JP2606392B2 - Conductive gasket material and manufacturing method thereof - Google Patents

Conductive gasket material and manufacturing method thereof

Info

Publication number
JP2606392B2
JP2606392B2 JP33848689A JP33848689A JP2606392B2 JP 2606392 B2 JP2606392 B2 JP 2606392B2 JP 33848689 A JP33848689 A JP 33848689A JP 33848689 A JP33848689 A JP 33848689A JP 2606392 B2 JP2606392 B2 JP 2606392B2
Authority
JP
Japan
Prior art keywords
silver
gasket material
coated
weight
nonwoven fabric
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP33848689A
Other languages
Japanese (ja)
Other versions
JPH03200888A (en
Inventor
明 中林
昌宏 関口
素彦 吉住
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Materials Corp
Original Assignee
Mitsubishi Materials Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Materials Corp filed Critical Mitsubishi Materials Corp
Priority to JP33848689A priority Critical patent/JP2606392B2/en
Publication of JPH03200888A publication Critical patent/JPH03200888A/en
Application granted granted Critical
Publication of JP2606392B2 publication Critical patent/JP2606392B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Landscapes

  • Sealing Material Composition (AREA)
  • Chemical Or Physical Treatment Of Fibers (AREA)
  • Nonwoven Fabrics (AREA)

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明は、導電性を有するガスケット材に関し、更に
詳細には筐体嵌合部の電磁シールドを確実に行なうため
に使用されるガスケット材とその製造方法に関する。
Description: BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a gasket material having conductivity, and more particularly to a gasket material used for reliably performing electromagnetic shielding of a housing fitting portion. It relates to the manufacturing method.

〔従来技術とその課題〕[Conventional technology and its problems]

筐体内部の電子回路を外部のノイズ電波から保護する
ために、筐体嵌合部に導電性のガスケット材が用いられ
ている。従来、ガスケット材としては、銀粉あるいは銀
被覆粉をゴムに混合分散させてシート状にしたものが用
いられているが、ゴム基材へ銀を70重量%以上添加しな
いと充分な導電性が得られないため、ゴム弾性が損なわ
れ、またコストが非常に高いので用途が限定されてい
る。また銀粉含有ゴム材の他に、金属メッシュ、金属発
泡体、金属板バネ等もガスケット材として従来用いられ
ているが、これらの材料もコストが高く、柔軟性に乏し
いうえ、気密性がない等の問題がある。
In order to protect the electronic circuit inside the housing from external noise radio waves, a conductive gasket material is used for the housing fitting portion. Conventionally, as a gasket material, silver powder or silver-coated powder is mixed and dispersed in rubber to form a sheet. However, sufficient conductivity is obtained unless silver is added to the rubber substrate in an amount of 70% by weight or more. Because of this, rubber elasticity is impaired, and the cost is extremely high, so that its use is limited. In addition to silver powder-containing rubber materials, metal meshes, metal foams, metal leaf springs, and the like have been conventionally used as gasket materials, but these materials are also expensive, have poor flexibility, and lack airtightness. There is a problem.

〔課題の解決手段:発明の構成〕[Means for Solving the Problems: Structure of the Invention]

本発明者等は、電磁シールド効果に優れ、高い柔軟性
と気密性を備え、低コストで汎用性に優れたガスケット
材について検討し、銀被覆有機繊維と通常の有機繊維と
の混合物からなる不織布にエラストマーを含浸させたも
のを用いることにより、従来の課題を克服できることを
見出した。
The present inventors have studied a gasket material having excellent electromagnetic shielding effect, high flexibility and airtightness, low cost and excellent versatility, and a nonwoven fabric comprising a mixture of silver-coated organic fibers and ordinary organic fibers. It has been found that the conventional problem can be overcome by using a material impregnated with an elastomer.

本発明によれば、銀を被覆した有機繊維を少なくとも
10重量%以上含有する不織布にエラストマーを含浸させ
たことを特徴とする導電性ガスケット材が提供される。
According to the present invention, the organic fiber coated with silver is at least
There is provided a conductive gasket material characterized in that a nonwoven fabric containing 10% by weight or more is impregnated with an elastomer.

また本発明によれば、銀を被覆した少なくとも10重量
%以上の有機繊維と、銀を被覆しない有機繊維とを混合
して不織布とした後に、該不織布にエラストマーを含浸
させて導電性ガスケット材を製造することを特徴とする
ガスケット材の製造方法が提供される。
Further, according to the present invention, at least 10% by weight or more of organic fibers coated with silver and organic fibers not coated with silver are mixed to form a nonwoven fabric, and then the nonwoven fabric is impregnated with an elastomer to form a conductive gasket material. A method of manufacturing a gasket material characterized by manufacturing is provided.

