JPH03201366A - Manufacture of paste type electrode - Google Patents

Manufacture of paste type electrode

Info

Publication number
JPH03201366A
JPH03201366A JP1336227A JP33622789A JPH03201366A JP H03201366 A JPH03201366 A JP H03201366A JP 1336227 A JP1336227 A JP 1336227A JP 33622789 A JP33622789 A JP 33622789A JP H03201366 A JPH03201366 A JP H03201366A
Authority
JP
Japan
Prior art keywords
paste
nickel
type electrode
diameter
electrode
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP1336227A
Other languages
Japanese (ja)
Inventor
Kazuhiro Yoshida
一博 吉田
Katsuyuki Hata
秦 勝幸
Koji Isawa
浩次 石和
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
FDK Twicell Co Ltd
Original Assignee
Toshiba Battery Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toshiba Battery Co Ltd filed Critical Toshiba Battery Co Ltd
Priority to JP1336227A priority Critical patent/JPH03201366A/en
Publication of JPH03201366A publication Critical patent/JPH03201366A/en
Pending legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/04Processes of manufacture in general
    • H01M4/0402Methods of deposition of the material
    • H01M4/0416Methods of deposition of the material involving impregnation with a solution, dispersion, paste or dry powder
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/04Processes of manufacture in general
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/04Processes of manufacture in general
    • H01M4/0402Methods of deposition of the material
    • H01M4/0404Methods of deposition of the material by coating on electrode collectors
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/04Processes of manufacture in general
    • H01M4/043Processes of manufacture in general involving compressing or compaction
    • H01M4/0435Rolling or calendering
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Dispersion Chemistry (AREA)
  • Battery Electrode And Active Subsutance (AREA)

Abstract

PURPOSE:To prevent a paste from being drawn during pressing process and also obtain a paste type electrode of high capacity by carrying out pressure molding of the paste in such a manner that when passed between rollers for the first time the paste is pressed to predetermined final thickness by a specific roller press. CONSTITUTION:Nickel hydroxide is used as active material and nickel powder and carboxymethyl cellulose serving as a thickener are added thereto in respective predetermined amounts and pure water is further added thereto and mixed to form a paste. The paste is packed in a nickel sintered fiber base and after drying the base is passed between two upper and lower rollers once by a two- stage roller press 100mm in diameter and having the upper and lower rollers and is pressed to predetermined final thickness 0.6mm to obtain a nickel electrode. Preferably, the diameter of each roller is 100 to 300mm. Thereby the paste is prevented from being drawn during pressing and also a paste type electrode of high capacity is obtained.

Description

【発明の詳細な説明】 〔発明の目的〕 (産業上の利用分野) 本発明は電地に使用されるペースト式電極の製造方法の
改良に関するものである。
DETAILED DESCRIPTION OF THE INVENTION [Object of the Invention] (Industrial Application Field) The present invention relates to an improvement in a method for manufacturing a paste-type electrode used in an electric ground.

(従来の技術とその課a) ニッケルーカドミウム蓄電池に代表されるアルカリ蓄電
池用電極は、これまで主に焼結式電極が用いられてきた
。焼結式電極は寿命が長く、高率放電性能が優れている
ためである。しかし、焼結式電極の製造方法は煩雑で時
間がかかるうえ高容量には限界があるため、これに代わ
る方法として、3次元構造を有する導電性多孔体基板に
、ペースト状の活物質を直接充填するペースト式電極が
開発された。このペースト式電極の製造方法は簡単であ
るうえ、高容量化の電極が提供できる。
(Prior art and its issues a) Up until now, sintered electrodes have been mainly used as electrodes for alkaline storage batteries, typified by nickel-cadmium storage batteries. This is because sintered electrodes have a long life and excellent high rate discharge performance. However, the manufacturing method of sintered electrodes is complicated and time-consuming, and has a limit to high capacity.As an alternative method, a paste-like active material is directly applied to a conductive porous substrate with a three-dimensional structure. A paste-type electrode for filling was developed. The manufacturing method of this paste type electrode is simple and can provide an electrode with high capacity.

