JPH03201346A - Lamination type cathode device - Google Patents

Lamination type cathode device

Info

Publication number
JPH03201346A
JPH03201346A JP1341405A JP34140589A JPH03201346A JP H03201346 A JPH03201346 A JP H03201346A JP 1341405 A JP1341405 A JP 1341405A JP 34140589 A JP34140589 A JP 34140589A JP H03201346 A JPH03201346 A JP H03201346A
Authority
JP
Japan
Prior art keywords
cathode
pin
heat
heater
substrate
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP1341405A
Other languages
Japanese (ja)
Inventor
Kinjiro Sano
佐野 金治郎
Toyoichi Kamata
鎌田 豊一
Takashi Shinjo
孝 新庄
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Electric Corp
Original Assignee
Mitsubishi Electric Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Electric Corp filed Critical Mitsubishi Electric Corp
Priority to JP1341405A priority Critical patent/JPH03201346A/en
Publication of JPH03201346A publication Critical patent/JPH03201346A/en
Pending legal-status Critical Current

Links

Abstract

PURPOSE:To improve reliability of the welding part between a lead wire and a pin and reduce the dispersion of cut-off voltage by supportedly connecting a heat-resistant insulating substrate to a cathode pin and a lead wire L-shapedly folded to a heater pin. CONSTITUTION:A heat-resistant insulating substrate 1 is supportedly connected by means of cathode pins 7, plantedly erected on a cathode vessel 6, and lead wires 9 L-shapedly folded to heater pins 8. Here the lead wires 9 are welded to the heater terminals 53 and the cathode terminals 31 on the substrate 1. The application of voltage to a heating body 51 causes the heating body 51 to be heat-generated by Joule heat, the substrate 1 to be heated, and the heating of substrate metal 2 to high temperature causes barium oxide, which is a component of an electron radiation substance 4 layer, and the substrate metal 2 to make reaction to conduct electron radiation with Ba, produced by the reaction, as a donor. This high temperature action causes a lead wire 6 to rise to high temperature to make thermal expansion, but because the lead wire 6 is displaced to a dotted line shown condition, the stress to the welding point of the heater pin 8 or the cathode pin 7 is relaxed. This permits reliability improvement of the welding part and reduction of the dispersion of cut-off voltage.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 この発明は、インライン型カラーブラウン管に用いられ
る積層状陰極装置・特にカントオフ電圧のバラツキを低
減し、導線の浴接点の信頼性を向上させる構造に関する
ものである。
[Detailed Description of the Invention] [Field of Industrial Application] The present invention provides a laminated cathode device used in an in-line color cathode ray tube, particularly a structure that reduces variations in cant-off voltage and improves the reliability of bath contacts of conducting wires. It is related to.

(従来の技術〕 第6図〜第8図は・従来のこの種陰極装置を示す図で、
図において、lは0.1〜0.4fl程度の厚さのサフ
ァイアから構成された耐熱性絶縁基板、2は耐熱性絶縁
基板1の一面にタングステンがスパッタリング等の方法
で直線状に被着形成され、写真製版技術によって所定形
状にエツチング加工された基体金属、3は基体金属2と
向様の方法で一体的に耐熱性絶縁基板上に被着形成され
・先端に陰極端子31が形成されたリード線、4は8個
の基体金属2上にスプレー等の方法で被着形成された(
Ba、81,0a)0等のアルカリ土類金属酸化物から
なる電子放射物質、51は耐熱性絶縁基板lの他面の基
体金属2に対間する部位にスパッタリングでタングステ
ンの薄膜を被着して後、エツチング加工により蛇行形状
に形成した発熱体、認は8個の発熱体51と一体的に被
H戒形され発熱体社を直列に接続する導線、羽は発熱体
51および導llA32と共にヒータ5を構成するヒー
タ端子、6はステアタイト製の陰極容器、7は陰極容器
6に植立された陰極ピン、8は陰極容器6に植立された
ヒータピン、9は陰極端子31と陰極ピン7およびヒー
タ端子部とヒータピン8とを接続する導体、10は金属
基体2および電子放射物質4に対して0.111前後の
間隔を隔てて配置された8個の電子ビーム通過孔101
を有する電子銃の第1グリツドである。
(Prior art) Figures 6 to 8 are diagrams showing a conventional cathode device of this type.
In the figure, l is a heat-resistant insulating substrate made of sapphire with a thickness of about 0.1 to 0.4 fl, and 2 is a heat-resistant insulating substrate 1 in which tungsten is deposited in a straight line on one surface of the heat-resistant insulating substrate 1 by a method such as sputtering. The base metal 3 was then etched into a predetermined shape using photolithography technology, and was integrally deposited on a heat-resistant insulating substrate in the same manner as the base metal 2. A cathode terminal 31 was formed at the tip. The lead wires 4 were formed on the eight base metals 2 by a method such as spraying (
Electron-emitting material 51 is made of an alkaline earth metal oxide such as Ba, 81,0a)0, etc., and a thin film of tungsten is deposited by sputtering on the other side of the heat-resistant insulating substrate l, at a portion opposite to the base metal 2. After that, the heating element formed into a serpentine shape by etching is integrally formed with the eight heating elements 51, and the conducting wire and wings connecting the heating elements in series are attached together with the heating element 51 and the conductor 11A32. Heater terminals constituting the heater 5, 6 is a steatite cathode container, 7 is a cathode pin planted in the cathode container 6, 8 is a heater pin planted in the cathode container 6, 9 is a cathode terminal 31 and a cathode pin 7 and a conductor connecting the heater terminal portion and the heater pin 8; 10, eight electron beam passing holes 101 arranged at intervals of about 0.111 with respect to the metal base 2 and the electron emitting material 4;
The first grid of the electron gun has a

