JPH03200888A - Conductive gasket material and its manufacture - Google Patents

Conductive gasket material and its manufacture

Info

Publication number
JPH03200888A
JPH03200888A JP33848689A JP33848689A JPH03200888A JP H03200888 A JPH03200888 A JP H03200888A JP 33848689 A JP33848689 A JP 33848689A JP 33848689 A JP33848689 A JP 33848689A JP H03200888 A JPH03200888 A JP H03200888A
Authority
JP
Japan
Prior art keywords
silver
coated
gasket material
organic fibers
nonwoven fabric
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP33848689A
Other languages
Japanese (ja)
Other versions
JP2606392B2 (en
Inventor
Akira Nakabayashi
明 中林
Masahiro Sekiguchi
昌宏 関口
Motohiko Yoshizumi
素彦 吉住
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Materials Corp
Original Assignee
Mitsubishi Materials Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Materials Corp filed Critical Mitsubishi Materials Corp
Priority to JP33848689A priority Critical patent/JP2606392B2/en
Publication of JPH03200888A publication Critical patent/JPH03200888A/en
Application granted granted Critical
Publication of JP2606392B2 publication Critical patent/JP2606392B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Landscapes

  • Sealing Material Composition (AREA)
  • Chemical Or Physical Treatment Of Fibers (AREA)
  • Nonwoven Fabrics (AREA)

Abstract

PURPOSE:To obtain a conductive gasket material excellent in an electromagnetic wave shielding effect, elasticity, breaking strength, etc., by mixing a specified amount of organic fibers coated with silver and those not coated with silver, forming a nonwoven fabric from the mixture, and infiltrating an elastomer into the fabric. CONSTITUTION:At least 10wt.% organic fibers (e.g. aromatic polyamide fibers) coated with silver are mixed with those not coated with silver to produce a nonwoven fabric. To coat organic fibers with silver, electroless plating, vacuum deposition, etc., are suitably utilized. A suitable coating weight of silver is 5-50wt.%. The nonwoven fabric is impregnated with an elastomer to give a conductive gasket material. As the elastomer for impregnation, a silicon rubber, an ethylene propylene rubber, a fluorosilicone rubber, etc., are suitably used. The gasket material thus obtained has high flexibility and hermetically sealing properties, is inexpensive and is excellent in versatility.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明は、導電性を有するガスケット材に関し、更に詳
細には筐体嵌合部の電磁シールドを確実に行なうために
使用されるガスケット材とその製造方法に関する。
Detailed Description of the Invention [Field of Industrial Application] The present invention relates to a gasket material having electrical conductivity, and more particularly to a gasket material used to ensure electromagnetic shielding of a housing fitting part. It relates to its manufacturing method.

〔従来技術とその課題〕[Conventional technology and its issues]

筐体内部の電子回路を外部のノイズ電波から保護するた
めに、筐体嵌合部に導電性のガスケット材が用いられて
いる。従来、ガスケット材としては、銀粉あるいは銀被
覆粉をゴムに混合分散させてシート状にしたものが用い
られているが、ゴム基材へ銀を70重量%以上添加しな
いと充分な導電性が得られないため、ゴム弾性が損なわ
れ、またコストが非常に高いので用途が限定されている
In order to protect the electronic circuit inside the housing from external noise radio waves, a conductive gasket material is used in the housing fitting part. Conventionally, gasket materials have been made by mixing and dispersing silver powder or silver-coated powder into rubber and forming it into a sheet, but sufficient conductivity cannot be achieved unless silver is added to the rubber base material in an amount of 70% by weight or more. The rubber elasticity is impaired because it cannot be used, and the cost is very high, so its applications are limited.

また銀粉含有ゴム材の他に、金属メツシュ、金属発泡体
、金属板バネ等もガスケット材として従来用いられてい
るが、これらの材料もコストが高く、柔軟性に乏しいう
え、気密性がない等の問題がある。
In addition to rubber materials containing silver powder, metal mesh, metal foam, metal plate springs, etc. have been conventionally used as gasket materials, but these materials are also expensive, have poor flexibility, and are not airtight. There is a problem.