本発明のガスケット材は、銀被覆有機繊維と銀を被覆
しない通常の有機繊維とを混合した不織布から造られ
る。ここで有機繊維とは、天然および合成の有機物繊
維、即ち綿、麻、再生セルロース、ポリアミド、アクリ
ル、ポリオレフィン、ポリエテスル等の繊維である。有
機繊維の太さは0.1〜15d(デニール)が好ましく0.1dよ
り細いと銀の被覆量を多く必要とし、全体の重量が増
す。また繊維の太さが15dより太いと銀の被覆量は減少
できるが、繊維が硬くなり可撓性が失われる。
The gasket material of the present invention is made of a non-woven fabric in which silver-coated organic fibers and ordinary organic fibers not coated with silver are mixed. Here, the organic fiber is a natural or synthetic organic fiber, that is, a fiber such as cotton, hemp, regenerated cellulose, polyamide, acryl, polyolefin, or polyether. The thickness of the organic fiber is preferably from 0.1 to 15 d (denier), and if it is smaller than 0.1 d, a large amount of silver is required, and the overall weight increases. If the thickness of the fiber is larger than 15d, the silver coverage can be reduced, but the fiber becomes hard and loses flexibility.

銀被覆有機繊維は少なくとも10重量%以上混合され
る。該混合量が10重量%より少ないと導電性が小さく、
静電気シールド程度の用途にしか用いることができず、
充分な電磁波シールド効果を得ることができない。一
方、銀被覆有機繊維の混合量を増減することによってガ
スケット材の導電性を調節でき、銀被覆有機繊維量の増
加につれてガスケット材の導電性も高くなる。
The silver-coated organic fibers are mixed in at least 10% by weight or more. If the mixing amount is less than 10% by weight, the conductivity is small,
It can only be used for applications of the order of an electrostatic shield,
A sufficient electromagnetic wave shielding effect cannot be obtained. On the other hand, the conductivity of the gasket material can be adjusted by increasing or decreasing the amount of the silver-coated organic fiber, and the conductivity of the gasket material increases as the amount of the silver-coated organic fiber increases.

銀を被覆する方法としては無電解メッキ法、真空蒸着
法等を適用できる。尚、これらの被覆方法のうち無電解
メッカ方法が量産性に優れている。銀の被覆量は5〜50
重量%が好ましい。5重量%より少ないと繊維を充分に
被覆できず、導電性が大幅に低下し、満足な電磁波シー
ルド効果を得ることができない。また銀被覆量が50重量
%より多いと全体の重量が重くなり銀被覆有機繊維の導
電性も頭打ちになる。
As a method for coating silver, an electroless plating method, a vacuum evaporation method, or the like can be applied. Among these coating methods, the electroless Mecca method is excellent in mass productivity. Silver coverage is 5-50
% By weight is preferred. If the amount is less than 5% by weight, the fiber cannot be sufficiently coated, the conductivity is greatly reduced, and a satisfactory electromagnetic wave shielding effect cannot be obtained. On the other hand, if the silver coating amount is more than 50% by weight, the overall weight becomes heavy and the conductivity of the silver-coated organic fiber also reaches a plateau.

尚、導電性を付与するために有機繊維に被覆する金属
としては、銀の他にニッケルやCuSが知られているが、
ニッケルは人体に対するアレルギー性や発癌性が指摘さ
れており、またニッケル、CuSは銀に比較して導電性に
劣る。従って、安全性、導電性の程度、コスト等からみ
て銀が好適である。
Incidentally, as the metal to be coated on the organic fibers to impart conductivity, in addition to silver, nickel and CuS are known,
It has been pointed out that nickel is allergic to humans and carcinogenic. Nickel and CuS are inferior in conductivity to silver. Therefore, silver is preferred in view of safety, degree of conductivity, cost, and the like.