この従来のものでは、ヒータピン8の両端に電圧を印加
すると発熱体51に電流が流れ、ジュール熱が下式に示
すように電流の2乗と発熱体51の電気抵抗と時間との
積で決まる量で発生する。
In this conventional device, when a voltage is applied across the heater pin 8, a current flows through the heating element 51, and Joule heat is determined by the product of the square of the current, the electrical resistance of the heating element 51, and time, as shown in the formula below. Occurs in quantity.

Q=I’XRXf ここでQは熱量、■は電流、Bは抵抗、tは時間を表す
Q=I'XRXf Here, Q is the amount of heat, ■ is the current, B is the resistance, and t is the time.

この発生熱が熱伝導および熱輻射によって耐熱性絶縁基
板lを通して8個の基体金属2を加熱する。卆体金属2
が約8000の動作fit度まで加熱されると、電子放
射物質4の成分であるpaoが基体金属2であるWと還
元反応を起こして遊離Baが生じる。この遊jliHa
がドナーとなって電子放射物質4から電子ビームが発射
され、カラーブラウン管の8色の螢光面を光らせる。こ
の電子ビームの量は、第1グリンド10と陰極間の電位
により変化する0 この従来の積層状陰極装置においては、陰極の動作温度
であるaoo′c”zで基体金属2を加熱すると基体金
属2あるいは発熱体品からの伝導熱で導lI9の温度が
約700C近くの高温に昇温する。この温度上昇および
耐熱性絶縁基板lの温度上昇により耐熱性絶縁基板1お
よび導$9が熱膨張を起こしヒータピン8および陰極ピ
ン7の各導線9との溶接点に熱膨張に起因する応力が加
わり、溶接が外れたりすることがある。
This generated heat heats the eight base metals 2 through the heat-resistant insulating substrate 1 by thermal conduction and thermal radiation. solid metal 2
When heated to an operating fit degree of about 8000, pao, which is a component of the electron emitting material 4, undergoes a reduction reaction with W, which is the base metal 2, to generate free Ba. This play jliHa
acts as a donor, and an electron beam is emitted from the electron emitting material 4, causing the eight-color fluorescent surface of the color cathode ray tube to glow. The amount of this electron beam changes depending on the potential between the first grind 10 and the cathode. 2 or the conductive heat from the heating element increases the temperature of the conductor 9 to a high temperature of approximately 700 C. Due to this temperature rise and the temperature rise of the heat-resistant insulating substrate 1, the heat-resistant insulating substrate 1 and the conductor 9 undergo thermal expansion. This may cause stress due to thermal expansion to be applied to the welding points of the heater pin 8 and the cathode pin 7 with the conductive wires 9, and the welds may come off.

また溶接が外れない場合は、導線9が応力によって凸状
あるいは凹状に湾曲し、耐熱性絶縁基板1が初期の基準
面から上方あるいは下方に変位する。耐熱性絶縁板1の
変位によって第1グリツドlOと電子放射物質4との間
隔の変動を引き起こし、電子銃の電気的特性の一つであ
るカットオフ電圧のバラツキを助長することになる。
Further, if the welding does not come off, the conductive wire 9 is bent into a convex or concave shape due to stress, and the heat-resistant insulating substrate 1 is displaced upward or downward from the initial reference plane. The displacement of the heat-resistant insulating plate 1 causes a change in the distance between the first grid lO and the electron emitting material 4, which promotes variations in the cutoff voltage, which is one of the electrical characteristics of the electron gun.