〔課題の解決手段:発明の構成〕[Means for solving the problem: Structure of the invention]

本発明者等は、電磁シールド効果に優れ、高い柔軟性と
気密性を備え、低コストで汎用性に優れたガスケット材
について検討し、銀被覆有機繊維と通常の有機繊維との
混合物からなる不織布にニジストマーを含浸させたもの
を用いることにより、従来の課題を克服できることを見
出した。
The present inventors investigated a gasket material that has excellent electromagnetic shielding effect, high flexibility and airtightness, is low cost, and has excellent versatility. It has been found that the conventional problems can be overcome by using a material impregnated with nidistomer.

本発明によれば、銀を被覆した有機繊維を少なくとも1
0重量%以上含有する不織布にニジストマーを含浸させ
たことを特徴とする導電性ガスケット材が提供される。
According to the present invention, at least one silver-coated organic fiber is
A conductive gasket material is provided, which is characterized by impregnating a nonwoven fabric containing 0% by weight or more with a nidistomer.

また本発明によれば、銀を被覆した少なくとも10重量
%以上の有機繊維と、銀を被覆しない有機繊維とを混合
して不織布とした後に、該不織布にエラストマーを含浸
させて導電性ガスケット材を製造することを特徴とする
ガスケット材の製造方法が提供される。
Further, according to the present invention, after mixing at least 10% by weight of organic fibers coated with silver and organic fibers not coated with silver to form a nonwoven fabric, the nonwoven fabric is impregnated with an elastomer to form a conductive gasket material. A method of manufacturing a gasket material is provided.

本発明のガスケット材は、銀被覆有機繊維と銀を被覆し
ない通常の有機繊維とを混合した不織布から造られる。
The gasket material of the present invention is made from a nonwoven fabric that is a mixture of silver-coated organic fibers and ordinary organic fibers that are not coated with silver.

ここで有機繊維とは、天然および合成の有機物繊維、即
ち綿、麻、再生セルロース、ポリアミド、アクリル、ポ
リオレフィン、ポリエステル等の繊維である。有機繊維
の太さは0.1〜15d(デニール)が好ましく 0.
1dより細いと銀の被覆量を多く必要とし、全体の重量
が増す。また繊維の太さが15dより太いと銀の被覆量
は減少できるが、繊維が硬くなり可撓性が失われる。
The organic fibers herein include natural and synthetic organic fibers, ie, fibers such as cotton, hemp, regenerated cellulose, polyamide, acrylic, polyolefin, and polyester. The thickness of the organic fiber is preferably 0.1 to 15 d (denier).
If it is thinner than 1d, a large amount of silver coating is required and the overall weight increases. Furthermore, if the thickness of the fiber is greater than 15 d, the amount of silver coating can be reduced, but the fiber becomes hard and loses its flexibility.

銀被覆有機繊維は少なくとも10重重量以上混合される
。該混合量が10重量%より少ないと導電性が小さく、
静電気シールド程度の用途にしか用いることができず、
充分な電磁波シールド効果を得ることができない6一方
、銀被覆有機繊維の混合量を増減することによってガス
ケット材の導電性を調節でき、銀被覆有機繊維量の増加
につれてガスケット材の導電性も高くなる。
The silver-coated organic fibers are mixed at least 10% by weight. When the mixing amount is less than 10% by weight, the conductivity is low;
It can only be used as an electrostatic shield,
A sufficient electromagnetic shielding effect cannot be obtained.6 On the other hand, the conductivity of the gasket material can be adjusted by increasing or decreasing the amount of silver-coated organic fibers, and as the amount of silver-coated organic fibers increases, the conductivity of the gasket material also increases. .

銀を被覆する方法としては無電解メツキ法、真空蒸着法
等を適用できる。尚、これらの被覆方法のうち無電解メ
ツキ方法が量産性に優れている。
As a method for coating with silver, an electroless plating method, a vacuum evaporation method, etc. can be applied. Of these coating methods, the electroless plating method is superior in mass productivity.