このように本発明のガスケット材は銀被覆有機繊維を
含有することによって導電性が付与され、その混合量を
増減することによって導電性が調整される。一方、導電
性を与える他の方法としては、不織布全体を予め銀を被
覆しない通常の有機繊維によって形成し、次いで該不織
布を銀メッキ浴に浸漬し不織布全体に銀被覆を施すこと
が考えられる。この場合でも銀の被覆量を増減すること
によってガスケットの導電性を調整することができる
が、銀の被覆量が最低でも不織布全体の5重量%以上必
要となるためコストが高くなり、また、メッキ浴中で温
度、圧力が加わるため不織布が圧縮されてしまい弾性が
乏しくなり、エラストマーもほとんど含浸できない状態
となるため好ましくない。
As described above, the gasket material of the present invention is provided with conductivity by containing the silver-coated organic fiber, and the conductivity is adjusted by increasing or decreasing the mixing amount. On the other hand, as another method for imparting conductivity, it is conceivable to form the entire nonwoven fabric with ordinary organic fibers not previously coated with silver, and then immerse the nonwoven fabric in a silver plating bath to apply silver coating to the entire nonwoven fabric. In this case as well, the conductivity of the gasket can be adjusted by increasing or decreasing the amount of silver coating. However, the cost is high because the silver coating amount is required to be at least 5% by weight of the entire nonwoven fabric. Since the temperature and pressure are applied in the bath, the nonwoven fabric is compressed, the elasticity becomes poor, and the elastomer is hardly impregnated.

尚、以上のように本発明のガスケット材は導電性の不
織布を用いて造られる。不織布は織布、綿等より空孔率
が大きく、また弾性に富むので好ましい。また導電性も
調整し易い。
As described above, the gasket material of the present invention is manufactured using a conductive nonwoven fabric. Non-woven fabrics are preferred because they have a higher porosity than woven fabrics and cotton and are rich in elasticity. Also, the conductivity is easily adjusted.

次に本発明のガスケット材は上記有機繊維の混合体か
らなる不織布にエラストマーを含浸させて造られる。含
浸させるエラストマーは、シリコンゴム、エチレンプロ
ピレンゴム、ブチルゴム、フッ素ゴム、フロロシリコン
ゴム等の無硫黄架橋樹脂が用いられる。エラストマーを
含浸させる際に、不織布の強度が小さい場合は該不織布
に熱融着性の低融点ポリエステル等を含浸させて熱融着
させるか、或いは樹脂塗料を被覆して予め結合させると
良い。尚、ガスケット材として気密性が必要とされない
場合にはエラストマーを含浸させる必要はないが、完全
密閉が必要な場合や、繰り返し開閉が行われる場合には
エラストマーの含浸により気密性・弾性・破断強度が向
上できるので、汎用性の高いものが得られる。
Next, the gasket material of the present invention is produced by impregnating a non-woven fabric made of a mixture of the organic fibers with an elastomer. As the elastomer to be impregnated, a sulfur-free cross-linked resin such as silicone rubber, ethylene propylene rubber, butyl rubber, fluorine rubber, fluorosilicone rubber or the like is used. When the strength of the nonwoven fabric is low when the elastomer is impregnated, the nonwoven fabric may be impregnated with a heat-fusible low-melting polyester or the like and heat-sealed, or may be coated with a resin paint and bonded in advance. If the gasket material does not require airtightness, it is not necessary to impregnate with an elastomer.However, if complete sealing is required, or if the gasket material is repeatedly opened and closed, the airtightness, elasticity, and breaking strength are obtained by impregnation of the elastomer. Can be improved, so that a highly versatile product can be obtained.

〔発明の効果〕〔The invention's effect〕

本発明のガスケット材は、従来のガスケット材より電
磁波シールド効果が優れている。また弾性および破断強
度も大きく、筐体嵌合部に嵌着した際、優れた気密性と
耐久性を発揮する。更に銀の使用量が少なく低コストで
あり、幅広い用途に用いることが出来る。
The gasket material of the present invention has a better electromagnetic wave shielding effect than the conventional gasket material. It also has high elasticity and breaking strength, and exhibits excellent airtightness and durability when fitted to the housing fitting portion. Further, the amount of silver used is small and the cost is low, so that it can be used for a wide range of applications.

〔実施例および比較例〕[Examples and Comparative Examples]

本発明の実施例を比較例と共に以下に示す。なお、以
下の実施例は本発明の範囲を限定するものではない。
Examples of the present invention are shown below together with comparative examples. In addition, the following examples do not limit the scope of the present invention.