〔発明が解決しようとする課題〕[Problem to be solved by the invention]

従来の積層状陰極装置は以上のように構成されているた
め、導線の溶接部の信頼性・刀ットオ7電出のバラツキ
の増大の問題があった。
Since the conventional laminated cathode device is constructed as described above, there has been a problem in that the reliability of the welded portion of the conductor wire and the variation in the electric power output are increased.

この発明はこのような問題点を解消するためになされた
ものであり、導線とピンの溶接部の信頼性向上およびカ
ットオフ電圧のバラツキの低減を目的とする、改良され
た積層状陰極装置を提供しようとするものである。
This invention was made to solve these problems, and provides an improved laminated cathode device for the purpose of improving the reliability of the weld between the conductor and the pin and reducing the variation in cut-off voltage. This is what we are trying to provide.

〔課題を解決するための手段〕[Means to solve the problem]

この発明に係る積層状陰極装置は、耐熱性絶縁基板の一
面に被着形成された基体金属上に電子放射物質を被着形
成し、耐熱性絶縁基板の他面にヒータを被着形成すると
共に、陰極容器に植立された陰極ピンとヒータピンにL
字状に折り曲げられた導線によって耐熱性絶縁基板を支
持接続したものである。
The laminated cathode device according to the present invention includes an electron-emitting substance deposited on a base metal formed on one surface of a heat-resistant insulating substrate, a heater deposited on the other surface of the heat-resistant insulated substrate, and a heater formed on the other surface of the heat-resistant insulated substrate. , L to the cathode pin and heater pin installed in the cathode container.
A heat-resistant insulating substrate is supported and connected by conductive wires bent into a letter shape.

〔作用〕[Effect]

この発明においては、導線を折り曲げ形状にしたため、
導線と陰極ピンあるいはヒータピンとの浴接点に加わる
熱膨張による応力が緩和され、溶接点の信頼性が向上し
、耐熱性絶縁基板の変位を低減することが可能となる。
In this invention, since the conducting wire is made into a bent shape,
The stress due to thermal expansion applied to the bath contact between the conducting wire and the cathode pin or heater pin is alleviated, the reliability of the welding point is improved, and displacement of the heat-resistant insulating substrate can be reduced.

〔実施例〕〔Example〕

以下この発明の一実施例を第1図〜第8図にもとづいて
詳細に説明する^ 即ち第1図〜第8図において、9は全長が5flで第2
図に示すように寸法ムが2m、寸法Bが8nとなるよう
にL字状に折り曲げられた直径0.Inの白金線からな
り・陰極端子31と陰極ピン7およびヒータ端子部とヒ
ータピン8とを接続する導線である。
An embodiment of the present invention will be explained below in detail based on FIGS. 1 to 8. In other words, in FIGS.
As shown in the figure, the diameter 0.0mm is bent into an L shape so that the dimension M is 2m and the dimension B is 8n. It is made of In platinum wire and connects the cathode terminal 31 and the cathode pin 7 and the heater terminal portion and the heater pin 8.

ここで導線9はパラレルギャップ方法の溶接機を使用し
て耐熱性絶縁基板lのヒータ端子部および陰極端子31
に浴接される。ついで、陰極ピン7およびヒータピン8
に向じくパラレルギャップ溶接方法で溶接固定して陰極
装置が完成する。
Here, the conductor 9 is welded to the heater terminal part and the cathode terminal 31 of the heat-resistant insulating board l using a parallel gap welding machine.
bathed in Then, the cathode pin 7 and the heater pin 8
The cathode device is completed by welding and fixing it using the parallel gap welding method suitable for

なお、その他の構成は第6図〜第8図に示す従来のもの
と同様であるので説明を省略する。
Note that the other configurations are the same as those of the conventional device shown in FIGS. 6 to 8, so the explanation will be omitted.