充填方法は、主活物質に添加剤、増粘剤、結着剤等を加
えペースト状とし、充填する方法が一般的である。その
後乾燥させ所定の最終厚さまでプレスし、成形して完成
電極とする。プレスする方法は一般に、量産性に優れた
ローラープレスが用いられ、数回にわけて所定の最終厚
さまでプレスする方法をとっていた。しかし、このよう
な方法で充填された3次元基板は延伸するため、ある−
定値以上の充填密度にはならないうえ、2次元構造を有
するバンチトメタルと違い引張強度は弱く、延伸による
基板の破断と蛇行が起こりやすいという問題点が存在し
ていた。
A common filling method is to add additives, thickeners, binders, etc. to the main active material to form a paste, and then fill the paste. It is then dried, pressed to a predetermined final thickness, and molded into a finished electrode. Generally speaking, a roller press, which is excellent in mass production, is used to press the material, and the material is pressed several times to a predetermined final thickness. However, since the three-dimensional substrate filled with this method is stretched, there is a certain -
In addition to not achieving a packing density higher than a certain value, the tensile strength is weak unlike bunched metal having a two-dimensional structure, and there is a problem that the substrate is likely to break and meander due to stretching.

本発明は上記問題点を解決するためになされたもので、
プレス工程での延伸を防止し、かつ高容量のペースト式
電極を提供しようとするものである。
The present invention has been made to solve the above problems,
The purpose is to prevent stretching during the pressing process and provide a paste-type electrode with high capacity.

[発明の構成] (課題を解決するための手段) 本発明は3次元構造を有する導電性多孔体基板に活物質
を含むペースト状物を充填し、乾燥したのち、該充填基
板をローラーでプレスする際、該ローラープレスのロー
ル径を100+++s以上とし、かつ1回のローラー掛
けで所定の最終厚さまでプレスすることにより、上記問
題点を解決するものである。
[Structure of the Invention] (Means for Solving the Problems) The present invention involves filling a conductive porous substrate having a three-dimensional structure with a paste-like substance containing an active material, drying it, and then pressing the filled substrate with a roller. In this case, the above-mentioned problem is solved by setting the roll diameter of the roller press to 100+++s or more and pressing the film to a predetermined final thickness with one roller application.

上記3次元構造を有する導電性多孔体基板は、発泡メタ
ル、ニッケル繊維焼結基板、金属メツキ繊維基板等を挙
げることができる。
Examples of the conductive porous substrate having the three-dimensional structure include foamed metal, sintered nickel fiber substrate, metal-plated fiber substrate, and the like.

ペースト状物は、水酸化ニッケル等の正極活物質と、カ
ルボキシメチルセルロース(CMC)、メチルセルロー
ス、ポリアクリル酸ソーダ、ポリテトラフルオロエチレ
ン等の増粘剤結着剤と、水などの溶媒との組成からなる
正極用ペースト状物とか、また、酸化カドミウムなどの
負極活物質と、ポリビニルアルコールなどの増粘剤とエ
チレングリコールなどの溶媒との組成からなる負極用ペ
ースト状物とを挙げることができる。
The paste is made of a positive electrode active material such as nickel hydroxide, a thickener binder such as carboxymethylcellulose (CMC), methylcellulose, sodium polyacrylate, or polytetrafluoroethylene, and a solvent such as water. and a negative electrode paste consisting of a negative electrode active material such as cadmium oxide, a thickener such as polyvinyl alcohol, and a solvent such as ethylene glycol.

上記ローラーの直径を100+lIm以上とした理由は
、100mm未満とすると延伸の抑制が充分でないばか
りか、充填基板を噛み込めず、ローラーが停止したり、
空回りしたり、場合によっては、充填基板が千切りの状
態になったりするためである。
The reason why the diameter of the roller is set to 100 + lIm or more is that if it is less than 100 mm, not only will it not be possible to suppress the stretching sufficiently, but the filled substrate will not be caught, and the roller will stop.
This is because it may spin idly or, in some cases, the filled substrate may become torn into pieces.

1回で最終厚さまでプレスする理由は、複数回プレスす
ると、ある−窓以上の容量密度にならず、高容量を必要
とする電池には対応しきれないためである。
The reason why it is pressed to the final thickness in one step is that if it is pressed multiple times, the capacity density will not exceed a certain window, and it will not be able to handle batteries that require high capacity.

(作 用) 本発明は100 am以上の径のローラープレスを用い
、かつ1回のローラー掛けで所定の最終厚さにすれば、
蛇行、破断の原因となる延伸を抑えつつ、高容量の電極
を得ることができる。更に延伸を抑えることにより、プ
レスされた3次元基板の湾曲、蛇行が抑えられ、後工程
への悪影響の防止およびプレス工程での歩留まりの向上
につながる。
(Function) In the present invention, if a roller press with a diameter of 100 am or more is used and a predetermined final thickness is achieved with one roller application,
A high-capacity electrode can be obtained while suppressing stretching that causes meandering and breakage. Furthermore, by suppressing stretching, curvature and meandering of the pressed three-dimensional substrate are suppressed, leading to prevention of adverse effects on subsequent processes and improvement of yield in the pressing process.