芳香族ポリアミド繊維(帝人(株)製:コーネック
ス、2d×51mm)に、無電解めっき法により銀を30重量%
被覆した。具体的には、先づ繊維を精練剤に浸漬、水洗
後、塩化第一スズ10g/l、塩酸20ml/lを含んだ水溶液に
浸漬、水洗して、無電解銀めっきに対する触媒性を付与
した後、下記組成のめっき液を所定量用いて銀を被覆し
た。めっき液中の銀イオンはすべて還元析出されるの
で、被覆量に相当する銀イオンを含む量のめっき液を使
用した。
30% by weight of silver on an aromatic polyamide fiber (manufactured by Teijin Limited: Conex, 2d × 51mm) by electroless plating
Coated. Specifically, the fiber was first immersed in a scouring agent, washed with water, immersed in an aqueous solution containing stannous chloride 10 g / l, and hydrochloric acid 20 ml / l, washed with water, and provided with a catalytic property for electroless silver plating. Thereafter, silver was coated using a predetermined amount of a plating solution having the following composition. Since all silver ions in the plating solution were reduced and precipitated, an amount of the plating solution containing silver ions corresponding to the coating amount was used.

無電解銀めっき液(銀10g分:液温25℃) エチレンジアミン四酢酸四ナトリウム 200g/2l 水酸化ナトリウム 50g/2l ホルマリン 100ml/2l 硝酸銀 31.6g 1ml に溶解して滴下 アンモニア水 100ml〃 これを目付け50g/m2の不織布とし、シリコーン系ゴム
を含浸させ、150℃で200kgf/m2、厚さ0.5mmに加圧して
一次加硫した後、200℃で4時間二次加硫して試験片を
作成した(実施例1)。
Electroless silver plating solution (for 10g silver: solution temperature 25 ° C) Tetrasodium ethylenediaminetetraacetate 200g / 2l Sodium hydroxide 50g / 2l Formalin 100ml / 2l Dissolve in silver nitrate 31.6g 1ml and add dropwise ammonia water 100ml〃 This was made into a nonwoven fabric with a basis weight of 50 g / m 2 , impregnated with silicone rubber, pressurized at 150 ° C to 200 kgf / m 2 , and pressed to a thickness of 0.5 mm for primary vulcanization, followed by secondary vulcanization at 200 ° C for 4 hours. To prepare a test piece (Example 1).

比較のために、同一のゴム基材に銀粉末を80重量%分
散させた厚さ0.5mmの試験片(比重3.8、比較例1)、銀
10重量%被覆ガラスビーズを70重量%分散させた厚さ0.
5mmの試験片(比重1.7、比較例2)を作成し、銀使用量
破断強度、硬度、電界200MHzでの電磁波シールド効果等
の諸物性を調べた。結果を表1に示す。
For comparison, a 0.5 mm-thick test piece (specific gravity: 3.8, Comparative Example 1) in which 80% by weight of silver powder was dispersed in the same rubber base material, silver
Thickness with 70% by weight of 10% by weight coated glass beads dispersed.
A 5 mm test piece (specific gravity 1.7, Comparative Example 2) was prepared, and various physical properties such as the breaking strength, hardness, and electromagnetic wave shielding effect at an electric field of 200 MHz were examined. Table 1 shows the results.

表1の結果から明らかなように、実施例1と比較例1
の体積抵抗値は同等であり、従って電磁シールド効果も
略等しいが、銀の使用量は実施例1のほうが比較例1よ
り格段に少なく約1/100であり、少ない銀使用量で極め
て高い導電性を達成していることを示している。また実
施例1の破断強度は比較例に対して約2〜4倍大きく、
優れた耐久性を有している。更に、実施例1の硬度は比
較例に比べて最も小さく弾性に富む。
As is clear from the results in Table 1, Example 1 and Comparative Example 1
Have the same volume resistance value, and therefore have substantially the same electromagnetic shielding effect. However, the amount of silver used in Example 1 is remarkably smaller than that of Comparative Example 1 and is about 1/100, and extremely high conductivity is obtained with a small amount of silver used. It has achieved the nature. The breaking strength of Example 1 is about 2 to 4 times larger than that of Comparative Example,
Has excellent durability. Further, the hardness of Example 1 is the smallest and rich in elasticity as compared with the comparative example.

───────────────────────────────────────────────────── フロントページの続き (56)参考文献 特開 昭59−140281(JP,A) 実開 昭62−59387(JP,U) 実開 昭63−102299(JP,U) 実開 昭61−137693(JP,U) ──────────────────────────────────────────────────続 き Continuation of the front page (56) References JP-A-59-140281 (JP, A) JP-A 62-59387 (JP, U) JP-A 63-102299 (JP, U) JP-A 61-140 137693 (JP, U)

Claims (3)