銀の被覆量は5〜50重量%が好ましい。5重量%より
少ないと繊維を充分に被覆できず、導電性が大幅に低下
し、満足な電磁波シールド効果を得ることができない、
また銀被覆量が50重量%より多いと全体の重量が重く
なり銀被覆有機繊維の導電性も頭打ちになる。
The coating amount of silver is preferably 5 to 50% by weight. If it is less than 5% by weight, the fibers cannot be sufficiently covered, the conductivity will be significantly reduced, and a satisfactory electromagnetic shielding effect cannot be obtained.
Furthermore, if the amount of silver coating is more than 50% by weight, the overall weight becomes heavy and the electrical conductivity of the silver-coated organic fiber reaches its peak.

尚、導電性を付与するために有機繊維に被覆する金属と
しては、銀の他にニッケルやCuSが知られているが、
ニッケルは人体に対するアレルギー性や発癌性が指摘さ
れており、またニッケル、CuSは銀に比較して導電性
に劣る。従って、安全性、導電性の程度、コスト等から
みて銀が好適である。
In addition to silver, nickel and CuS are known as metals to be coated on organic fibers to impart conductivity.
It has been pointed out that nickel is allergic to the human body and carcinogenic, and nickel and CuS have poorer conductivity than silver. Therefore, silver is preferable in terms of safety, conductivity, cost, etc.

このように本発明のガスケット材は銀被覆有機繊維を含
有することによって導電性が付与され、その混合量を増
減することによって導電性が調整される。一方、導電性
を与える他の方法としては。
As described above, the gasket material of the present invention is imparted with electrical conductivity by containing the silver-coated organic fibers, and the electrical conductivity is adjusted by increasing or decreasing the amount of the mixture. On the other hand, there are other ways to provide conductivity.

不織布全体を予め銀を被覆しない通常の有機繊維によっ
て形成し、次いで該不織布を銀メツキ浴に浸漬し不織布
全体に銀被覆を施すことが考えられる。この場合でも銀
の被覆量を増減することによってガスケットの導電性を
調整することができるが、銀の被覆量が最低でも不織布
全体の5重量%以上必要となるためコストが高くなり、
また、メツキ浴中で温度、圧力が加わるため不織布が圧
縮されてしまい弾性が乏しくなり、エラストマーもほと
んど含浸できない状態となるため好ましくない。
It is conceivable to form the entire nonwoven fabric in advance from ordinary organic fibers not coated with silver, and then immerse the nonwoven fabric in a silver plating bath to coat the entire nonwoven fabric with silver. Even in this case, the conductivity of the gasket can be adjusted by increasing or decreasing the amount of silver coating, but the cost increases because the amount of silver coating must be at least 5% by weight of the entire nonwoven fabric.
Furthermore, the nonwoven fabric is compressed due to the application of temperature and pressure in the plating bath, resulting in poor elasticity and impregnation of the elastomer, which is not preferable.

尚、以上のように本発明のガスケット材は導電性の不織
布を用いて造られる。不織布は織布、綿等より空孔率が
大きく、また弾性に富むので好ましい。また導電性も調
整し易い。
Incidentally, as described above, the gasket material of the present invention is made using a conductive nonwoven fabric. Nonwoven fabrics are preferred because they have a higher porosity than woven fabrics, cotton, etc., and are more elastic. Furthermore, the conductivity can be easily adjusted.