また、ローラープレス装置が1台ですみ、2台以上連ね
た場合に必要なローラープレス間の煩雑な制御も必要な
く、製造工程の簡素化にもつながる。
In addition, only one roller press device is required, and the complicated control between roller presses required when two or more roller presses are connected is not required, leading to a simplification of the manufacturing process.

但し、ローラーの径は300mm以下が好ましい。However, the diameter of the roller is preferably 300 mm or less.

300關より大きい場合、圧縮の際の抵抗が大きいため
、長さ方向へ延びない分が横方向へ延び、破断してしま
う恐れがあるためである。
This is because if it is larger than 300 mm, the resistance during compression will be large, so that the portion that does not extend in the length direction will extend in the lateral direction, and there is a risk that it will break.

(実施例) 以下、本発明の実施例を詳細に説明する。(Example) Examples of the present invention will be described in detail below.

実施例1 水酸化ニッケルを活物質とし、これに導電材としてニッ
ケル粉、増粘剤としてのカルボキシメチルセルロースを
それぞれ所定量加え、さらに純水を加えて混合しペース
ト状物を調製した。つづいて、このペースト状物を、6
0關×300軸×1.5關のニッケル焼結繊維基板に充
填し、乾燥後、径が100mmの上下にローラーがある
2段ローラープレス装置により、1回上下の二つのロー
ラー間を通し所定の最終厚さ0.6關までプレスし、ニ
ッケル極を得た。
Example 1 Nickel hydroxide was used as an active material, predetermined amounts of nickel powder as a conductive material and carboxymethyl cellulose as a thickener were added thereto, and pure water was added and mixed to prepare a paste. Next, add this paste to 6
It is filled into a nickel sintered fiber substrate measuring 0 mm x 300 mm x 1.5 mm, and after drying, it is passed through once between two upper and lower rollers using a two-stage roller press machine with a diameter of 100 mm and having upper and lower rollers. A nickel electrode was obtained by pressing to a final thickness of 0.6 mm.

実施例2 径が200mmの2段ローラープレス装置を使用した以
外、実施例1と同様な方法によりニッケル極を得た。
Example 2 A nickel electrode was obtained in the same manner as in Example 1, except that a two-stage roller press device with a diameter of 200 mm was used.

実施例3 径が300mmの2段ローラープレス装置を使用した以
外、実施例1と同様な方法によりニッケル極を得た。
Example 3 A nickel electrode was obtained in the same manner as in Example 1, except that a two-stage roller press device with a diameter of 300 mm was used.

参照例 径が90關の2段ローラープレス装置を使用した以外、
実施例1と同様な方法でニッケル極を得た。
Reference example except that a two-stage roller press device with a diameter of 90 mm was used.
A nickel electrode was obtained in the same manner as in Example 1.

比較例1〜4 充填基板を実施例1〜3及び参照例と同様に製造し、そ
れぞれの2段ローラープレス装置により、2回のローラ
ー掛けで、所定の最終厚さ0.6關までプレスし、ニッ
ケル極を得た。
Comparative Examples 1 to 4 Filled substrates were manufactured in the same manner as Examples 1 to 3 and the reference example, and were pressed to a predetermined final thickness of 0.6 mm by two roller runs using each two-stage roller press device. , a nickel electrode was obtained.

ここで1回プレスの本発明の実施例1〜3と参照例(A
)と、2回プレスした比較例1〜4(B)との各ニッケ
ル極について、充填容量密度と伸び率を測定したところ
、第1図に示す結果を得た。
Examples 1 to 3 of the present invention and the reference example (A
) and Comparative Examples 1 to 4 (B) which were pressed twice, the filling capacity density and elongation rate were measured, and the results shown in FIG. 1 were obtained.

第1図より、径90mmのローラーでは500+aAh
/cc前後の容量密度が限界であるが、100mm以上
の径では500mAh/cc以上の容量密度が得られる
。また、伸び率に関しても、100mm以上の径のロー
ラーでは117%以下であり、蛇行や延伸による破断は
全くなかった。さらに、径が90mmのローラーでは、
噛みこめずにローラーが停止した場合があったが、10
0mm以上ではそのような現象は全くなかった。
From Figure 1, for a roller with a diameter of 90 mm, it is 500+aAh.
The capacitance density is approximately 100 mAh/cc or more, but a capacitance density of 500 mAh/cc or more can be obtained with a diameter of 100 mm or more. Furthermore, the elongation rate was 117% or less for rollers with a diameter of 100 mm or more, and there was no breakage due to meandering or stretching. Furthermore, for a roller with a diameter of 90 mm,
There were cases where the roller stopped without being bitten, but 10
There was no such phenomenon at all when the distance was 0 mm or more.