(57)【特許請求の範囲】(57) [Claims] 【請求項1】銀を被覆した有機繊維を少なくとも10重量
%以上含有する不織布にエラストマーを含浸させたこと
を特徴とする導電性ガスケット材。
1. A conductive gasket material comprising an elastomer impregnated in a nonwoven fabric containing at least 10% by weight or more of organic fibers coated with silver.
【請求項2】銀の被覆量が5〜50重量%の銀被覆有機繊
維を用いた第1請求項のガスケット材。
2. The gasket material according to claim 1, wherein silver-coated organic fibers having a silver coverage of 5 to 50% by weight are used.
【請求項3】銀を被覆した少なくとも10重量%以上の有
機繊維と、銀を被覆しない有機繊維とを混合して不織布
とした後に、該不織布にエラストマーを含浸させて導電
性ガスケット材を製造することを特徴とするガスケット
材の製造方法。
3. A conductive gasket material is produced by mixing at least 10% by weight or more of organic fibers coated with silver and organic fibers not coated with silver to form a nonwoven fabric, and impregnating the nonwoven fabric with an elastomer. A method for producing a gasket material, comprising:
JP33848689A 1989-12-28 1989-12-28 Conductive gasket material and manufacturing method thereof Expired - Lifetime JP2606392B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP33848689A JP2606392B2 (en) 1989-12-28 1989-12-28 Conductive gasket material and manufacturing method thereof

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP33848689A JP2606392B2 (en) 1989-12-28 1989-12-28 Conductive gasket material and manufacturing method thereof

Publications (2)

Publication Number Publication Date
JPH03200888A JPH03200888A (en) 1991-09-02
JP2606392B2 true JP2606392B2 (en) 1997-04-30

Family

ID=18318608

Family Applications (1)

Application Number Title Priority Date Filing Date
JP33848689A Expired - Lifetime JP2606392B2 (en) 1989-12-28 1989-12-28 Conductive gasket material and manufacturing method thereof

Country Status (1)

Country Link
JP (1) JP2606392B2 (en)

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100340389B1 (en) * 1999-10-11 2002-06-12 최영문 A Process for Preparing EMI Gasket
KR100403549B1 (en) * 2001-10-31 2003-10-30 남애전자 주식회사 A method for shielding electromagnetic interference waves by using form-in- place type electrically conductive silicone pastes
CN101876146B (en) * 2010-07-06 2012-08-22 西安工程大学 Method for preparing nano alumina particles composite silver coating on surface of nylon fabric
CN102182056B (en) * 2011-05-16 2012-11-21 西安工程大学 Method for preparing titanium dioxide nanoparticle composite silver plating on surface of polyester fabric
JP2013161904A (en) * 2012-02-03 2013-08-19 Nok Corp Electromagnetic wave shield gasket and manufacturing method therefor
US20220026345A1 (en) * 2018-09-28 2022-01-27 Tomoegawa Co., Ltd. Seal material for analyzer, and flow cell, detector, and analyzer using the same

Also Published As

Publication number Publication date
JPH03200888A (en) 1991-09-02

Similar Documents

Publication Publication Date Title
US20060182877A1 (en) Flame retardant, electrically conductive shielding materials and methods of making the same
TW448452B (en) Conductive material and its manufacture method
JP5992025B2 (en) Broadband electromagnetic wave absorber
US6521348B2 (en) Flame retardant EMI shielding gasket
JP2606392B2 (en) Conductive gasket material and manufacturing method thereof
JP2005520331A5 (en)
US20060222774A1 (en) Flame retardant foam for EMI shielding gaskets
TW200814097A (en) Densified conductive materials and articles made from same
CN101431885B (en) All-directional conductive foam and producing method thereof
EP2763520A2 (en) Electrically conductive porous material assemblies and methods of making the same
JP2004527087A (en) Polymer foam gaskets and seals
JP2000133980A (en) Electromagnetic shielding gasket and manufacture thereof
US2721357A (en) Method of making electrically conductive polystyrene articles
KR101018633B1 (en) Electromagnetic interferenceEMI shielding thin gasket with impact-resistance and manufacturing method thereof
JP2861059B2 (en) Metal-coated nonwoven fabric and method of manufacturing
JP5014529B2 (en) Conductive porous material having flame retardancy and method for producing the same
JPH11220283A (en) Conductive material
JPH0548289A (en) Shield material for electromagnetic waves
KR100831649B1 (en) Method of manufacturing a cushion sheet having an electromagnetic wave shielding property
JP3001248B2 (en) Conductive fiber sheet and method for producing the same
JP2001358497A (en) Electromagnetic-wave shielding material
JPH09331183A (en) Radio wave absorber
JPH02117932A (en) Electrically conductive elastic unit
WO2010119593A1 (en) Broadband electromagnetic wave absorbent and method for producing same
KR101150635B1 (en) Gasket for shielding emi and method for manufacturing the same