このように構成されたものでは、発熱体51に電圧が印
加されると発熱体51は従来のものと同様にジュール熱
によって発熱する。このジュール熱による輻射熱および
伝導熱により耐熱性絶縁基板lが加熱される^基体金1
42が約soo cの高温に加熱されると電子放射物質
4層の成分である酸化バリウムと基体金属2とが反応を
起こし、この反応で生じたBaがドナーとなって電子放
射が行われる。
With this configuration, when a voltage is applied to the heating element 51, the heating element 51 generates heat by Joule heat, as in the conventional case. The heat-resistant insulating substrate 1 is heated by the radiant heat and conductive heat caused by this Joule heat ^ Substrate gold 1
When 42 is heated to a high temperature of about soo c, barium oxide, which is a component of the four layers of electron emitting material, reacts with the base metal 2, and Ba generated in this reaction becomes a donor to emit electrons.

この高温動作によって導線6は約700℃の高温に昇湿
し熱膨張を起こすが、第2図の点線で示す状態に変位す
る。
Due to this high-temperature operation, the conductive wire 6 is humidified to a high temperature of about 700° C. and undergoes thermal expansion, but is displaced to the state shown by the dotted line in FIG. 2.

従ってヒータピン8や陰極ピン7の溶接点への応力が緩
和される。このように熱膨張による応力を緩和すること
ができるため、導線9の湾曲状変形も低減できる。
Therefore, the stress on the welding points of the heater pin 8 and cathode pin 7 is alleviated. Since stress due to thermal expansion can be relaxed in this way, curved deformation of the conducting wire 9 can also be reduced.

第8図はこの実施例のものにおけるカットオフ電圧のバ
ラツキを示すもので、従来例の積層状陰極装置と比較し
て記載している。この図から解るように、従来力ントオ
7wL圧のバラフキが270v〜450vであったもの
が、この実施例のものでは810v〜410 Vと低減
できた。
FIG. 8 shows the variation in cutoff voltage in this example, and is compared with a conventional laminated cathode device. As can be seen from this figure, the variation in the power output 7wL pressure, which was conventionally 270v to 450v, could be reduced to 810v to 410V in this embodiment.

第4図は他の実施例を示すもので、導1Ij19をL字
状以外の形状にしても同様な効果を得ることができる0
さらに第5図も他の実施例で、耐熱性絶縁基板lの平面
部に対して導1s9を90度に折り曲げ加工をしたので
、同様の効果をもたらす。
FIG. 4 shows another embodiment, in which the same effect can be obtained even if the conductor 1Ij19 is made in a shape other than L-shape.
Furthermore, FIG. 5 shows another embodiment in which the conductor 1s9 is bent at 90 degrees with respect to the flat surface of the heat-resistant insulating substrate 1, so that the same effect is obtained.

〔発明の効果〕〔Effect of the invention〕

上記のようにこの発明による積層状陰極装置は、耐熱性
絶縁基板を陰極ピンおよびヒータピンにL字状に折り曲
げられた導線によって支持接続したため、耐熱性絶縁基
板の変位を抑えることが可能となると共にピンと導線の
溶接点への熱膨張による応力を低減できるため信頼性が
向上する。
As described above, in the laminated cathode device according to the present invention, since the heat-resistant insulating substrate is supported and connected to the cathode pin and the heater pin by the conductor wire bent in an L shape, it is possible to suppress displacement of the heat-resistant insulating substrate, and Reliability is improved because the stress caused by thermal expansion at the welding point between the pin and the conductor can be reduced.

【図面の簡単な説明】[Brief explanation of drawings]

第1図〜第8図はこの発明の一実施例を示す図で、第1
図は要部平面図、第2図は要部拡大平面図、第8図は特
性図、第4図および第5図はこの発明の他の実施例を示
す図で、第4図は要部概略平面図、第5図は要部側面図
、第6図〜第8図は従来のこの種檀層状陰極装置を示す
図で、第6図は平面図、第7図は要部平面図、第8図は
断面図である。 図中、lは耐熱性絶縁基板、2は基体金属、4は電子放
射物質、51は発熱体、6は陰極容器、7は陰極ピン、
8はヒータピン、9は導線である。 なお図中同一符号は同一−1:たは相当部分を示す。
Figures 1 to 8 are diagrams showing one embodiment of the present invention.
The figure is a plan view of the main part, FIG. 2 is an enlarged plan view of the main part, FIG. 8 is a characteristic diagram, FIGS. 4 and 5 are views showing other embodiments of the present invention, and FIG. FIG. 5 is a schematic plan view, FIG. 5 is a side view of the main part, FIGS. 6 to 8 are diagrams showing this kind of conventional wood layered cathode device, FIG. 6 is a plan view, FIG. 7 is a plan view of the main part, FIG. 8 is a sectional view. In the figure, l is a heat-resistant insulating substrate, 2 is a base metal, 4 is an electron emitting material, 51 is a heating element, 6 is a cathode container, 7 is a cathode pin,
8 is a heater pin, and 9 is a conductor. Note that the same reference numerals in the figures indicate the same -1 or equivalent parts.