次に本発明のガスケット材は上記有機繊維の混合体から
なる不織布にエラストマーを含浸させて造られる。含浸
させるエラストマーは、シリコンゴム、エチレンプロピ
レンゴム、ブチルゴム、フッ素ゴム、フロロシリコンゴ
ム等の無硫黄架橋樹脂が用いられる。エラストマーを含
浸させる際に、不織布の強度が小さい場合は該手織布に
熱融着性の低融点ポリエステル等を含浸させて熱融着さ
せるか、或いは樹脂塗料を被覆して予め結合させると良
い、尚、ガスケット材として気密性が必要とされない場
合にはエラストマーを含浸させる必要はないが、完全密
閉が必要な場合や、繰り返し開閉が行われる場合にはエ
ラストマーの含浸により気密性・弾性・破断強度が向上
できるので、汎用性の高いものが得られる。
Next, the gasket material of the present invention is made by impregnating a nonwoven fabric made of a mixture of the above-mentioned organic fibers with an elastomer. As the elastomer to be impregnated, sulfur-free crosslinked resins such as silicone rubber, ethylene propylene rubber, butyl rubber, fluororubber, and fluorosilicone rubber are used. When impregnating the elastomer, if the strength of the non-woven fabric is low, it is best to impregnate the hand-woven fabric with heat-fusible low melting point polyester and heat-seal it, or coat it with resin paint and bond it in advance. However, if airtightness is not required for the gasket material, it is not necessary to impregnate it with elastomer, but if complete sealing is required or if it is repeatedly opened and closed, impregnation with elastomer will improve airtightness, elasticity, and rupture. Since the strength can be improved, a product with high versatility can be obtained.

〔発明の効果〕〔Effect of the invention〕

本発明のガスケット材は、従来のガスケット材より電磁
波シールド効果が優れている。また弾性および破断強度
も大きく、筐体嵌合部に嵌着した際、優れた気密性と耐
久性を発揮する。更に銀の使用量が少なく低コストであ
り1幅広い用途に用いることが出来る。
The gasket material of the present invention has a better electromagnetic shielding effect than conventional gasket materials. It also has high elasticity and breaking strength, and exhibits excellent airtightness and durability when fitted into the housing fitting part. Furthermore, the amount of silver used is small, the cost is low, and it can be used in a wide range of applications.

〔実施例および比較例〕[Examples and comparative examples]

本発明の実施例を比較例と共に以下に示す、なお、以下
の実施例は本発明の範囲を限定するものではない。
Examples of the present invention will be shown below along with comparative examples, but the following examples do not limit the scope of the present invention.

芳香族ポリアミド繊維(音大(株)製:コーネックス、
2dX51+*w+)に、無電解めっき法により銀を3
0重量%被覆した。具体的には、先づ繊維を精練剤に浸
漬、水洗後、塩化第一スズ10g/ffi、塩酸20m
Q/Dを含んだ水溶液に浸漬、水洗して、無電解銀めっ
きに対する触媒性を付与した後、下記組成のめっき液を
所定量用いて銀を被覆した。めっき液中の銀イオンはす
べて還元析出されるので、被覆量に相当する銀イオンを
含む量のめっき液を使用した。
Aromatic polyamide fiber (manufactured by Ondai Co., Ltd.: Conex,
2dX51+*w+) by electroless plating method.
0% by weight coating. Specifically, the fibers were first immersed in a scouring agent, washed with water, and then immersed in stannous chloride 10g/ffi and hydrochloric acid 20m
After immersing in an aqueous solution containing Q/D and washing with water to impart catalytic properties to electroless silver plating, silver was coated using a predetermined amount of a plating solution having the following composition. Since all the silver ions in the plating solution are reduced and precipitated, an amount of the plating solution containing silver ions corresponding to the coating amount was used.

無電解銀めっき液(銀log分:液温25℃)エチレン
ジアミン四酢酸四ナトリウム  200g/2 Q水酸
化ナトリウム            50g/2 f
iホルマリン              100aQ
/2 Qアンモニア水 100n     n これを目付け50g/ rrrの不織布とし、シリコー
ン系ゴムを含浸させ、150℃で200kgf/ r/
、厚さ0.51厘に加圧して一次加硫した後、200℃
で4時間二次加硫して試験片を作成した(実施例1)。
Electroless silver plating solution (silver log minute: liquid temperature 25°C) Tetrasodium ethylenediaminetetraacetate 200g/2 Q Sodium hydroxide 50g/2f
i formalin 100aQ
/2 Q Ammonia water 100n n This is made into a non-woven fabric with a basis weight of 50g/rrr, impregnated with silicone rubber, and heated to 200kgf/r/ at 150℃.
, After primary vulcanization under pressure to a thickness of 0.51 mil, 200℃
A test piece was prepared by secondary vulcanization for 4 hours (Example 1).