また、2回プレスすることにより所定の最終厚さとした
電抽は、伸び率が非常に大きくなり、充填容量密度も低
くくなった。更に、3回以上のプレスでは、延伸に基板
が耐えられず破断するものがあった。
In addition, in the case of electric drawing in which a predetermined final thickness was obtained by pressing twice, the elongation rate was extremely large and the filling capacity density was also low. Furthermore, when pressing three or more times, the substrate could not withstand the stretching and sometimes broke.

[発明の効果] 以上詳述したごとく、本発明によればペースト状物充填
基板のローラープレスに際しての延伸が少なく、蛇行発
生を防止でき、また所定のペースト状物が高容瓜密度で
充填された高信頼性かつ高容量のペースト式電極を製造
する方法を提供できる。
[Effects of the Invention] As detailed above, according to the present invention, there is less stretching during roller pressing of a paste-filled substrate, meandering can be prevented, and a predetermined paste can be filled with a high volume and melon density. A method for manufacturing a highly reliable and high capacity paste-type electrode can be provided.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は本発明の実施例1〜3と参照例(A)と、2回
プレスした比較例1〜4(B)との各ニッケル極につい
て、ペースト状物の充填容量密度とプレス後の伸び率と
の関係を示す特性図である。
Figure 1 shows the filling capacity density of the paste and the nickel electrode after pressing for each nickel electrode of Examples 1 to 3 of the present invention, Reference Example (A), and Comparative Examples 1 to 4 (B) pressed twice. It is a characteristic diagram showing the relationship with elongation rate.

Claims (1)

【特許請求の範囲】[Claims]  活物質を含むペースト状物を3次元導電性多孔体基板
に充填した後、加圧成形するペースト式電極の製造方法
において、該加圧成形を直径100mm以上のローラー
プレスで、1回のローラー掛けで所定の最終厚さまでプ
レスすることを特徴とするペースト式電極の製造方法。
In a method for producing a paste-type electrode in which a three-dimensional conductive porous substrate is filled with a paste-like material containing an active material and then pressure-formed, the pressure-forming is performed by one roller press with a diameter of 100 mm or more. A method for manufacturing a paste-type electrode, characterized by pressing the electrode to a predetermined final thickness.
JP1336227A 1989-12-27 1989-12-27 Manufacture of paste type electrode Pending JPH03201366A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP1336227A JPH03201366A (en) 1989-12-27 1989-12-27 Manufacture of paste type electrode

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP1336227A JPH03201366A (en) 1989-12-27 1989-12-27 Manufacture of paste type electrode

Publications (1)

Publication Number Publication Date
JPH03201366A true JPH03201366A (en) 1991-09-03

Family

ID=18296953

Family Applications (1)

Application Number Title Priority Date Filing Date
JP1336227A Pending JPH03201366A (en) 1989-12-27 1989-12-27 Manufacture of paste type electrode

Country Status (1)

Country Link
JP (1) JPH03201366A (en)

Similar Documents

Publication Publication Date Title
JP2008071533A (en) Manufacturing method of alkaline battery nickel electrode and alkaline battery nickel electrode
JPH03201366A (en) Manufacture of paste type electrode
US5940946A (en) Alkali storage cell employing a spongelike metal substrate
JPH03743B2 (en)
JP2546638B2 (en) Manufacturing method of battery plate
JP2765029B2 (en) Manufacturing method of nickel hydroxide electrode
JP3100138B2 (en) Method for producing electrode for alkaline storage battery
JP3331506B2 (en) Method of manufacturing spiral alkaline storage battery
US5948563A (en) Sealed
JPS634561A (en) Paste type nickel positive electrode
JPS62139256A (en) Sealed nickel-cadmium storage battery
JP2902751B2 (en) Manufacturing method of cadmium negative electrode for alkaline storage battery
JP3744677B2 (en) Method for producing sintered cadmium negative electrode
JP2639939B2 (en) Cathode for alkaline storage battery
JPH11339843A (en) Sealed lead-acid battery
JP3145392B2 (en) Paste nickel positive electrode
JP2889605B2 (en) Manufacturing method of alkaline storage battery
JP3095236B2 (en) Paste nickel positive electrode
JPH0963574A (en) Manufacture of hydrogen storage alloy negative electrode for secondary battery
JPS60100367A (en) Production method of unsintered electrode for battery
JP2755690B2 (en) Method for producing cadmium negative electrode plate for alkaline storage battery
JP2926233B2 (en) Manufacturing method of alkaline secondary battery
JPS6269465A (en) Cathode plate for nickel-cadmium alkaline storage battery
JPS59196565A (en) Manufacture of nonsintered electrode
JPH10275619A (en) Paste type cadmium electrode