining Fe Δ: 15vt%Si, 1 to 30vt%Co. Remaining Fe: 20vt%Sj, 1-30vt%Co. Balance Fe Balance Fe G: 27vt%Si, 1-30vt%C. The balance shows Fe. For IHC, one typical value is 5νt%si. 1 to 30 wt% Co, balance Fe and 25 wt% Si. Only the measured values of 1 to 30 vt% Co and the balance Fe are shown. ◇: 25vt%Si, 1-30vt%Co.

Claims (1)

【特許請求の範囲】[Claims] 1.SiがXwt%,CoがYwt%(但し,X=4〜
27,Y=1〜30,(7X−Y)/10≦16)残部
が実質的にFeからなる強磁性合金粉末であって, 各粉末粒子は板状の粒子で,その板面に平行な一方向に
磁化容易軸を有することを特徴とする形状異方性軟磁性
合金粉末。
1. Si is Xwt%, Co is Ywt% (however, X=4~
27, Y = 1 to 30, (7X-Y)/10≦16) A ferromagnetic alloy powder in which the balance is essentially Fe, and each powder particle is a plate-shaped particle, with the particles parallel to the plate surface. A shape-anisotropic soft magnetic alloy powder characterized by having an axis of easy magnetization in one direction.
JP2095198A 1990-04-12 1990-04-12 Shape anisotropic soft magnetic alloy powder Pending JPH03294403A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2095198A JPH03294403A (en) 1990-04-12 1990-04-12 Shape anisotropic soft magnetic alloy powder

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2095198A JPH03294403A (en) 1990-04-12 1990-04-12 Shape anisotropic soft magnetic alloy powder

Publications (1)

Publication Number Publication Date
JPH03294403A true JPH03294403A (en) 1991-12-25

Family

ID=14131056

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2095198A Pending JPH03294403A (en) 1990-04-12 1990-04-12 Shape anisotropic soft magnetic alloy powder

Country Status (1)

Country Link
JP (1) JPH03294403A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20180019043A1 (en) * 2016-07-12 2018-01-18 Tdk Corporation Soft magnetic metal powder and dust core
EP4202065A1 (en) * 2021-12-27 2023-06-28 Zhejiang University Multicomponent fecosim soft magnetic alloy and preparation method thereof

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20180019043A1 (en) * 2016-07-12 2018-01-18 Tdk Corporation Soft magnetic metal powder and dust core
JP2018010938A (en) * 2016-07-12 2018-01-18 Tdk株式会社 Soft magnetic metal powder and powder-compact magnetic core
EP4202065A1 (en) * 2021-12-27 2023-06-28 Zhejiang University Multicomponent fecosim soft magnetic alloy and preparation method thereof

Similar Documents

Publication Publication Date Title
JPH06346101A (en) Magnetically anisotropic powder and its production
JPH0354806A (en) Manufacture of rare-earth permanent magnet
JPH01294801A (en) Production of flat fine fe-ni alloy powder
JP2799893B2 (en) Shape anisotropic soft magnetic alloy powder
Jurczyk et al. Application of high energy ball milling to the production of magnetic powders from NdFeB-type alloys
JPH03294403A (en) Shape anisotropic soft magnetic alloy powder
JP2816362B2 (en) Powder for magnetic shielding, magnetic shielding material and powder manufacturing method
JP2995663B2 (en) Shape anisotropic soft magnetic alloy powder
WO2005043558A1 (en) Method for producing sintered rare earth element magnet
JPH01294802A (en) Production of flat fine fe-ni-al alloy powder
JP3275055B2 (en) Rare earth bonded magnet
JP2850145B2 (en) Shape anisotropic soft magnetic alloy powder
JP4282002B2 (en) Alloy powder for RTB-based sintered magnet, manufacturing method thereof, and manufacturing method of RTB-based sintered magnet
JPH03153005A (en) Shape-anisotropy soft magnetic alloy powder
JPH02208902A (en) Hot-worked magnet and manufacture thereof
JP2893281B2 (en) Method for producing shape-anisotropic soft magnetic alloy powder
TW294815B (en)
JP4240988B2 (en) Rare earth alloy granulated powder manufacturing method, rare earth alloy granulated powder manufacturing apparatus, and rare earth alloy sintered body manufacturing method
JPS6373502A (en) Manufacture of rare earth magnet
JP3209291B2 (en) Magnetic material and its manufacturing method
JP2006058207A (en) Evaluation method of molded product, rare-earth element sintered magnet, and its manufacturing method
JP3209292B2 (en) Magnetic material and its manufacturing method
JPH03291305A (en) Manufacture of shape anisotropic and soft magnetic alloy powder
JPH04293708A (en) Rare earth-iron-boron-based alloy powder for press-formed and sintered magnet and its production
JPH03198303A (en) Manufacture of powder for nd-fe-b anisotropic bond magnet