Claims (1)

【特許請求の範囲】[Claims] 耐熱性絶縁基板の一面に被着形成された基体金属、この
基体金属上に被着形成された電子放射物質、上記耐熱性
絶縁基板の他面に被着形成されたヒータ、陰極容器に植
立されたヒータピンおよび陰極ピン、上記耐熱性絶縁基
板を上記ヒータピンおよび陰極ピンに支持接続すると共
にL字状に曲げ成形された導線を備えた積層状陰極装置
A base metal formed on one side of the heat-resistant insulating substrate, an electron-emitting material formed on the base metal, a heater formed on the other side of the heat-resistant insulated substrate, and planted in the cathode container. A laminated cathode device comprising a heater pin and a cathode pin, a conductive wire bent into an L-shape and supporting and connecting the heat-resistant insulating substrate to the heater pin and cathode pin.
JP1341405A 1989-12-26 1989-12-26 Lamination type cathode device Pending JPH03201346A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP1341405A JPH03201346A (en) 1989-12-26 1989-12-26 Lamination type cathode device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP1341405A JPH03201346A (en) 1989-12-26 1989-12-26 Lamination type cathode device

Publications (1)

Publication Number Publication Date
JPH03201346A true JPH03201346A (en) 1991-09-03

Family

ID=18345814

Family Applications (1)

Application Number Title Priority Date Filing Date
JP1341405A Pending JPH03201346A (en) 1989-12-26 1989-12-26 Lamination type cathode device

Country Status (1)

Country Link
JP (1) JPH03201346A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1997044803A1 (en) * 1996-05-21 1997-11-27 Kabushiki Kaisha Toshiba Cathode body structure, electron gun body structure, grid unit for electron gun, electronic tube, heater, and method for manufacturing cathode body structure
CN110994301A (en) * 2019-11-11 2020-04-10 上海空间电源研究所 Hook-type power collecting device for aerospace power product

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1997044803A1 (en) * 1996-05-21 1997-11-27 Kabushiki Kaisha Toshiba Cathode body structure, electron gun body structure, grid unit for electron gun, electronic tube, heater, and method for manufacturing cathode body structure
US6130502A (en) * 1996-05-21 2000-10-10 Kabushiki Kaisha Toshiba Cathode assembly, electron gun assembly, electron tube, heater, and method of manufacturing cathode assembly and electron gun assembly
CN110994301A (en) * 2019-11-11 2020-04-10 上海空间电源研究所 Hook-type power collecting device for aerospace power product

Similar Documents

Publication Publication Date Title
US5463277A (en) Micro vacuum device
JPH07147127A (en) Anisotropic thermal decomposition graphite heater
JPH03201346A (en) Lamination type cathode device
US3249791A (en) Electron tube and combination for sensing and regulating the cathode temperature thereof
CN105858587A (en) Heater structure for heating and activating micro-miniature self-heating air suction agents and method for manufacturing heater structure
US2813227A (en) Quick heating cathode for electron discharge device
JP2614048B2 (en) Method and apparatus for manufacturing electron-emitting device
JPS6084744A (en) Hot cathode
JPH0512986A (en) Surface conductive electron emitting element and image display device using it
JP3000467B2 (en) Multi-electron source and image forming apparatus
US1828203A (en) Electron discharge tube
WO2018123687A1 (en) Solar battery and solar battery manufacturing method
JPH05225919A (en) Cathode heater and cathode assembly for microwave power tube
JP2727193B2 (en) Method for manufacturing electron-emitting device
KR0120621Y1 (en) Thermionic emission structure of cathode utilizing a ceramic heater
JPH01264132A (en) Cathode body structure
JP2614047B2 (en) Method for manufacturing electron-emitting device
JPH0364823A (en) Cathode body structure
US2892120A (en) Cathode structure
JP3399008B2 (en) Electron gun
JPH0740295Y2 (en) Cathode ray tube
JP2000195410A (en) Cathode structure
US3641387A (en) Prestressed cathode structure for electron discharge devices
JPH0364821A (en) Cathode body structure
KR100260074B1 (en) Heat-electron emiting structure of flat vacuum tube device