比較のために、同一のゴム基材に銀粉末を80重量%分
散させた厚さ0.50の試験片(比重3.8.比較例1
)、銀10重量%被覆ガラスピーズを70重量%分散さ
せた厚さ0.5mmの試験片(比重1.7、比較例2)
を作成し、銀使用量破断強度、硬度、電界200M1(
zでの電磁波シールド効果等の諸物性を調べた。結果を
表1に示す。
For comparison, a test piece with a thickness of 0.50 in which 80% by weight of silver powder was dispersed in the same rubber base material (specific gravity 3.8. Comparative Example 1) was prepared.
), a 0.5 mm thick test piece in which 70 wt % of glass beads coated with 10 wt % silver were dispersed (specific gravity 1.7, Comparative Example 2)
Created, the amount of silver used, breaking strength, hardness, electric field 200M1 (
Various physical properties such as electromagnetic shielding effect at z were investigated. The results are shown in Table 1.

表1 表1の結果から明らかなように、実施例1と比較例1の
体積抵抗値は同等であり、従って電磁シールド効果も略
等しいが、銀の使用量は実施例1のほうが比較例1より
格段に少なく約1/100であり、少ない銀使用量で極
めて高い導電性を達成していることを示している。また
実施例1の破断強度は比較例に対して約2〜4倍大きく
、優れた耐久性を有している。更に、実施例1の硬度は
比較例に比べて最も小さく弾性に富む。
Table 1 As is clear from the results in Table 1, the volume resistance values of Example 1 and Comparative Example 1 are the same, and therefore the electromagnetic shielding effects are also approximately the same, but the amount of silver used in Example 1 is higher than that in Comparative Example. It is much less than that, about 1/100, indicating that extremely high conductivity can be achieved with a small amount of silver used. Moreover, the breaking strength of Example 1 is about 2 to 4 times greater than that of the comparative example, and it has excellent durability. Furthermore, the hardness of Example 1 is the smallest compared to the comparative example, and it is rich in elasticity.

Claims (3)

【特許請求の範囲】[Claims] 1.銀を被覆した有機繊維を少なくとも10重量%以上
含有する不織布にエラストマーを含浸させたことを特徴
とする導電性ガスケット材。
1. A conductive gasket material comprising a nonwoven fabric containing at least 10% by weight of organic fibers coated with silver and impregnated with an elastomer.
2.銀の被覆量が5〜50重量%の銀被覆有機繊維を用
いた第1請求項のガスケット材。
2. The gasket material according to claim 1, which uses silver-coated organic fibers having a silver coating amount of 5 to 50% by weight.
3.銀を被覆した少なくとも10重量%以上の有機繊維
と、銀を被覆しない有機繊維とを混合して不織布とした
後に、該不織布にエラストマーを含浸させて導電性ガス
ケット材を製造することを特徴とするガスケット材の製
造方法。
3. A conductive gasket material is produced by mixing at least 10% by weight of organic fibers coated with silver and organic fibers not coated with silver to form a nonwoven fabric, and then impregnating the nonwoven fabric with an elastomer. Method of manufacturing gasket material.
JP33848689A 1989-12-28 1989-12-28 Conductive gasket material and manufacturing method thereof Expired - Lifetime JP2606392B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP33848689A JP2606392B2 (en) 1989-12-28 1989-12-28 Conductive gasket material and manufacturing method thereof

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP33848689A JP2606392B2 (en) 1989-12-28 1989-12-28 Conductive gasket material and manufacturing method thereof

Publications (2)

Publication Number Publication Date
JPH03200888A true JPH03200888A (en) 1991-09-02
JP2606392B2 JP2606392B2 (en) 1997-04-30

Family

ID=18318608

Family Applications (1)

Application Number Title Priority Date Filing Date
JP33848689A Expired - Lifetime JP2606392B2 (en) 1989-12-28 1989-12-28 Conductive gasket material and manufacturing method thereof

Country Status (1)

Country Link
JP (1) JP2606392B2 (en)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100340389B1 (en) * 1999-10-11 2002-06-12 최영문 A Process for Preparing EMI Gasket
KR100403549B1 (en) * 2001-10-31 2003-10-30 남애전자 주식회사 A method for shielding electromagnetic interference waves by using form-in- place type electrically conductive silicone pastes
CN101876146A (en) * 2010-07-06 2010-11-03 西安工程大学 Method for preparing nano alumina particles composite silver coating on surface of nylon fabric
CN102182056A (en) * 2011-05-16 2011-09-14 西安工程大学 Method for preparing titanium dioxide nanoparticle composite silver plating on surface of polyester fabric
JP2013161904A (en) * 2012-02-03 2013-08-19 Nok Corp Electromagnetic wave shield gasket and manufacturing method therefor
US20220026345A1 (en) * 2018-09-28 2022-01-27 Tomoegawa Co., Ltd. Seal material for analyzer, and flow cell, detector, and analyzer using the same

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100340389B1 (en) * 1999-10-11 2002-06-12 최영문 A Process for Preparing EMI Gasket
KR100403549B1 (en) * 2001-10-31 2003-10-30 남애전자 주식회사 A method for shielding electromagnetic interference waves by using form-in- place type electrically conductive silicone pastes
CN101876146A (en) * 2010-07-06 2010-11-03 西安工程大学 Method for preparing nano alumina particles composite silver coating on surface of nylon fabric
CN102182056A (en) * 2011-05-16 2011-09-14 西安工程大学 Method for preparing titanium dioxide nanoparticle composite silver plating on surface of polyester fabric
JP2013161904A (en) * 2012-02-03 2013-08-19 Nok Corp Electromagnetic wave shield gasket and manufacturing method therefor
US20220026345A1 (en) * 2018-09-28 2022-01-27 Tomoegawa Co., Ltd. Seal material for analyzer, and flow cell, detector, and analyzer using the same
US12098998B2 (en) * 2018-09-28 2024-09-24 Tomoegawa Co., Ltd. Seal material for analyzer, and flow cell, detector, and analyzer using the same

Also Published As

Publication number Publication date
JP2606392B2 (en) 1997-04-30

Similar Documents

Publication Publication Date Title
JP4289669B2 (en) Flame-retardant conductive EMI shielding material and method for producing the same
TW588130B (en) Electrically conductive fabric
TW448452B (en) Conductive material and its manufacture method
JP2005520331A5 (en)
EP1057387A1 (en) Flame retardant emi shielding materials and method of manufacture
TW200814097A (en) Densified conductive materials and articles made from same
CN101431885B (en) All-directional conductive foam and producing method thereof
JPH03200888A (en) Conductive gasket material and its manufacture
KR101226773B1 (en) Conductive thin layer cushion seat with excellent impact absorbing function and electromagnetic waveshielding function and preparation method thereof
CN102505493A (en) Preparation method for silver plating textile through nitrogen containing conductive polymers
CN107903435B (en) Electromagnetic radiation prevention waterproof breathable film material and preparation method and application thereof
CN204626143U (en) A kind of electromagnetic shielding anti-radiation electric conduction cloth
EP0140664A2 (en) Radio wave shielding materials and a method of producing the same
JP2000133980A (en) Electromagnetic shielding gasket and manufacture thereof
US2721357A (en) Method of making electrically conductive polystyrene articles
KR101967805B1 (en) Manufacturing method of nickel-plated CuS-PAN fibers for EMI-shielding
JP4065045B2 (en) Manufacturing method of electromagnetic shielding gasket material
KR101018633B1 (en) Electromagnetic interferenceEMI shielding thin gasket with impact-resistance and manufacturing method thereof
JP5014529B2 (en) Conductive porous material having flame retardancy and method for producing the same
JPH06152181A (en) Electromagnetic wave shielding material
KR100831649B1 (en) Method of manufacturing a cushion sheet having an electromagnetic wave shielding property
JPH0548289A (en) Shield material for electromagnetic waves
JP2861059B2 (en) Metal-coated nonwoven fabric and method of manufacturing
JPS61228065A (en) Electrically conductive high polymer composition
KR19990046575A (en) a matter for electromagnetic wave absorption and bacteria repression